梨酒酵母工程菌的构建及SO_2天然替代物的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梨是我国仅次于苹果和柑橘的第三大水果,产量已经跃居世界第一,但是目前以鲜食为主,出现了供过于求的矛盾。对梨进行深加工是解决矛盾的有效手段,而开发梨酒是一种行之有效的解决方法。由于我国对于梨酒的加工技术不够完善,故加大研究力度已经成为研究者和生产者的当务之急。另外,SO2是传统果酒酿造常用的抗氧化剂及抗菌剂,至今仍然被使用。但是大量研究表明SO2会对人体造成危害,各国都要求降低SO2在果酒中的含量,故找到能够替代SO2的安全、高效的方法已经引起了国内外的关注。本文从梨皮及梨园土壤中分离得到了梨酒专用酵母,并通过原生质体融合技术构建了适合于梨酒酿造的优良酵母工程菌。另外,从中草药中筛选出了能够替代SO2的天然替代物,并探讨了天然替代物的抗氧化机理。同时对加入天然替代物后的梨酒香气成分进行了分析。以下为本论文主要内容:
     1.本研究以梨园土壤及果皮为分离源,分离得到了279株酵母,通过TTC染色法筛选得到产酒精能力及产香能力较强的酵母46株。然后再利用杜氏管发酵法二级筛选及三角瓶三级筛选得到了产酒率最高的菌株YDJ05和产香能力最强的菌株YS03,其产酒率和总酯含量分别为:8.8%(v/v)和0.38g/L。通过形态观察及26SrDNA D1/D2区序列分析,两株酵母分别鉴定为酿酒酵母和东方伊莎酵母,命名为Saccharomyces cerevisiae YDJ05和Issatchenkia orientalis YS03。
     2.为了得到性能更加优良、更适合于梨酒酿造的菌株,本课题通过原生质体融合技术构建梨酒酵母工程菌,分别以菌株Saccharomyces cerevisiae YDJ05及Issatchenkia orientalis YS03为融合亲本X和Y。通过EMS诱变亲本菌株Y,得到了一株精氨酸营养缺陷型菌株,以此作为遗传标记。亲本菌株X和Y采用蜗牛酶液在35℃下处理100min,得到最佳的原生质体形成率及再生率,分别为:93.6%和94.2%,相对应的原生质体再生率分别为27.8%和31.6%。以加热的方式灭活亲本菌株X,确定灭活时间为14min。在以PEG为促融剂的条件下对两株菌进行原生质体融合,得到DJ01~DJ06六株融合子,其中DJ02的产酒精率、产香率等指标最优,分别达到了9.87%和0.37g/L。通过26sDNA D1/D2区序列分析,融合子DJ02鉴定为酿酒酵母,命名为Saccharomyces cerevisiae DJ02。
     3.本部分以构建的酵母工程菌Saccharomyces cerevisiae DJ02作为酿造菌株,并对其发酵条件进行详细的优化,结果如下:
     利用单因素实验初步确定了基本发酵条件为:装液量80mL、接种量11%、初始pH值5.5、培养温度20℃、发酵时间7d。
     通过添加中草药刺激因子,发现砂仁、枸杞、杜仲、苦参、厚朴和陈皮六种中草药对该菌体出酒率有显著的影响,其中砂仁的刺激作用最为明显,出酒率达到了10.57%。
     通过Plackett-Burman实验发现,在培养温度、装液量、初始pH值、接种量、发酵时间、苦参浓度、砂仁浓度、杜仲浓度、陈皮浓度、厚朴浓度、枸杞浓度等因素中五个影响显著的因素分别为:培养温度、装液量、初始pH值、发酵时间以及砂仁浓度。
     通过Box-Behnken中心组合设计对影响出酒率显著的5个因素进一步优化,采用响应面方法对试验结果进行分析,得到培养温度、装液量、初始pH值、发酵时间以及砂仁浓度的最佳值分别为:23.2℃、76.5mL、5.77、7.6d和1.0%,此时出酒率为11.94%,比未优化之前提高了21%。
     4.从抗菌及抗氧化两个角度出发,寻找能够替代SO_2的中草药,并对其抗氧化机理进行探讨。以53种具有潜在抗菌性能的中草药作为研究对象,通过单因素和组合实验筛选出地菜子、栝楼、酸枣仁和虎杖四种中草药具有较强的抗菌性能,与SO_2相接近。研究表明其最适添加量为3mL/100mL(3%)。
     挑选出40种具有潜在抗氧化能力的中草药,通过总还原力、DPPH·的清除实验、O_2~-·的清除和·OH的清除实验,发现花生壳、槐花等9种中草药具有较强的抗氧化性。将上述中草药加入到梨酒中,利用福林酚法测定梨酒的多酚含量,发现花生壳、丁香和丹参在梨酒内具有较强的抗氧化能力。
     将具有较强的抗菌及抗氧化能力的中草药组合,分析其抗氧化性和抗菌性能,再通过酿造菌种的适应性实验,得出“酸枣仁+丁香”同时具有较强的抗氧化和抗菌能力,其添加量为3%(各1.5%),作为梨酒中SO_2的天然替代物。通过定量实验分析,能替代70%的SO2。
     分析SO_2天然替代物的抗氧化机理发现,梨酒中加入该替代物后,其氧化还原电位明显降低,低的氧化还原电位可以减慢多酚类物质的氧化。另外,梨酒在加入“酸枣仁+丁香”后,多酚的相对聚合度明显降低,从而减少羟基自由基的产生,进而抑制梨酒中多酚的氧化。
     5.梨酒中加入SO_2天然替代物后,采用GC-MS分析得到该梨酒的主要香气成分,结果如下:含有正丁醇、苯乙醇等醇类12种,占总香气成分的17.92%;含有甲基丙醇二酸、己酸等酸类物质20种,占总香气成分的9.14%;含有辛酸乙酯、琥珀酸氢乙酯、磷酸三丁酯等酯类物质为19种,占总香气量的14.23%;含有2,3-二羟基苯并呋喃、3-羟基-1-(4-羟基-3-甲氧基苯基)-1-丙酮等8种酮类物质,含量为1.22%;含有十五烷、2,6,10-三甲基十四烷等烷烃类物质有14种,含量为1.66%;含有3种苯类物质,分别为1-乙基丁基苯、二丁羟基甲苯、2-丙烯基-1,4二甲氧基-3-甲基苯,其含量为0.36%;含有丁香酚、对特辛基苯酚等多酚类物质6种,其含量高达22.45%;含有4种酰胺类物质,分别为油酸酰胺、芥酸酰胺、N, N-二甲基十二酰胺和十二烷基酰胺,含量为16.57%;还含有苯乙烯、2,6-二异丙基-茴香醚、1,6-二甲基-4-异丙基-萘和1-十九碳烯四种物质,含量为总香气成分的4.07%。与传统酿造中全部加入SO_2的对照梨酒相比较,香气成分的种类及含量差别不大,滋味、口感等感官指标相近。故可以得出结论:“酸枣仁+丁香”作为SO_2替代物是可行的,可以大大减少了SO_2的用量,具有重要的理论和现实意义。
In China, pear is the third largest citrus fruit after apple and orange,and production has been the first in world. However at present theeating fresh fruit is the main consumption ways, appeared thecontradiction of supply exceeds demand. Processing of pear is aneffective means of resolving contradictions. The developing pear wineis an effective solution. Because the processing technology of pear wineare not perfect. It is urgent for the researchers and producers to increasethe strength of researching of the moment. In addition, the sulfurdioxide is used as antioxidants and antibacterial agents in traditionalwine brewing. Nowadays it is still be used. But a lot of research showsthat the sulfur dioxide will cause harm to human body, which leadedthat the sulfur dioxide is required to reduce in wine in many countries.Finding some safety, high efficiency, non-toxic method can substitutethe sulfur dioxide has caused the attention of both at home and abroad.Two kinds of pear special wine yeast were isolated from the pear skinand soil. A kind of yeast engineering strain was structured by theprotoplast fusion technology which was suitable for the wine brewing.The natural substitutes have been found from Chinese herbs. And theantioxidant mechanism of the natural substitutes was discussed in thepaper. At the same time the pear wine aroma compositions wasanalyzing after adding natural substitute by GC-MS. The following isthe main content of this paper.
     1. In this paper279strains of yeast were isolated from the orchardsoil and peel.46strains yeast with strong ability in alcohol and aromaproducing through TTC stain method. Then YDJ05and YS03wereselected through the secondary fermentation by the DuShi tube and the third stage fermentation by the triangle bottles. The alcohol productionand aroma rate of YDJ05and YS03was8.8%(v/v) and0.38g/L.Through morphologic observation and analysis of26SrDNA D1/D2Regional sequence, the two strains of yeast were identified assaccharomyces cerevisiae and Issatchenkia Oriental by yeast, named asSaccharomyces cerevisiae YDJ05and Issatchenkia orientalis YS03.
     2. In order to getting superior performance and more suitable forpear wine brewing strains, The yeast engineering strain was structuredby the protoplast fusion technology. Saccharomyces cerevisiae YDJ05and Issatchenkia orientalis YS03were used as the fusion parents X andY. A arginine nutrition unfairness strain was selected by EMSmutagenesis from parents strains Y. The strains X and Y were dealt withthe snail enzyme liquid in35℃100min. The best protoplast formationrate and regeneration rate were93.6%,94.2%and27.8%,31.6%.Inactivate strains of the parents of X with heating them in15min. In thecircumstance with PEG as promotion melting agent DJ01~DJ06sixstrains fusant were gotten, one of them DJ02with the best alcoholproducting rate and aroma producting rate were reached to9.87%and0.37g/L. Through analysis of26S rDNA D1/D2Regional sequence,fusant DJ02is Saccharomyces cerevisiae by identification, namedSaccharomyces cerevisiae DJ02.
     3. Saccharomyces cerevisiae DJ02was used as brewing strains,and optimize the fermentation conditions in detail. The results are asfollows.
     By using single factor experiments the basic conditions offermentation were determined preliminarily. The fermentationconditions were pack fluid amount80mL, inoculumconcentration11%,initial pH5.5, culture temperature20℃, fermentation time7d.
     The six kinds of traditional Chinese herbs including fructus amomi,wolfberry, eucommia, sophora flavescens, mangnolia officinalisand andtangerine peel have significant effect on the rates of liquor. Fructusamomi is the most obvious stimulating effect one, it is to10.57%.Through the Plackett-Burman experiment, five factors including culture temperature, fluid amount, initial pH value, fermentation time andfructus amomi concentration were found to have significant effect onthe experiment results among nine ones including the cultivationtemperature, fluid amount, initial pH value, inoculumconcentration,fermentation time, Sophora flavescens concentration, fructus amomiconcentration, eucommia concentration, tangerine peel concentration,mangnolia officinalisand concentration, wolfberry concentration.Among them five factors of significant effects are: the culturetemperature, fluid amount, initial pH value, fermentation time andfructus amomi concentration.
     The five factors were optimized through the Box-Behnken centercombination design. The test results were analyzed by response surfacemethod. The best fermentation conditions are: culture temperature23.2℃, fluid amount76.5mL, initial pH value5.77, fermentation time7.6dand fructus amomi concentration1.0%. And the rate of liquor was11.94%and increased21%than before optimization.4. The substitutes of the sulfur dioxide were selected on Chinese herbsfrom two aspects including antibiosis and antioxidant. Caizi, Gualou zi,Spina date seed and Tiger rod were found to have strong antibacterialproperty among53kinds of potential Chinese herbs researched bysingle factor and group experiments. Their antibacterial properties wereclose to the sulfur dioxide. Research showed that the optimal addingamount was3mL/100mL (3%).
     40kinds of Chinese herbs with potential antioxidant propertieswere research through the general reduction force, the clear experimentof DPPH, the clear experiment of O2and·OH.9types of ones werefound to have strong antioxidant role including peanut shells, flossophorae and so on. The peanut shells, cloves and salvia miltiorrhizaehad strong antioxidant ability in pear wine by using the Phenol flintmethod for the determination of polyphenols.
     The antibacterial and antioxidant properties of the above Chineseherbs were analyzed after putting into simultaneously the pear wine.Then the brewing strain adaptability experiment on Chinese herbs was done in the pear wine. The spina date seed adding clove have strongantioxidant and antibacterial ability, the add amount is3%(1.5%foreach), as a natural alternative of sulfur dioxide in pear wine. Throughthe quantitative experimental analysis, it can replace70%of sulfurdioxide.
     The antoxidative mechanism was analyzed in this part. the REDOXpotential of the pear wine reduced significantly with The low REDOXpotentials slowed down the polyphenols oxidation. In addition, Therelative degree of polymerization of polyphenol reduced significantlyafter adding the spina date seed and clove. Thus the generation ofhydroxyl radicals were reduced and restrained polyphenols oxidation inthe pear wine.
     5. After adding the natural substitute of sulfur dioxide in pear wine,the main aroma compositions were analyzed by GC-MS. The resultswere as follows. There were12kinds of alcohol including n-butylalcohol, phenethyl alcohol accounting for17.92%of the total aromacompositions. There were20species acids including methyl propanoltwo acid, caproic acid, accounting for9.14%of the total aromacompositions.
     There were19species ester accounting for14.23%of the total ofaroma including octylic acid ethyl ester, amber acid ethyl esterhydrogen, TBP lipid and so on. There were8kinds of ketone such asBenzofuran,2,3-dihydro-,1-Propanone,3-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-. The content was1.22%.There were14species including pentadecane, Tetradecane,2,6,10-trimethyl-alkanes and so on accounting for1.66%. There were3kinds of benzene including Benzene,(1-ethylbutyl)-, ButylatedHydroxytoluene,2-Allyl-1,4-dimethoxy-3-methyl-benzene accountingfor0.36%. There were6kinds of polyphenol including Eugenol, Phenol,4-(1,1,3,3-tetramethylbutyl) and so on accounting for22.45%. Therewere9-Octadecenamide,(Z)-,13-Docosenamide,(Z)-,N-Dimethyldodecanamide and Dodecanamide in the pear wine accounting for16.57%andStyrene,2,6-Diisopropylanisole,Naphthalene,6-dimethyl-4-(1-methyleth yl)-and1-Nonadecene four material, The content was4.07%of thetotal aroma compositions.
     The pear wine of adding the sulfur dioxide substitution was similarto the one putting into sulfur dioxide pear wine in some ways such asthe sensory flavor and taste. So the conclusion can be drawn that thespina date seed and clove as sulfur dioxide substitution was feasible. Itcan greatly reduce the amount of sulfur dioxide, and has an importanttheoretical and practical significance.
引文
[1]奚惠萍.中国果酒(第一版)[M].北京:中国轻工业出版社,2006,36-37.
    [2]阎钢,徐鸿.酒的起源新探[J].山东大学学报(社会科学版),2003,(3):78-83
    [3]赵霖.果酒与健康[J].中国酿造,1998(6):16-18.
    [4]杜恣闲,郑建莉.果酒的营养成分及其发展分析研究[J].江西化工,2011(2):23-26.
    [5]王颉.我国果汁和果酒加工业发展现状及发展趋势[J].食品工业,2003(5):28-30.
    [6]马绍威.我国果酒业的现状及发展对策[J].中国食物与营养,2005(3):37-38
    [7]白镇江.发展果酒势在必行[J].中国酒,2002(1):1-4.
    [8]辛海庭,李鹤鸣,李淑彬.节约酿酒用粮,大力发展果酒[J].中国酒,1997(1):16-17.
    [9]李运龙,陈朝银,程春生,等.我国果酒生产的研究[J].食品研究与开发,2003,24(1):35-37.
    [10]于永利,巴牧仁.我国果酒的生产现状及发展对策[J].内蒙古民族大学学报(自然科学版),2008,23(3):275-277.
    [11]王秋芳.求真、务实、谋求果酒业的发展[J].酿酒科技,2004(5):32-34.
    [12]戴桂芝.浅谈我国目前果酒行业现状及发展对策[J].保鲜与加工,2002(6):3-5.
    [13]马勇.落实科学发展观,促进葡萄酒行业快速健康发展[J].酿酒科技,2004(5):30-32.
    [14]王新惠,向邓云,刘达玉,等.果酒业发展的瓶颈及其对策分析[J].农产品加工,2009(8):54-55.
    [15]潘训海,李再新,谢万如,等.果酒型保健酒的发展现状及发展前景[J].酿酒科技,2009(12):81-83.
    [16]方成泉,林盛华,李连华,等.我国梨生产现状及主要对策[J].中国果树,2003(1):46-49.
    [17]郑仕宏,周文化,李忠海,等.鲜切砂梨加工技术的研究[J].中国果树,2006,22(6):66-68.
    [18]夏玉静,王文辉,贾晓辉,等.梨果加工制品市场调查情况分析[J].中国农学通报,2009,25(22):340-343.
    [19]王淑贞.澄清梨果汁饮料的加工[J].落叶果树,1997,(4):31.
    [20]刘春芬,张峰,张旭光,等.砀山梨果醋加工工艺研究[J].农产品加工·学刊,2007,(9):35-37.
    [21]疼葳,柳琪,任凤山,等.我国梨果糖酸含量的研究[J].氨基酸和生物资源,1999,21(1):13-17.
    [22]陈莉,屠康.加工前轻微热处理对鲜切砀山梨品质的影响[J].食品工业科技,2005,26(7):51-54.
    [23]王冉.酵母发酵黄花梨酒加工工艺研究[D].重庆:西南农业大学,2004,38-43.
    [24]姜峥,苏政波,马闯,等.雪梨发酵酒的加工工艺研究[J].山东食品发酵,2007,(2):16-20.
    [25]薛桂新.苹果梨酒生产工艺的研究[J].酿酒科技,2007,(6):103-106.
    [26]刘延吉,吴铭,张蕾.南果梨酒生产工艺的研究[J].酿酒科技,2007,(11):79-81.
    [27]杜娟,刘利强.干白雪梨酒的工艺研究[J].酿酒科技,2006,(12):63-64.
    [28]钱国友.地王水晶梨酒的开发及研制[J].酿酒科技,2010,(1):74-77.
    [29]高海生,柴菊华,张建才,等.安梨酒的酿造工艺及营养成分分析[J].食品与发酵工业,2006,32(12):73-76.
    [30]方强,籍保平,乔勇进,等.果酒中二氧化硫及其控制技术的研究进展[J].农业工程技术:农产品加工业,2008(2):12-17.
    [31]王华,李华,郭安鹊.二氧化硫在红葡萄酒中的抗氧化性研究[J].中国食品添加剂,2003(5):31-36.
    [32] Yu Fang, Michael C. Qian. Sensitive quantification of sulfur compounds in wine byheadspace solid-phase microextraction technique[J]. Journal of Chromatography A,2005(1080):31-36.
    [33]吴利竹,于清波,刘玉萍.对葡萄酒卫生监督检验国家标准的探讨[J].中外葡萄与葡萄酒,2001(3):55.
    [34] Marcillaud, L., Done`che, et al. First results about use of a possible substitution productfor sulfur dioxide in wine making[J]. Journal International Des Sciences De La Vigne EtDu Vin,1997,31(2):93–98.
    [35] Lustrato, G., Alfano, et al. Controlling grape must fermentation in early winemakingphases: the role of electrochemical treatment[J]. Journal of Applied Microbiology,2003,95:1087–1095.
    [36] Wilson, K., Boreham, et al. Applications of radiation within the wine Industry[J].Canadian Undegraduate Physics Journal,2003, l1:17–19.
    [37] Gómez-Plaza, E., Gil-Mu, et al. Effect of the addition of bentonite andpolyvinylolypyrrolidone on the colour and long-term stability of red wines[J].Journal of WineResearch,2000,11(3):223-231.
    [38] Bonilla, F., Mayen, et al. Yeasts used as fining treatment to correct browning in whitewines[J].Journal of Agricultural and Food Chemistry,2001,49(4):1928-1933.
    [39] Lopez-Toledano, A., Mayen, et al. Yeast-induced inhibition of(+)-catechin and(-)-epicatechin degradation in model solutions[J]. Journal of Agricultural and FoodChemistry,2002,50(6):1631-1635.
    [40] Servili, M., Stefano, et al. A novel method for removing phenols from grapemust[J].American Journal of Enology&Viticulture,2000,51(4):357-361
    [41]康文怀,李华,严升杰,等.葡萄汁过量氧化研究进展[J].酿酒科技,2005,(7):71-75.
    [42] Vaimakis, V., Roussis, et al. Effect of grape blanching on the oxidation of white wine[J].Wein-Wissenschaft,1997a,52(2):113-114.
    [43] Duran, N., Rosa, et al. Applications of laccases and tyrosinases (phenoloxidases)immobilized on different supports:a review[J]. Enzyme and Microbial Technology,2002,31(7):907-931.
    [44] Minussi, R.C., Pastore, et al. Potential applications of laccase in the food industry[J].Trends in Food Science and Technology,2002,13:205-216.
    [45]王岁楼,王琼波.漆酶在食品工业中的应用及其产生菌的研究[J].食品科学,2005,26(2):260-263.
    [46] Brajkovich, M., Tibbits, et al. Effect of screwcap and cork closures on SO2levels andaromas in a Sauvignon Blanc wine[J]. Journal of Agricultural and Food Chemistry,2005,53(26):10006-10011.
    [47] Godden, P., Francis, et al. Wine bottle closures:sensory properties of a Semillon wine.Performance up to20months post-bottling[J]. Australian&New Zealand WineIndustry Journal,2001,16(5):93-112.
    [48] Lopes, P., Saucier, et al. Impact of storage position on oxygen ingress through differentclosures into wine bottles[J]. Journal of Agricultural and Food Chemistry,2006,54(18):6741-6746.
    [49] Paul, R. Micro-oxygenation–where now?[C].In:Australian Society of Viticulture andOenologyse minar:Use of Gases in Winemaking.2002(pp.18-22). Glenside, SouthAustralia.
    [50] Parish, M., Wollan, et al. Micro-oxygenation-a review[J]. Australian Grapegrower&Winemaker,2006,438a,47-50.
    [51]康文怀,李华,秦玲.葡萄酒中溶解氧与酚类物质的研究进展[J].酿酒,2003,30(4):44-46.
    [52] Jones, P.R., Kwiatkowski, et al. Exposure of red wine to oxygen post-fermentation[J].The Australian and New Zealand Wine Industry Journal,2004,19(3):17-20,22-24.
    [53] Palacios-Macias, V.M., Caro Pina, et al. Factors influencing the oxidation phenomena ofsherry wine[J]. American Journal of Enology&Viticulture,2001,52(2):151-155.
    [54] Benítez, P., Castro, et al. Removal of iron,copper and manganese from white winesthrough ion exchange techniques:effects on their organoleptic characteristics andsusceptibility to browning[J]. Analytica Chimica Acta,2002a,458(1):197-202.
    [55] Pyrzyńska, K. Analytical methods for the determination of trace metals in wine[J].Critical Reviews in Analytical Chemistry,2004,34(2):69-83.
    [56] Goodwin, C. O., Morris, et al. Effect of ultrafiltration on wine quality and browning[J].American Journal of Enology&Viticulture,1991,42(4):347-353.
    [57]李华.现代葡萄酒工艺学[M].西安:陕西人民出版社,2000,7-42.
    [58]郝素娥,宠满坤,钟耀广.食品添加剂制备与应用技术[M].北京:化学工业出版社,2003.
    [59] Bradshaw, M.P., Cheynier, et al. Defining the ascorbic acid crossover from anti-oxidantto pro-oxidant in a model wine matrix containing(+)-catechin[J]. Journal of Agriculturaland Food Chemistry,2003,51(14):4126-4132.
    [60] Bradshaw, M.P., Prenzler, et al. Ascorbic acid-induced browning of(+)-catechin in amodel wine system[J]. Journal of Agricultural and Food Chemistry,2001,49(2):934-939.
    [61] Scollary, G.R. Factors determining wine oxidation: the critical role of ascorbic acid.National Wine&Grape Industry Centre. Final report to Grape and Wine Research&Development Corporation,31May,2002.
    [62] Bradshaw, M.P., Scollary, et al. Development of a potentiometric method to measure theresistance to oxidation of white wines and the antioxidant power of their constituents[J].Journal of the Science of Food and Agriculture,2004,84(4):318-324.
    [63] Oliveira, C.M., Silva Ferreira, et al. Examination of the sulfur dioxide-ascorbic acidanti-oxidant system in a model white wine matrix[J]. Journal of Agricultural and FoodChemistry,2002,50(7):2121-2124.
    [64] Bradshaw, M.P., Prenzler, et al. Ascorbic acid-induced browning of(+)-catechin in amodel wine system[J]. Journal of Agricultural and Food Chemistry,2001,49(2):934-939.
    [65]李任强,江凤仪,方玲,等.维生素c与氨基酸褐变反应的研究[J].食品工业科技,2002,23(11):32-34.
    [66]王美芝,张建军.酶对葡萄酒风味及颜色的稳定作用[J].中外葡萄与葡萄酒,1999(3):67-69.
    [67] Clare, S.S., Skurray, et al. Effect of a pectolytic enzyme on the colour of red wine[J].Australian&New Zealand Grape grower and Winemaker,2002(456):29-35.
    [68] Vivas, N., Vivas de Gaulejac, et al. Scavenging and antioxidant properties of differentsoluble compounds in hydroalcoholic media mparison with SO2efficiency[J]. Bulletinde L'O.I.V.,2001,74(843/844):331-346.
    [69] Papadopoulou, D., Roussis et al. Inhibition of the decline of linalool and α-terpineol inMuscat wines by glutathione and N-acetyl-cysteine[J]. Italian Journal of Food Science,2001,13(4):413-419.
    [70] Shin, H.S., Strasburg, et al. A model system study of the inhibition of heterocyclicaromatic amine formation by organosulfur compounds[J].Journal of Agricultural andFood Chemistry,2002,50(26):7684-7690.
    [71]宋永胜,段洪东.螯合剂及其在食品中的应用[J].广州食品工业科技,2004,20(2):147-150.
    [72]宋友礼,颜亨宸.植酸与植酸酶[J].中国医药工业杂志,2002,33(3):151-154.
    [73]金宁,赵谋明,刘通讯.金属离子对常用四种食用合成色素稳定性的影响[J].食品工业科技,2004,25(8):116-117,120.
    [74]刘淑玲,仝建波,李美萍,等.Edta对红花黄色素的稳定效应[J].食品工业科技,2003,24(3):31-33.
    [75]宋宏新,高栋,赵伟伟,等.草莓果肉果汁加工中变色因素分析[J].食品科技,2002(5):45-47.
    [76]蓝虹云,雷福厚,黄道战,等.多酚氧化酶催化单宁的氧化聚合反应研究[J].湖北化工,2002,19(2):12-14.
    [77]于新,冯彤,李远志,等.食品添加剂对草菇PPO和POD活性的影响[J].食品工业科技,2002,23(5):10-13.
    [78]郭安鹊.红葡萄酒中新型抗氧化剂的研究[D].杨凌:西北农林科技大学,2004,25-28.
    [79] Danilewicz, J.C.. Review of reaction mechanisms of oxygen and proposed intermediatereduction products in wine: central role of iron and copper[J]. American Journal ofEnology&Viticulture,2003,54(2):73-85.
    [80] Waterhouse, A.L. Laurie et al. Oxidation of wine phenolics: a critical evaluation andhypotheses[J]. American Journal of Enology&Viticulture,2006,57(3):-313.
    [81] Glebska, J., Grzelak, et al. EDTA loses its antioxidant properties upon storage inbuffer[J]. Analytical Biochemistry,2002,311:87-89.
    [82] Engelmann, M. D. Flavonoid interactions with iron and iron complexes: implications onin-vitro antioxidant activity[D]. United States--Idaho: Ph. D. Thesis. University ofIdaho.2003.
    [83]彭丽桃,蒋跃明.适度加工果蔬褐变控制研究进展(综述)[J].亚热带植物科学,2003,32(4):72-76.
    [84]邹先伟,蒋志胜.植物源酪氨酸酶抑制剂研究进展[J].中草药,2004,35(6):702-705.
    [85] Marcillaud, L.and Doneche, B.. First results about use of a possible substitutionproduct for sulfur dioxide in wine making[J]. Journal International des Sciences de laVigne et du Vin,1997,31(2):93-98.
    [86] Lugasi, A., Bla′zovics, et al. Antioxidant effect of squeezed juice from black radish(Raphanus sativus I. var niger) in alimentary hyperlipidaemia in rats[J]. PhytotherapyResearch.2005,19:587–591.
    [87] GEOLIFE (BIOMA CO AG Swiss).General Documentation: Biological Products Line ofGeolife,2004.128.
    [88] Maria-Ioanna Salaha, Stamatina Kallithraka, Ioannis Marmaras, et al.. A naturalalternative to sulphur dioxide for red wine production: Influence oncolour, antioxidantactivity and anthocyanin content[J]. Journal of Food Composition and Analysis,2008,21:660–666.
    [89] Alonso, A.M., Dominguez, et al. Determination of antioxidant power of red and whitewines by a new electrochemical method and its correlation with polyphenolic content[J].Journal of Agricultural and Food Chemistry2002,50,3112–3115.
    [90] Arnous, A., Makris, et al. Effect of principal polyphenolic components in relation toantioxidant characteristics of aged red wines[J]. Journal of Agricultural and FoodChemistry2001,49,5736–5742.
    [91] De Beer, D., Joubert, et al. South African Journal of Enology and Viticulture,2002,23,48–61.
    [92] Du Toit, M., Pretorius, et al. Phenolic compounds: a review of their possible role as invivo antioxidants of wine[J]. Journal of Enology and Viticulture.2000,21:74–96.
    [93] Plumridge, A., Hesse, et al. The weak acid preservative sorbic acid inhibits conidialgermination and mycelia growth of Apergillis niger through intracellular acidification[J].Applied Environmental Microbiology,2004,70:3506–3511.
    [94] Threlfall, R. T., Morris, et al. Effectiveness of sulfur dioxide and dimethlydicarbonate onSaccharomyces bayanus growth at different pH levels in a juice and semi-sweet wine[D].2001, In ASEV52nd Annual Meeting, San Diego, CA, USA.
    [95] Threlfall, R. T., Morris, et al. Using dimethyldicarbonate to minimize sulfur dioxide forprevention of fermentation from excessive yeast contamination on juice and semi-sweetwine[J]. Journal of Food Science,2002,67,2752–2758.
    [96] Divol, B., Strehaiano, et al. Effectiveness of dimethylcarbonate to stop alcoholicfermentation [J]. Food Microbiology,2005,22,169–178.
    [97] Vincent Renouf, Pierre Strehaiano, Aline Lonvaud-Funel. Effectiveness ofdimethlydicarbonate to prevent Brettanomyces bruxellensis growth in wine[J]. FoodControl2008,19:208–216.
    [98] N. Basaran-Akgul, J.J. Churey, P. Basaran, et al. Inactivation of different strains ofEscherichia coli O157:H7in various apple ciders treated with dimethyl dicarbonate(DMDC) and sulfur dioxide (SO2) as an alternative method[J]. Food Microbiology2009,26:8–15.
    [99] Kubo, I., Lee, et al. Effect of EDTA alone and in combination with polygodial on thegrowth of Saccharomyces cerevisiae[J]. Journal of Agricultural and Food hemistry,2005,53(5):1818-1822.
    [100] Gill, A.O., Holley, et al. Inhibition of bacterial growth on ham and bologna by lysozyme,nisin and EDTA[J]. Food Research International,2000,33(2):83-90.
    [101] Hansen, L.T., Austin, et al. Antibacterial effect of protamine in combination with EDTAand refrigeration[J]. International Journal of Food Microbiology,2001,66:149-161.
    [102] Gómez-Rivas, L., Escudero-Abarca, et al. Selective antimicrobial action of chitosanagainst spoilage yeasts in mixed culture fermentations[J]. Journal of IndustrialMicrobiology and Biotechnology2004,31:16–22
    [103] Daeschel, M. A., Jung, D. S., et al. Controlling wine malolactic fermentationwith nisin and nisin resistant strains of Leuconostoc oenos[J]. Applied EnvironmentalMicrobiology,1991,57:601–603.
    [104] Thomas, L.V., Ingram, et al. Natamycin control of yeast spoilage of wine[J]. FoodProtection Trends.2005,25:510–517.
    [105]赵娟.纳他霉素对啤酒防霉效果的试验[J].食品科技,2002,6:38-42.
    [106] Orsi, N.. The antimicrobial activity of lactoferrin: current status and perspectives[J].BioMetals,2004,17:189–196.
    [107] Wakabayashi, H., Yamauchi, et al. Int. Dairy J.2006,16:1241–1251.
    [108] Weinberg, E.D.. Curr. Pharm. Des.2007,13:801–811.
    [109] Strom, M.B., Haug, et al. Important structural features of15-residue lactoferricinderivatives and methods for improvement of antimicrobial activity[J]. Biochemistryand Cell Biology2002,80:65–74.
    [110] Mu oz, A., Marcos, et al. Activity and mode of action against fungal phytopathogens ofbovine lactoferricin-derived peptides[J]. Journal of Applied Microbiology.2006,101:1199–1207.
    [111] López-García, B., Pérez-Payá, et al. Identification of novel hexapeptides bioactiveagainst phytopathogenic fungi through screening of a synthetic peptide combinatoriallibrary[J]. Applied and Environmental Microbiology.2002,68:2453–2460.
    [112] López-García, B., Veyrat, et al. Comparison of the activity of antifungal hexapeptidesand the fungicides thiabendazole and imazalil against postharvest fungal pathogens[J].International Journal of Food Microbiology2003,89:163–170.
    [113] María Enrique, Jose F. Marcos, María Yuste, et al.. International Journal of FoodMicrobiology,2007,118:318–325.
    [114] Mara Enrique, Paloma Manzanares, Mar′a uste, et al. Antimicrobial action ofsynthetic peptides towards wine spoilage yeasts[J]. Food Microbiology2009,26:340-346.
    [115] OsborneJ.P., Mira R., de Orduňa, et al.. Acetaldehydemetabolism Bywinelacticacidbacteria[J]. FEMS Microbiology Letters.2000,191:51-55.
    [116] MOnica H., Luis A.G., Mario D. J.agric. The effect of SO2on the productionofethanol,acetaldehyde, organic acids, and flavor volatiles during industrial ciderfermentation[J].food chem.2003,51:3455-3459.
    [117] Barbosa-Cánovas, G.V., Fernández-Molina, et al. Pulsed electric fields: A noveltechnology for food preservation[J]. Agro Food Industry Hi-Tech.2001,12:9–14.
    [118] López, N., Puértolas, et al. Effects of pulsed electric fields on the extraction of phenoliccompounds during the fermentation of must of Tempranillo grapes[J]. European FoodResearch and Technology.2008a,227:1099–1107.
    [119] López, N., Puértolas, et al. Spoilage yeast in the wine industry[J]. Innovative FoodScience and Emerging Technologies.2008b,9:477–482.
    [120] E. Puértolas, N. López, S. Condón. Pulsed electric fields inactivation of wine spoilageyeast and bacteria[J]. International Journal of Food Microbiology.2009,130:49–55
    [121] Lustrato, G., Alfano, et al. Controlling grape must fermentation in earlywinemaking phases: the role of electrochemical treatment[J]. Journal of AppliedMicrobiology.2003,95:1087–1095.
    [122] Mok, C., Song, et al. High hydrostatic pressure pasteurization of red wine[J]. Journal ofFood Science,2006,71:265–269.
    [123] Kyle Wilson, Doug Boreham, Gerald Moran. Applications of radiation within the wineindustry[J]. Canadian Undergraduate Physics Journal.2002,1(2):17-19.
    [124]彭帮柱,岳田利,袁亚宏,等.酵母菌原生质体融合技术[J].西北农业学报,2004,13(1):101-103.
    [125] Gi-Work Choi, Hyun-Ju Um, Hyun-Woo Kang, et al. Bioethanol production by aflocculent hybrid, CHFY0321obtained by protoplast fusion between Saccharomycescerevisiae and Saccharomyces bayanus[J]. Journal of Food Science.2010(34):1232-1242
    [126]苏旭东,史东健,程书梅,等.原生质体融合构建高效降解苹果酸酿酒酵母[J].中国食品学报,2007,7(5):79-84.
    [127]王芬,由媛,全丽,等.双亲灭活的原生质体融合株啤酒酵母DR9-2的构建及其特性的研究[J].酿酒,2007,34(5):72-75.
    [128]李华,何忠宝.原生质体融合构建葡萄酒降酸酵母的研究[J].微生物学杂志,2006,26(2):5-8.
    [129]路玲玲,王敏,朱会霞,等.原生质体融合构建耐高温高产酒精酵母[J].食品科学,2007,28(4):231-136.
    [130]彭帮柱,岳田利,袁亚宏.原生质体融合法构建増香型苹果酒酿造酵母的研究[J].中国食品学报,2006,6(6):70-77.
    [131]魏运平,叶俊华,赵光鳌.原生质体融合技术及其在酿酒酵母菌株选育中的应用[J].酿酒科技,2003,(3):87-89.
    [132]史东健,林扬,张伟,等.一步降解苹果酸葡萄酒的构建及特性研究[J].酿酒,2005,32(3):43-50.
    [133]高玉荣.原生质体融合葡萄酒酵母用于葡萄酒降酸[J].酿酒科技,2001(3):59-60.
    [134]王瑞生,肖冬光,郭学武,等.原生质体融合选育乳清发酵生产燃料乙醇的酵母菌种[J].酿酒科技,2009(11):28-30.
    [135]黎永学,张德纯,李代昆.双歧杆菌和酿酒酵母原生质体融合子筛选方法的探讨[J].食品科学,2006,27(2):84-86.
    [136]陈娟,阚建全,杜木英.原生质体融合法构建蜂蜜桑椹酒酿造酵母的研究[J].食品科学,2009,30(19):166-172.
    [137]刘长祥.采用原生质体融合法选育优良啤酒酵母[J].山东食品发酵,2001(2):20-22.
    [138]陈计峦,吴继红,冯作山,等.库尔勒香梨酒的挥发性成分分析[J].酿酒科技,2005,(3):87-89.
    [139]牛广财,范兆军,朱丹,等.沙棘原酒与陈酿酒香气成分的比较研究[J].食品科学,2008,29(10):491-494.
    [140]王晓茹,王颉.苹果酒酿造工艺及高级醇的气相色谱分析[J].中国食品学报,2006,(3):351-356.
    [141]彭帮柱,岳田利,袁亚宏,等.气相色谱-质谱联用法分析苹果酒香气成分的研究[J].西北农林科技大学学报(自然科学版),2006,34(1):71-74.
    [142]纵伟,雷丽.山茱萸保健酒的制备及香气成分分析[J].四川食品与发酵,2008,44(2):67-69.
    [143] Lonvaud-Funel, A.. Lactic acid bacteria-a survey[C]. Verlag, T. S.(Ed.), Proceedingsof the13thInternational Oenology Symposium,9-12June2002. Montpellier, France,International Association of Oenology, Management and Wine Mrketing,59-74.
    [144] Bartowsky, E.., Costello, et al. Management of malolactic fermentation-wine flavourmanipulation[J]. Australian and New Zealand Grapegrower and Winemaker,2002,461a(7-8),10-12.
    [145] Nielsen, J. C.., Pilatte, et al. Maitrise de la fermentation malolactique parl’ensemencement direct du vin[J]. Revue Francaise d’Oenologie,1996,(160):12-15.
    [146] Henick-Kling, T., Park, et al. Consideration for the use of yeast and bacterial startercultures: SO2and timing of inoculation[J]. American Journal of Enology andViticulture,1994,(45):464-469.
    [147] Caridi, A., Corte, V.. Inhibition of malolactic fermentation by cryotolerant yeasts[J].Biotechnology Letters,1997,(19):723-726.
    [148] Carrete′, R., Teresa Vidal, et al.. Inhibitory effect of sulfur dioxide and other stresscompounds in wine on the ATPase activity of Oenococcus oeni[J]. FEMSMicrobiology Letters,2002,(211):155-159.
    [149] Tourdot-Mare′chal, R., Fortier. Acid sensitivity of neomycin-resistant mutant s ofOenococcus oeni: a relationship between reduction of ATPase activity and lack ofmalolactic activity[J]. FEMS Microbiology Letters,1999,(178):319-326.
    [150] Guerzoni, M.E., Sinigaglia, M., et al.. Effects of pH, temperature, ethanol, and malateconcentration of Lactobacillus plantarum and Leuconostoc oenos: modeling of themalolactic activity[J]. American Journal of Enology and Viticulture,1995,(46):368-374.
    [151] Caridi, A., Corte, et al. Inhibition of malolactic fermentation by cryotolerant yeasts[J].Biotechology Letters,1997,(19):723-726.
    [152] Fourcassier, E., Makaga-Kabinda-Massard, et al.. Growth, D-gulcose utilitation andmalolactic fermentation by Leuconostoc oenos strains in18media deficient in oneamino acid[J]. Journal of Applied Bacteriology73,1992,(73):489-496.
    [153] Henschke, P. A.. An overview of malolactic fermentation research. Australianand NewZealand Wine Industry Journal,1993,8(1):69-79.
    [154] Mart′nez-Rodriguez, A.J., Carrascosa, et al.. Release of nitrogen compounds to theextracellular medium by three strains of Saccharomyces cerevisiae during inducedautolysis in a model wine system[J]. International Journal of Food Microbiology,2001,(68):155-160.
    [155] Mart′nez-Rodriguez, A.J., Carrascosa, et al.. Influence of the yeast strain on thechanges of the amino acids, peptides and proteins during sparkling wine production bythe traditional method[J]. Journal of Industrial Microbiology and Biotechnology,2002,(29):314-322.
    [156] Liu, J.-W.R., Gallander, et al.. Effect of insoluble solids on the sulfur dioxide and rateof malolactic fermentation in white table wines[J]. American Journal of Enology andViticulture,2003,(33):194-197.
    [157] Edwards, C.G., Beelman, et al.. Production of decanoic acid and other volatilecompounds and the growth of yeast and malolactic bacteria during vinification[J].American Journal of Enology and Viticulture,1990,(41):48-56.
    [158] King, S. W., Beelman, et al.. Metabolic interactions between Saccharomyces cerevisiaeand Leuconostoc oenos in a model grape juice/wine system[J]. American Journal ofEnology and Viticulture,1986,(37):53-56.
    [159] Huang, Y.-C., Edwards, et al.. Relationship between sluggish fermentation and theantagonism of yeast by lactic acid bacteria[J]. American Journal of Enology andViticulture,1996,(47):1-10.
    [160] Semon, M.J., Edwards, et al.. Inducing malolactic fermentation in Chardonnay mustsand wines using different strains of Oenococcus oeni[J]. Australian Journal of Grapeand Wine Research,2001,(7):52-59.
    [161]刘冬梅,吴晖,吴静云,等.龙眼果酒酿造酵母的筛选及其发酵条件优化[J].食品工业科技,2008,29(2):71-74.
    [162]赵祥杰,杨荣玲,肖更生,等.桑椹果酒专用酵母的筛选及鉴定[J].中国食品学报,2008,8(1):60-66.
    [163]王梅,张澎湃,帅桂兰,等.TTC在黄酒酵母选育中的应用[J].酿酒,2001,28(5):62-64.
    [164]沈昌.优良果酒酵母筛选与紫甘薯酒发酵工艺研究[D].南京:南京农业大学,2007,14-17.
    [165]崔铁忠.柿子果酒酵母菌的分离、筛选及其应用研究[D].北京:中国农业大学,2005.
    [166]张翠英.优良果酒酵母的分离选育及发酵性能研究[D].扬州:扬州大学,2006,22-27.
    [167] GB/T15038-2006,葡萄酒、果酒通用分析方法[S].北京:中国标准出版社,2006,73-76.
    [168]高健,邓先余,康健,等.一株分离于湘江污染水域的酵母(Candida fermentati)的鉴定及其Cd2+的吸附特性[J].海洋与湖泽,2010,41(5):327-333.
    [169]郝琳.食品微生物学实验技术[M].北京:中国农业出版社,2001,46-73.
    [170]陈海昌,刘波,张苓花,等.原生质体融合技术构建糖化型啤酒酵母的研究[J].微生物学通报,1997,24(3):159-165.
    [171]亚当斯A,戈特施林DE,凯泽CA,等译.遗传学实验方法[M].北京:科学出版社,2000,56-61.
    [172]彭帮柱.増香型苹果酒酵母的选育研究[D].陕西:西北农林科技大学,2004,43-54.
    [173]都荣庭.中国鸭梨[M].北京:中国林业出版社,1999,53-62.
    [174]终屏亚.果树史话[M].北京:中国农业出版社,1983,12-23.
    [175]马绍威.我国果酒业的现状及发展对策[J].中国食物与营养,2005,(3):37~38.
    [176]王秋芳.利用资源优势发展以果代粮酿酒[J].酿酒,1997,(3):1~2.
    [177]傅力,张华,叶红.库尔勒香梨酵母XLI和XLZ发酵性能的研究「J].食品科学,2003,24(1):62.
    [178] Y. Kourkoutas. Immobilization technologies and support materials suitable in alcoholbeverages production: a review[J]. Food Microbiology.2004,21(4):377~397.
    [179] Heard G. M.. Nover yeasts in wine making-looking to the future[J]. Food Australia.1999,(51):347~352.
    [180] GB/T15038-2006,葡萄酒、果酒通用分析方法[S].北京:中国标准出版社,2006,39-64.
    [181] Sanket Joshi, Sanjay Yadav. Application of response-surface methodology to evaluatethe optimum medium components for the enhanced production of lichenysin byBacillus Licheniformis R2Biochemical Engineering Journal[J].2008,(41):122–127.
    [182]顾玮蕾,王春丽.六种中草药水提物体外抗氧化活性研究[J].食品工业科技,2010(3):190-192.
    [183]方敏,占才贵,宫智勇.玉米须总黄酮的提取与抗氧化活性研究[J].食品科学,2009,30(18):206-208.
    [184]孟庆繁,于笑坤,徐睦芸,等.刺五加多糖的提取及其抗氧化性[J].吉林大学学报(理学版),2005,43(5):683-686.
    [185]陈坚生,杨幼慧,蹇华丽,等.荔枝酒贮藏过程中非酶褐变的因子解析[J].食品与发酵工业,2010,36(6):20-25.
    [186]刘伟伟,赵光鳌,徐岩,等.苹果酒中模拟体系下非酶氧化与酶促氧化对聚合度影响的研究[J].酿酒科技,2006,(3):42-44.
    [187]彭帮柱,岳田利,袁亚宏,等.气相色谱-质谱联用法分析苹果酒香气成分的研究[J].西北农林科技大学学报(自然科学版),2006,34(1):71-74.
    [188]牛广财,范兆军,朱丹,等.沙棘原酒与陈酿酒香气成分的比较研究[J].食品科学,2008,29(10):491-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700