叶蝉诱导的茶树重要防御相关基因的功能解析和互利素鉴定应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
茶树(Camellia sinensis)起源于中国西南部,是一种重要的经济作物。茶叶为世界三大无酒精饮料之一。茶树在生长过程中常常受到各种各样植食性昆虫的为害,但是茶叶的饮用方法又决定了化学农药的使用是受到限制的。随着人们对茶叶产品的卫生质量和安全性要求越来越高,减免化学农药的使用量势在必行。当茶树遭受植食性昆虫攻击时,会释放一系列复杂的挥发物,这些挥发物能够吸引天敌到受害植物寻找寄主或猎物,因而对植物和植食性昆虫的天敌均有利,称之为互利素,作为化学信号为茶树、植食性昆虫及其天敌提供有价值的信息。研究和利用这些挥发物,通过提取和合成挥发物或通过转基因植物释放的挥发物来调控昆虫的行为,抵御害虫危害,显示了极大的潜力。本文主要研究内容结论如下
     (1)茉莉酸类物质的生物合成途径是虫害诱导的主要途径,在植物虫害诱导防御过程中起着主导作用。而丙二烯氧化物环化酶(AOC)是茉莉酸类物质生物合成途径中最为关键的酶,它环化在AOS催化反应下生成的不稳定化合物-丙二烯氧化物,生成茉莉酸产物的最终前体物质12-氧-植物二烯酸(OPDA).本文首次在茶树中克隆了该酶基因,采用RACE技术获得了茶树AOC全长cDNA序列(CsAOC, Genbank登录号:HQ889679)。其cDNA全长为916bp,包括5’和3’非翻译区、poly(A)尾和一个长738bp的开放阅读框(ORF)。CsAOC基因组DNA含有两个内含子,分别为115bp和369bp。CsAOC基因编码的蛋白质有245个氨基酸,分子量为26.5kDa,理论等电点为9.0。没有信号肽,但有一个叶绿体转运肽。多重比对结果表明CsAOC蛋白与其他的AOC蛋白具有较高的同源性。预测了CsAOC的二级结构组成,由21.22%α-螺旋、25.31%延伸主链、6.12%β-转角和47.35%随机卷曲组成。成功构建了CsAOC的原核表达载体,结果表明表达出来的蛋白与所预期的蛋白大小一致。该表达蛋白主要以包涵体形式存在。RT-QPCR结果表明,CsAOC基因可被多种不同诱导因素所诱导,MeJA的诱导最为显著,SA和机械损伤也都明显提高了CsAOC的表达水平。受茶尺蠖和假眼小绿叶蝉危害处理后CsAOC的转录均出现上调。因此,可以借以调控AOC基因的表达和JAs的合成。
     (2)在植物群落中,萜类化合物作为一种行为信号的化学信号在植物之间以及植物与昆虫之间起着重要的作用,因此,萜类化合物的生物合成途径在植物的防御反应中起着非常重要的作用。而3-羟基-3-甲基戊二酰辅酶A还原酶(HMGR)是该途径中的第一个限速酶,是细胞质萜类化物代谢中的重要调控点。本文首次克隆获得了茶树3-羟基-3-甲基戊二酰辅酶A还原酶(CsHMGR)的全长cDNA序列(Genbank登录号:JN584161)。其cDNA全长为2051bp,包括5’和3’非翻译区、poly(A)尾和一个长1773bp的开放阅读框(ORF)。CsHMGR基因组DNA含有两个内含子,分别为136bp和108bp。CsHMGR基因编码的蛋白质有590个氨基酸,分子量为63.38kDa,理论等电点为6.68。多重比对结果表明CsHMGR蛋白与其他的HMGR蛋白具有较高的同源性。预测了CsHMGR的二级结构组成,由21.22%α-螺旋、25.31%延伸主链、6.12%p-转角和47.35%随机卷曲组成。三级结构中则含有两个NADP (H)结合域和两个HMG-CoA结合域。成功构建了CsHMGR的原核表达载体,结果表明表达出来的蛋白与所预期的蛋白大小一致。该表达蛋白主要以包涵体形式存在。
     (3)为有效利用植物互利素诱集缨小蜂类寄生茶园假眼小绿叶蝉的卵,遂分别以新鲜的健康茶梢、叶蝉为害茶梢、健康嫩茎、叶蝉产卵嫩茎为味源材料,使用SuperQ为吸附剂,以空气夹带法吸附挥发物,有机溶剂淋洗,氮气吹扫浓缩,使用GC-MS配合标准样品予以定性分析。结果表明,在蝉害茶梢和蝉害茎中发现了组分(E-E)-α-法尼烯,并且含量显著。根据以往研究基础得知,在茶园中,(E,E)-α-法尼烯对叶蝉三棒缨小蜂和微小裂骨缨小蜂具有很强的引诱力。夏秋两季在不同地区分别使用多种蝉害茶梢挥发物诱集这两种缨小蜂,均以(E,E)-α-法尼烯效果最好。(E,E)-α-法尼烯与苯甲醛、反-2-己烯醛组成的混合物与素馨黄色板的组合,可有效诱集这两种缨小蜂寄生假眼小绿叶蝉的卵。本文为利用茶树互利素诱集缨小蜂制约假眼小绿叶蝉提供了参考。
     (4)通常,7月上中旬和10月份,茶园中天敌昆虫种类比较丰富,个体数量较多,适合于进行多种互利素诱集效果的比较,筛选出诱效较强的互利素、或互利素配方。本文基于课题组之前的室内行为测定结果,将多种互利素及其混合物制成诱芯,悬挂于素馨黄粘板上,于茶园中检测互利素及其混合物对于各种天敌的引诱效应,比较和筛选诱效最佳的组分。结果表明,诱集的天敌昆虫种数之间、个体数之间和多样性指数之间的差异都比较显著。正己烷和青叶醇引诱天敌昆虫的效应在物种数和个体数方面是最少的,但在多样性指数方面较高。叶蝉为害激活了茶树防御相关基因,释放出挥发性互利素,诱集缨小蜂等天敌昆虫寄生叶蝉,抑制叶蝉种群。本研究为利用互利素诱集天敌控制害虫提供参考。
Tea plant(Camellia sinensis) is an important cash crop which originates in southwestern China, and now has become one of the three largest non alcoholic beverages in the world. Tea plant suffers from many damages caused by phytophagous insects during the process of growth. As a water soaking drink, it is restrained to use chemical pesticides to control insects. With higher and higher demand of hygienic quality and safety of tea, it is necessary to develop pollution-free and organic tea production. Tea plant releases volatiles when attacked by herbivorous insects, and these volatiles serve as behavior-suggested chemical signals providing valuable information among tea plants, herbivores and their natural enemies. It shows great advantages to study and utilize these volatiles obtained by means of extraction, artifical synthesis and release from transgenic plant to regulate insect behavior and defense insect damage. The results are as follows:
     (1) The biosynthetic pathway of jasmonates is one of the main pathways induced by herbivores, and plays a dominant role in the plant defence process induced by herbivores. Allene oxide cyclase (AOC) is an essential enzyme in jasmonates biosynthetic pathway. AOC catalyzes the stereospecific cyclization of unstable allene oxide to (9S,13S)-12oxo-(10,15Z)-phytodienoic acid (OPDA). Here we cloned a cDNA from C. sinensis, named as CsAOC (Genbank:HQ889679), by RACE, showing highly homologous to the AOCs of other species. The full-length cDNA of CsAOC was916bp with5:and3'UTR, poly(A) tail and a738bp open reading frame (ORF). The comparison between the full-length cDNA and genomic DNA of CsAOC revealed that the genomic DNA contained two introns, one was94bp and the other one was402bp. The putative protein includes245amino acids with a molecular weight of26.5kDa and pI of9.0. It had no signal peptide, but contained an N-terminal cTP. The deduced CsAOC amino acid sequence had high homology with other plant AOCs via multiple alignments. Secondary structural prediction of CsAOC protein was performed using the SOMPA program. CsAOC protein was composed of21.22%a-helix,25.31%extended strand,6.12%p-turm and47.35%random coil. The E. coli expression vector for CsAOC which was constructed for the first time showed that the size of the protein produced through the prokaryotic expression is equal to the experiment have expected. The recombinant protein existed in the form of an inclusion body. RT-QPCR analysis revealed that the expression of CsAOC could be regulated by various stresses and elicitors. MeJA had the most prominent effects on stimulating the expression of CsAOC. The gene was up-regulated following SA and wounding treatments and was also induced in response to feeding by the tea geometrid and tea green leafhopper. The results showed that it can regulate AOC expression and jasmonate biosynthesis.
     (2) In phytocoenose, the terpenoids serve as behavior-suggested chemical signals having an effect on the relationship of plants and plant-insect. So the biosynthetic pathway of the terpenoids plays an important role in plant defence reaction.3-hydroxy-3-methyl coenzyme A reductase (HMGR) is just the first rate-limiting enzyme and is an important regulating point of the metabolism of terpenoids in the cytoplasm. A full-length cDNA encoding3-hydroxy-3-methyl coenzyme A reductase, named as CsHMGR (Genbank: JN584161), was cloned. The full-length CsHMGR was2051bp with5'-UTR, a1773bp ORE,3'-UTR and poly (A) tail. The comparison between the full-length cDNA and genomic DNA of CsAOC revealed that the genomic DNA contained two introns, one was136bp and the other one was108bp. The putative protein includes590amino acids with a molecular weight of63.38kDa and pi of8.82. The deduced CsHMGR amino acid sequence had high homology with other plant AOCs via multiple alignments. Secondary structure of CsHMGR protein was composed of44.92%α-helix,14.41%extended strand,5.59%β-turm and35.08%random coil. It had two NADP (H) binding sites and two HMG-CoA binding sites. The E. coli expression vector for CsHMGR showed that the size of the protein produced through the prokaryotic expression is equal to the experiment that have expected. The recombinant protein existed in the form of an inclusion body.
     (3) In order to effectually utilize plant synomones to attract mymarids parasitizing the eggs of tea green leafhoppers, Empoasca vitis, the fresh infact tea shoots (ITS), the leafhopper-damaged tea shoots (LDTS), infact tea tender stems (ITTS) and ovipositing-injured tea tender stems (OITTS) acted as odor sources respectively, whose volatiles were collected via custom-made push-pull aeration system with Super Q being absorbent, eluted by organic solvent, concentrated under a flow of nitrogen. The compounds in the volatiles were qualitatively analyzed by gas chromatography-mass spectrometry (GC-MS). The results showed that new component was detected, such as (E, E)-a-farnesene. The content of (E,E)-α-farnesene was larger from LDTS and OITTS. In tea plantations, the attraction of (E,E)-a-farnesene to mymarids Stethynium empoascae Subba Rao and Schizophragma parvula Ogloblin was strongest. In the various tea plants growing areas during summer and autumn, a batch of synomones were used to trap the two species of mymarids, with (E, E)-a-farnesene being most attractive. The jasmine yellow boards with mixture of (E, E)-a-farnesene, benzaldehyde and (E)-2-hexenal could efficaciously attract the two species of mymarids together and direct them to parasitize the eggs of tea green leafhoppers. The investigation supplies a successful example that the tea plant synomones can be used in attracting the mymarids to suppress tea green leafhoppers.
     (4) Generally speaking, there are more richness and abundance of natural enemies in July and October than other months in tea plantations, which are fit for the test of the attraction of synomones to natural enemies and comparison between various synomones, so as to screen out the synomones of synomones formula with the strongest attraction. Based on the results of behavioural bioassay of our research group, the various synomones and their mixture were loaded onto rubber nob and manufacture into lures, which were appended on the yellow jasmine sticky boards. The set were called traps, which were used to detect the attraction of synomones and their mixture to natural enemies, and screen out the optimal component and the formule. The results showed that the difference in the richness, abundance and indice of diversity of the natural enemies trapped by various synomones. The hexane and Z-3-hexenol attracted less the richness and the abundance than other synomones, with higher indices of diversity. The damages by the leafhopper activate the relative defence genes, and emit the volatile synomones, which attract mymarids together, parasitize the eggs of the leafhoppers, and suppress the population of the leafhopper. The results were referred to the attration for natural enemies.
引文
Adiwilaga K, Kush A. Cloning and characterization of cDNA encoding FPP synthase from rubber tree[J]. Plant Mol.,1996,30:935-946.
    Aerts R, Gisi D, DeCarolis E, et al. Methyl jasmonate vapor increases the developmentally controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings[J]. Plant J,1994,5:635-643.
    Afitlhile MM, Fukushige H, Nishimura M, Hildebrand DF. A defect in glyoxysomal fatty acid beta-oxidation reduces jasmonic acid accumulation in Arabidopsis[J]. Plant Physiol Biochem,2005, 43:603-609.
    Agrawal GK, Jwa NS, Agrawal SK, Tamogami S, Iwahashi H, Rakwal R. Cloning of novel rice allene oxide cyclase (OsAOC):mRNA expression and comparative analysis with allene oxide synthase (OsAOS) gene provides insight into the transcriptional regulation of octadecanoid pathway biosynthetic genes in rice [J]. Plant Sci,2003,164:979-992.
    Akikazu H. The biogeneration of green odour by green leaves[J]. Phytochemisiry,1993,34(5): 1201-1218.
    Alborn HT, Turlings TCJ, Jones TH, Stenhagen G, Loughrin JH, Tumlinson JH. An elicitor of plant volatiles from beet armyworm oral secretion[J]. Science,1997,276 (5314):945-949.
    Aoyagi K, Beyou A, Moon K, et al. Isolation and characterization of cDNAs encoding 3-hydroxy-3-methylglutaryl-coenzyme A reductase[J]. Plant Physiol,1993,102:623-628.
    Arimura G, Ozawa R, Shimoda T, et al. Herbivory-induced volatile elicit defence genes in lima bean of octadecanoid-derivedleaves[J]. Nature,2000,406(6795):512-515.
    Avdiushko SA, Brown GC, Dahlman DL, Hildebrand DF. Methyl jasmonate exposure induces insect resistance in cabbage and tobacco[J]. Environ. Entomol.,1997,26 (3):642-654.
    Bach TJ, Rogers DH, Rudney H. Detergent-solubilization, purification, and characterization of membrane-bound 3-hydroxy-3-methylglutaryl-coenzyme A reductase from radish seedlings[J]. Eur J Biochem,1986,154(1):103-111.
    Bach TJ. Hydroxymethylglutaryl-CoA reductase, a key enzyme in phytosterol synthesis?[J]. Lipids, 1986,21:82-88.
    Back K, He S, Kim KU, Shin DH. Cloning and bacterial expression of sesquiterpene cyclase, a key branch point enzyme for the synthesis of sesquiterpenoid phytoalexin capsidiol in UV-challenged leaves of Capsicum annuum[J]. Plant Cell Physiol,1998,39:899-904.
    Back K, Chappell J. Cloning and bacterial expression of a sesquiterpene cyclase from Hyoscyamus muticus and its molecular comparison to related terpene cyclases[J]. J Biol Chem,1995,270: 7375-7381.
    Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL. Chewing the fat:beta-oxidation in signaling and development[J]. Trends Plant Sci,2006,11:124-132.
    Baldwin IT, Rayko H, Johannes K, et al. Ecophysiological comparison of direct and indirect defenses in Nicotiana attenuata[J]. Oecologia,2000,24(3):408-417.
    Baldwin IT, Schmelz EA, Zhang ZP. Effect of octadecanoid metabolites and inhibitors on induced nicotine accumulation in Nicotiana sylvestris[J]. JChem Ecol,1996,22:61-74.
    Baldwin IT, Zhang ZP, Diab N, Ohnmesis TE, McCloud ES, Lynds GY, Schmelz EA. Quantification, correlations and manipulations of wound-induced changes in jasmonic acid and nicotine in Nicotiana sylvestris[J]. Planta,1997,201:397-404.
    Basson ME, Thorsness M, Finer-Moore J, et al. Structural and functional con servation between yeast and human 3-hydroxy-3-methylglutaryl coenzyme A reductases, the rate-limiting enzyme of sterol biosynthes[J]. Mol Cell Biol,1988,8:3797-3808.
    Beale MH, Birkett MA, Bruce TJA, et al. Aphid alarm pheromone produced by transgenic plants affects aphid and parasitoid behavior[J]. Biological Sciences/Plant Biology,2006,103(27):10509-10513.
    Bendtsen JD, Nielsen H, Heijne GV, Brunak S. Improved prediction of signal peptide:Signal P 3.0 [J]. J Mol Biol,2004,340:783-795.
    Biesgen C, Weiler EW. Structure and regulation of OPR1 and OPR2, two closely related genes encoding 12-oxo-phytodienoic acid-10,11-reductases from Arabidopsis thaliana[J]. Planta,1999, 208:155-165.
    Birkett MA, Campbell CAM, Chamberlain K, et al. New roles for cis-jasmone as an insect semiochemical and in plant defense[J], PNAS,2000,97(16):9329-9334.
    Blackmer JL, Byers JA. Lygus spp. (Heteroptera:Miridae) host-plant interactions with Lesquerella fendleri (Brassicaceae), a new crop in the arid southwest[J]. Environ Entomol,2009,38:159-167.
    Blee E, Joyard J. Envelope membranes from spinach chloroplasts are a site of metabolism of fatty acid hydroproxides[J]. Plant Physiol,1996,110:445-454.
    Boland-W, Hopke J, Donath J, et al. Jasmonic acid and coronatin induce odor production in plants Angew. Chem. Int. Ed. Engl.,1995,34 (15):1600-1603.
    Bostock RM, Avdiushko S, Hildebrand DF. Lipid-derived signals that discriminate wound-and pathogen-responsive isoprenoid pathways in plants:methyl jasmonate and the fungal elicitor arachidonic acid induce different 3-hydroxy-3-methylglutaryl-coenzyme A reductase genes and antimicrobial isoprenoids in Solanum tuberosum L[J]. PNAS,1994,15,91(6):2329-2333.
    Broeckling CD, Huhman DV, Farag MA, et al. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism[J]. JExp Bot,2005,56:323-336.
    Browse J. Jasmonate passes muster:a receptor and targets for the defense hormone [J]. Annu. Rev. Plant Biol,2009,60:183-205.
    Burke CC, Wildung MR, Croteau R. Geranyl diphosphate synthase:Cloning, expression and characterization of this prenyltransferase as a heterodimer[J]. PNAS,1999,96:1306-13067.
    Byun-McKay A, Godard KA, Toudefallah M, et al. Wound-induced terpene synthase gene expression in Sitka spruce that exhibit resistance or susceptibility to attack by the white pine weevil[J]. Plant Physiol Preview,2006,10(1):104-105.
    Caelles C, Ferrer A, Balcells L, et al. Isolation and structural characterization of a cDNA encoding Arabidopsis thaliana 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Plant Mol Biol.1989, 13(6):627-638.
    Cane DE. Biosynthetic Pathways:Biosynthesis Meets Bioinformatics[J]. Science,2000,287:818-819.
    Cao X, Zong Z, Ju X, et al. Molecular cloning, characterization and function analysis of the gene encoding HMG-CoA reductase from Euphorbia Pekinensis Rupr[J]. Mol Biol Rep,2009.
    Caroline JB, Marten AJ. Colorado potato beetles adapt to proteinase inhibitors induced in potato leaves by methyl jasmonate[J]. J Insect Physiol,1995,41(12):1071-1078.
    Carretero-Paulet L, Cairo A, Botella-Pavia P, et al. Enhanced flux through the methylerythritol 4-phosphate pathway in Arabidopsis plants over expressing deoxyxylulose 5-phosphate reductoisomerase [J]. Plant Mol Biol,2006,62:683-695.
    Cenzano A, Abdala G, Hause B. Cytochemical immune-localization of allene oxide cyclase, a jasmonic acid biosynthetic enzyme, in developing potato stolons [J]. J Plant Physiol,2007,164:1449-1456.
    Chang Z, Li L, Pan Z, Wang X. Crystallization and preliminary x-ray analysis of allene oxide synthase, cytochrome P450 cyp74a2, from Parthenium argentatum[J]. Acta Crystallogr F Struct Biol Crystal Commun,2008,64:668-670.
    Chappell J, Nable R. Induction of sesquiterpenoid biosynthesis in tobacco cell suspension cultures by fungal elicitor[J]. Plant Physiol,1987,85:469-473.
    Chappell J, Wolf F, Proulx J, Cuellar R, Saunders C. Is the reaction catalysed by 3-hydroxy-3-methylglutaryl coenzyme A reductase a rate-limiting step for isoprenoid biosynthesis IN phnts?[J]. Plant Physiol,1995,109 (4):1337-1343.
    Chen XY, Chen Y, Heinstein P, Davisson VJ. Cloning, expression, and characterization of (+)-δ-cadinene synthase:A catalyst for cotton phytoalexin biosynthesis[J]. Arch Biochem Biophysics,1995,324:255-266.
    Cheong JJ, Choi YD. Methyl jasmonate as a vital substance in plants[J]. Trends Genetics,2003,19(7): 409-413.
    Choi D, Ward BL, Bostock RM. Differential induction and suppression of potato 3-hydroxy-3-methylglutaryl coenzyme A reductase genes in response to Phytophora infestans and to its elicitor arechidonic acid[J]. Plant Cell,1992,4:1333-1344.
    Chye ML, Tan CT, Chua NH. Three genes encode 3-hydroxy-3-methylglutaryl-coenzyme A reductase in Hevea brasiliensis:hmgl and hmg3 are differentially expressed[J]. Plant Mol Biol.1992, 19(3):473-484.
    Cipollini DF, Redman AM. Age-dependent effects of jasmonic acid treatment and wind exposure on foliar oxidase activity and insect resistance in tomato[J]. JChem Ecol,1999,25(2):271-281.
    Colazza S, Fucarino A, Peri E, Salerno G, Conti E, Bin F. Insect oviposition induces volatile emission in herbaceous plants that attracts egg parasitoids[J]. JExp Biol,2004,207:47-53.
    Colby SM, Crock J, Dowdle-Rizzo B, Lemaux PG, Croteau R. Germacrene C. Synthase from Lycopersicon esculentrun cv.VFNT Cherry tomato:cDNA isolation,characterization, and bacterial expression of the multiple product sesquiterpene cyclase[J]. PNAS,1998,95:2216-2221.
    Combet C, Blanchet C, Geourjon C, Deleage G. NPS@:network protein sequence analysis [J]. Trends Biochem Sci,2000,25:147-150.
    Constabel CP, Bergey DR, Ryna CA. Polyphenol oxidase as a component of the inducible defense response in tomato against herbivores[J]. Rec, Adv. Photochem.,1996,30:231-252.
    Cortessero AM, de Moraes CM, Stapel JO, et al. Comparisons and contrasts in host-foraging strategies of two larval parasitoids with different degrees of host specificity[J]. J Chem Ecol,1997,23: 1598-1606.
    Creedman RA, M ullet JE. Biosynthesis and action of jasmonates in plants[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol.,1997,48:355-381.
    Cruz Castillo M, Martinez C, Buchala A, Metraux JP, Leon J. Gene-specific involvement of beta-oxidation in wound-activated responses in Arabidopsis[J]. Plant Physiol,2004,135:85-94.
    Cunillera N, Boronat A, Ferrer A. The Arabidopsis thaliana FPS1 gene generates a novel mRNA that encodes a mitochondrial farnesyl-diphosphate synthase isoform[J].J Biol Chem,1997,272: 15381-15388.
    D'Alessandro M, Brunner V, von Merey G, Turlings TCJ. Strong attraction of the parasitoid Cotesia marginiventris towards minor volatile compounds of maize[J]. JChem Ecol,2009,35:999-1008.
    D'Alessandro M, Turlings TCJ. Advances and challenges in the identification of volatiles thatmediate interactions among plants and arthropods[J]. The Royal Society of Chemistry,2006,131:24-32.
    Degenhardt J, Gershenzon J, Baldwin IT, et al. Attracting friends to feast on foes:engineering terpene emission to make crop plants more attractive to herbivore enemies[J]. Plant Biotech,2003, 14:169-176.
    Denbow CJ, Lang S, Cramer CL. The N-terminal domain of tomato 3-hydroxy-3-methylglutaryl-CoA reductases. Sequence, microsomal targeting, and glycosylation[J]. J Biol Chem,1996,271: 9710-9715.
    Dhondt S, Geoffroy P, Stelmach BA, Legrand M, Heitz T. Soluble phospholipase A2 activity is induced before oxylipin accumulation in tobacco mosaic virus-infected tobacco leaves and is contributed by patatin-like enzymes[J]. Plant J,2000,23:431-440.
    Dicke M, Gols R, Ludeking D, et al. Jasmonic acid and herbivory differentially induce carnivore-attracting plant volatiles in Lima bean plants[J]. JChem Ecol,1999,25:1907-1922.
    Dicke M, Van Beek TA, Posthumus MA, et al. Isolation and identification of volatile kairomone that affects acarine predator-prey interactions. Involvement of host plant in its production[J]. J Chem. Ecol.1990,16:381-396.
    Dicke M. Local and systemic production of volatile herbivore-induced terpenoids:their role in plant-carnivore mutualism[]J.J. Plant Physiol.,1994,143:465-472.
    Dieke M, Sabelis MW, TaKabayashi J. Plant strategies of manipulating predator-prey interactions through allelochemieals:Prospects for application in pest control[J]. J.Chem.Eeol.,1990,16(11): 3091-3118.
    Doares SH, Narvaez-Vasquez J, Conconi A, Ryan CA, Salicylic acid inhibits synthesis of proteinase inhibitors in tomato leaves induced by systemin and jasmonic acid [J]. Plant Physiol,1995,108: 1741-1746.
    Du YJ, Poppy GM, et al. Identification of semiochemicals released during aphid feeding that attract parasitoid Aphidius ervi[J]. J.Chem.Eeol.,1998,24(8):1355-1369.
    Emanuelsson O, Nielsen H, Von Heijne G. ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites [J]. Protein Sci,1999,8:978-984.
    Estevez JM, Cantero A, Reindl A, Reichler S, Leon P. 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants[J]. J Biol Chem,2001,25: 22901-22909.
    Facchini PJ, Chappell J. Gene family for an elicitor induced sesquiterpene cyclase in tobacco[J]. PNAS, 1992,89:11088-11092.
    Farmer EE, Ryan C. An interplant communication:airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves[J]. PNAS,1990,87:7713-7716.
    Farmer EE, Weber H, Vollenweider S. Fatty acid signaling in Arabidopsis[J]. Planta,1998,206: 167-174.
    Fatouros NE, Broekgaarden C, Bukovinszkine'Kiss G, van Loon JJA, Mumm R, Huigens ME, Dicke M, Hilker M. Male-derived butterfly anti-aphrodisiac mediates induced indirect plant defense[J]. PNAS,2008,105 (29):10033-10038.
    Felton GW, Eichenseer H. Herbivore saliva and its effects on plant defense against herbivores and pathogens. Induced plant defenses against pathogens and herbivores Biochemistry, Ecology and Agricultural, Ed.by A.A.Agrawal, S. Tuzur E.Bent. HPS Press.2000,19-36.
    Felton GW, Summers CB, Mueller AJ. Oxidative response in soybean foliage to herbivory by bean leaf beetle and three cornered alfalfa hopper[J]. JChem Ecol.1994,20:639-650.
    Fidantsef AL, Stout MJ, Thaler JS, Duffey SS, Bostock RM. Signal interactions in pathogen and insect attack:expression of lipoxygenase, proteinase inhibitor Ⅱ, and pathogenesis-related protein P4 in the tomato, Lycopersicon esculentum[J]. Physiol Mol Plant Pathol,1999,54:97-114.
    Fingrut O, Flescher E. Plant stress hormones suppress the proliferation and induce apoptosis in human cancer cells[J]. Leukemia,2002,16:608-616.
    Fritzsche Hoballah ME, Tamo C, Turlings TCJ. Differential attractiveness of induced odors emitted by eight by eight maize varieties for the parasitoid Cotesia marginiventris:Is quality or quantity important?[J]. JChem Ecol,2002,28:951-968.
    Genschik P, Criqui MC, Parmentier Y, et al. Isolation and characterization of cDNA encoding a 3-hydroxy-3-methylglutaryl coenzyme A reductase from Nicotiana sylvestris[J]. Plant Mol. Biol., 1992,20(2):337-341.
    Geourjon C, Deleage G. SOPMA:Significant improvement in protein secondary structure prediction by consensus prediction from multiple alignments [J]. Comput Appl Biosci,1995,11(6):681-684.
    Gonzalez-Aguilar GA, Tiznado-Hernandez ME, Zavaleta-Gatica R, et al. Methyl jasmonate treatments reduce chilling injury and activate the defense response of guava fruits[J]. Biochem Biophys Res Commun,2004,313(3):694-701.
    Graham I, Eastmond PJ. Pathway of straight and branched chain fatty acid catabolism in higher plants[J]. Prog Lipid Res,2002,41:156-181.
    Green S, Friel EN, Matich A, Beuning LL, Cooney JM, Rowan DD, Macrae E. Unusual features of a recombinant apple alpha-farnesene synthase[J]. Phytochemistry,2007,68 (2):176-188.
    Grimes HD, Koetje DS, Fanceschi VR. Expression, activity, and cellular accumulation of methyl jasmonate-responsive Lipoxygenase in Soybean seedlings[J]. Plant Physiol,1992,100:433-443.
    Ha SH, Kim JB, Hwang YS, et al. Molecular characterization of three 3-hydroxy-3-methylglutaryl-CoA reductase genes including pathogen-induced Hmg2 from pepper (Capsicum annuum) [J]. Biochim Biophys Acta,2003,1625(3):253.
    Ha SH, Lee SW, Kim YM, et al. Molecular characterization of Hmg2 gene encoding a 3-hydroxy-methylglutaryl-CoA reductase in rice[J]. Mol Cells,2001,11(3):295.
    Halitschke R, Baldwin IT. Antisense LOX expression increases herbivore performance by decreasing defense responses and inhibiting growth-related transcriptional reorganization in Nicotiana attenuata[J].Plant J,2003,36:794-807.
    Halitschke R, Schittko U, Pohnert G, Boland W, Baldwin IT. Molecular interactions between the specialist herbivore Manduca sexa (Lepidoptera, Sphingidae) and its natural host Nicotiana attenuata. Ⅲ. Fatty acid-amino acid conjugates in herbivore oral secretions are necessary and sufficient for herbivore-specific plant responses[J]. Plant Physiol.2001,125:711-717.
    Halitschke R, Ziegler J, Keinanen M, et al. Silencing of hydroperoxide lyase and allene oxide synthase reveals substrate and defense signaling crosstalk in Nicotiana attenuate[J]. Plant J,2004,40(1): 35-46.
    Hamano Y, Kuzuyama T, Itoh N, Furihata K, Seto H, Dairi T. Functional analysis of eubacterial diterpene cyclases responsible for biosynthesis of a diterpene antibiotic, terpentecin[J]. J Biol Chem, 2002,277:37098-37104.
    Hamberg M. Biosynthesis of 12-oxo-10,15(Z)-phytodienoic acid:Identification of an allene oxide cyclase[J]. Biochem Biophys Res Commun,1988,156:543-550.
    Hamberg M, Fahlstadius P. Allene oxide cyclase-a new enzyme in plant lipid-metabolism [J]. Arch Biochem Biophys,1990,276:518-526.
    Han BY, Chen ZM. Behavioral and electrophysiological responses of natural enemies to synomones from tea shoots and kairomones from tea aphids, Toxoptera aurantii[J]. J Chem Ecol,2002a, 28:2203-2219.
    Hashimoto T, Takahashi K, Sato M, Bandara PKGSS, Nabeta K. Cloning and characterization of an allene oxide cyclase, PpAOC3, in Physcomitrella patens[J]. Plant Growth Regul,2011, DOI: 10.1007/s10725-011-9592-z.
    Hause B, Stenzel I, Miersch O, Maucher H, Kramell R, Ziegler J, Wasternack C. Tissue-specific oxylipin signature of tomato flowers:allene oxide cyclase is highly expressed in distinct flower organs and vascular bundles [J]. Plant J,2000,24:113-126.
    Hause B, Stenzel 1, Miersch O, Wasternaek C. Occurrence of the allene oxide cyelase in different organs and tissues of Arabidopsist haliana[J]. Phytochemistry,2003b,64:971-980.
    Havill NP, Raffa KF. Compound effects of induced plant responses on insect herbivores and parasitoids: implications for tritrophic interactions[J]. Ecol Entomol,2000,25:171-179.
    Heil M, Koch T, Hilpert A, Fiala B, Boland W, Linsenmair KE. Extrafloral nectar production of the ant-associated plant, Macaranga tanarius, is an induced, indirect, defensive response elicited by jasmonic acid[J]. PNAS,2001,98(3):1083-1088.
    Hemmerlin A, Rivera SB, Erickson HK, Poulter CD. Enzymes encoded by the farnesyl diphosphate synthase gene family in the big sagebrush Artemisia tridentata ssp. Spiciformis[J]. J Biol Chem, 2003,278:32132-32140.
    Hilker M, Kobs C, Varama M, Schrank K. Insect egg deposition induces Pinus sylvestris to attract egg parasitoids[J]. JExp Biol,2002,205:455-461
    Hilker M, Meiners T. Early herbivore alert:insect eggs induce plant defense[J]. J Chem Ecol,2006, 32:1379-1397.
    Hofmann E, Zerbe P, Schaller F. The crystal structure of Arabidopsis thaliana allene oxide cyclase: insights into the oxylipin cyclization reaction [J]. Plant Cell,2006,18:3201-3217.
    Homann V, Mende K, Arntz C, et, al. The isoprenoid pathway:cloning and characterization of fungal FPPS genes[J]. Curr Gene,1996,30:232-239.
    Howe GA, Lee GI, Itoh A, et al. Cytochrome P450-dependent metabolism of oxylipins in tomato. Cloning and expression of allene oxide synthase and fatty acid hydroperoxide lyase[J]. Plant Physiol,2000,123:711-724.
    Howe GA. Cyclopentenone signals for plant defense:remodeling the jasmonic acid response[J]. PNAS, 2001,98:12317-12319.
    Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. Expression of allene oxide synthase and allene oxide cyclase in the interactions between pea and fungal pathogens [J]. J Gen Plant Pathol,2003, 69:351-357.
    Ishigure S, Kawai-Oda A, Ueda K, et al. The defective in anther dehiscencel gene encodes a novel phospholipase Al catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis[J]. Plant Cell,2001, 13:2191-2209.
    Ishiwari H, Suzuki T, Maeda T. Essential compounds in herbivore-induced plant volatiles that attract the predatory mite Neoseiulus womersleyi[J]. JChem Ecol,2007,33:1670-1681.
    Itoh A, Schilmiller AL, McCaig BC, Howe GA. Identification of a jasmonate-regulated allene oxide synthase that metabolizes 9-hydroperoxides of linoleic and linolenic acids[J]. J Biol Chem,2002, 277:46051-46058.
    Jacinto T, McGurl B, Ryan CA. Wound-regulation and tissue speicificity of the tomato prosystemin promoter in transgenic tobacco plants [J]. Plant Sci,1999,140:155-159.
    Jain AK, Vincent RM, Nessler CL. Molecular characterization of a hydroxymethylglutaryl-CoA reductase gene from mulberry (Morusalba L.) [J]. Plant Mol Biol.2000,42(4):559-569.
    James DG. Further field evaluation of synthetic herbivore-induced plant volatiles as attractants for beneficial insects[J]. J Chem Ecol,2005,31:481-495.
    James DG, Grasswitz TR. Synthetic herbivore-induced plant volatiles increase field captures of parasitic wasps[J]. BioControl,2005,50:871-880.
    James DG, Price TS. Field-testing of methyl salicylate for recruitment and retention of beneficial insects in grapes and hops[J]. JChem Ecol,2004,30:1613-1628.
    James DG, Tanya S. Pricefield-testing of methyl salicylate for recruitment and retention of benefical insects in grapes and hops[J]. JChem Ecol,2004,30(8):1613-1628.
    Jiang J, Kai G, Cao X, et al. Molecular cloning of a HMG-CoA reductase gene from Eucommia ulmoides O liver[J]. Biosci Rep,2006,26(2):171-181.
    Jiang KJ, Liao ZH, Pi Y, Huang ZS, Hou R, Cao Y, Wang Q, Sun XF, Tang KX. Molecular cloning and expression profile of a jasmonate biosynthetic pathway gene for allene oxide cyclase from Hyoscyamus niger [J]. Mol Biol,2008,42:381-390.
    Jiang KJ, Pi Y, Hou R, et al. Promotion of nicotine biosynthesis in transgenic tobacco by overexpression allene oxide cyclase from Hyosyamus niger[J]. Planta,2009,229:1057-1063.
    Jones VP, Steffan SA, Wiman NG, Horton DR, Miliczky E, Zhang QH, Baker CC. Evaluation of herbivore-induced plant volatiles for monitoring green lacewings in Washington apple orchards[J]. Biol Control,2011,56:98-105.
    Kalberer NM, Turlings TCJ, Rahier M. Attraction of a leaf beetle(Oreina cacaliae) to damaged host plants[J]. JChem Ecol,2001,27:647-661.
    Kappers IF, Aharoni A, Herpen TWJM van, et al. Genetic Engineering of Terpenoid Metabolism Attracts Bodyguards to Arabidopsis[J]. Science,2005,309(5743):2070-2072.
    Kato-Emori S, Higashi K, Hosoya K. et al. Cloning and characterization of the gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase in melon (Cucumis melo L. reticulatus)[J]. Mol Genet Genomics,2001,265:135-142.
    Kessler A, Baldwin IT. Defensive function of herbivore-induced plant volatile emissions in nature[J]. Science,2001,291:2141-2144.
    Kessler A, Baldwin IT. Plant responses to insect herbivory:The emerging molecular analysis[J]. Annu. Rev. Plant Biol,2002,53:299-328.
    Kim BR, Kim SU, Chang YJ. Differential expression of three 1-deoxy-D-xylulose-5-phosphate synthase genes in rice[J]. Biotechnol Lett,2005,27(14):997-1001.
    Koiwa H, Bressan RA, Hasegawa PM, Regulation of protease inhibitors and plant defense[J]. Trends Plant Sci.,1997,2:379-3831.
    Kojima N, Sitthithaworn W, Viroonchatapan E, Suh DY, Iwanami N, Hayashi T, Sankaw U. Geranylgeranyl diphosphate synthases from Scoparia dulcis and Croton sublyratus. cDNA cloning, functional expression, and conversion to a farnesyl diphosphate synthase[J]. Chem Pharm Bull (Tokyo),2000,48(7):1101-1103.
    Kong FJ, Abe J, Takahashi K, Matsuura H, Yoshihara T, Nabeta K. Allene oxide cyclase is essential for theobroxide-induced jasmonic acid biosynthesis in Pharbitis nil [J]. Biochem Bioph Res Co,2005, 336:1150-1156.
    Kopke D, Beyaert I, Gershenzon J, Hilker M, Schmidt A. Species-specific responses of pine sesquiterpene synthases to sawfly oviposition[J]. Phytochemistry,2010,71:909-917.
    Korth KL, Dixon RA. Evidence for chewing insect-specific molecular events distinct from a general wound response in leaves[J]. Plant Physiol.1997,115:1299-1305.
    Koschier EH, Sedy KA, Novak J. Influence of plant volatiles on feeding damage caused by the onion thrips Thrips tabaci[J]. Crop Protection,2002,21(5):419-425.
    Kranthi S, Krannthi KR, Wanjari RR. Influence of semilooper damage on cotton host-plant resistance to Helicoverpa armigera (Hub) [J]. Plant Sci.,2003,164:157-163.
    Krisans SK, Ericsson J, Edwards PA, et, al. Farnesyl-diphosphate synthase is localized in peroxisomes[J]. J Biol Chem,1994,269:14165-14169.
    Lait CG, Alborn HT, Teal PEA, et al. Rap id biosynthesis of N-linolenoyl-L-glutamine, an elicitor of plant volatiles, by membrane-associated enzyme(s) in Manduca sexta[J]. PNAS,2003, 100:7027-7032.
    Lange BM, Rujan T, Martin W, Croteau R. Isoprenoid biosynthesis:the evolution of two ancient and distinct pathways across genomes[J]. PNAS,2000,97:13172-13177.
    Langenheim JH. Higher plant terpenoids:A phytocentric overview of their ecological roles[J]. J Chem Ecol,1994,20:1223-1280.
    Laudert D, Pfannschmidt U, Lottspeich F, et al. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates[J]. Plant Mol Biol,1999,31:323-335.
    Laudert D, Weiler EW. Allene oxide synthase:a major control point in Arabidopsis thaliana octadecanoid signaling[J].Plant J,1998,15:675-684.
    Laule O, Furholz A, Chang HS, Zhu T, Wang X, Heifetz PB, Gruissem W, Lange BM. Crosstalk between cytosolic and plastidial pathways of isoprenoid biosynthesis in Arabidopsis thaliana[J]. PNAS,2003,100:6866-6871.
    Lee DS, Nioche P, Hamberg M, Raman CS. Structure insights into the evolutionary paths of oxylipin biosynthetic enzymes[J]. Nature,2008,455:300-301.
    Leon J, Rojo E, Sanchez-Serrano JJ. Wound signalling in plants[J]. J Exp Bot,2001,52(354):1-9.
    Li C, Schilmiller AL, Liu G, et al. Role of (3-oxidation in jasmonate biosynthesis and systemic wound signaling in tomato[J]. Plant Cell,2005,17:971-986.
    Li L, Chang Z, Pan Z, Fu ZQ, Wang X. Modes of heme binding and substrate access for cytochrome P450 cyp74a revealed by crystal structures of allene oxide synthase[J]. PNAS,2008, 105:13883-13888.
    Li L, Li C, Lee GI, et al. Distinct roles for jasmonate synthesis and action in the systemic wound response of tomato[J]. PNAS,2002,99:6416-6421.
    Li L, Zhao Y, McCaig BC, et al. The tomato homolog of coronatine-insensitive 1 is required for the maternal control of seed maturation, jasmonate-signaled defense responses, and glandular trichome development[J]. Plant Cell,2004,16(1):126-143.
    Li X, Schuler MA, Berenbaum MR. Jasmonate and salicylate induce expression of herbivore cytochrome P450 genes[J]. Nature,2002,419:712-715.
    Liao Z, Tan Z, Chai Y, et al. Cloning and characterization of the gene encoding HMG-CoA reductase from Taxus media and its functional -identification in yeast[J]. Funct Plant Biol.,2004, 31(1):73-81.
    Liu CJ, Heinstein P, Chen XY. Expression pattern of genes encoding farnesyl diphosphate synthase and sesquiterpene cyclase in cotton suspension-cultured cells treated with fungal elicitors[J]. Mol Plant Microbe Interac,1999,12(12):1095-1104.
    Liu SA, Han BY. Differential expression pattern of an acidic 9/13-lipoxygenase in flower opening and senescence and in leaf response to phloem feeders in the tea plant[J]. BMC Plant Biology,2010, in press.
    Liu X, Zhang SQ. Relationships between Jasmonic acid and salicylic acid in wounding signal transduction pathways[J]. Chinese Bulletin of Botany.2000,17 (2):133-136.
    Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method[J]. Methods,2001,25:402-408.
    Ma CY, Liu CS, Wang WQ. Molecular cloning and characterization of GuHMGR, an HMG-CoA reductase gene from liquorice (Glycyrrhiza uralensis)[J]. Front. Agric. China,2011,5(3):400-406.
    Maldonado-Mendoza IE, Vincent RM, Nessler CL. Molecular characterization of three differentially expressed members of the Camptotheca acuminata 3-hydroxy-3-methylglutaryl CoA reductase (HMGR) gene family[J]. Plant Mol Biol.1997,34(5):781-790.
    Martin DM, Gershenzon J, Bohlmann J. Induction of volatile ter pene biosynthesis and diurnal emission by methyl jasmonate in foliage of Norway spruce[J]. Plant Physiol,2003,132:1586-1599.
    Mattiacci L, Dicke M, Posthumus MA, et al. β-Glucosidase:An elicitor of herbivore-induced plant odor that attracts host-seeking parasitic wasps[J]. PNAS,1995,92:2036-2040.
    Mau CJD, West CA. Cloning of casbene Synthase cDNA:Evidence for conserved structural features among terpenoid cyclases in plants[J]. PNAS,1994,91:8497-8501.
    Maueher H, Stenzel 1, Mierseh O, Stein N, Prasad M, Zierold U, Sehweizer P, Dorer C, Hause B, Wastemack C. The allene oxide cyclase of barley (Hordeum vulgare L.)-cloning and organ-specific expression[J]. Phytochemistry,2004,65:801-811.
    McConn M, Creelman RA, Bell E, Mullet JE, Browse J. Jasmonate is essential for insect defense in Arabidopsis[J]. PNAS,1997,94(10):5473-5477.
    Mei C, Qi M, Sheng G, Yang Y. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection[J]. Mol Plant Microbe Interact,2006,19:1127-1137.
    Meiners T, Hilker M.. Induction of plant synomones by oviposition of a phytophagous insect[J]. J. Chem. Ecol,2000,26:221-232.
    Meiners T, Westerhaus C, Hilker M. Specificity of chemical cues used by a specialist egg parasitoid during host location[J]. Ent.Exp.Appl,2000,95:151-159.
    Melan MA, Dong X, Endara ME, et al. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate[J]. Plant Physiol,1993,101(2):441-450.
    Meuriot F, Noquet C, Avice JC, et al. Methyl jasmonate alters N partitioning, N reserves accumulation and induces gene expression of a 32-kD vegetative storage protein that possesses chitinase activity in Medicago sativa taproots[J]. Physiol Plant,2004,120(l):113-123.
    Michereff MFF, Laumann RA, Borges M, Michereff-Filho M, Diniz IR, Neto ALF, Moraes MCB. Volatiles mediating a plant-herbivore-natural enemy interaction in resistant and susceptible soybean cultivars[J]. J Chem Ecol,201137:273-285.
    Mu D, Cui L, Ge J, Wang MX, Liu LF, Yu XP, Zhang QH, Han BY. Behavioral responses for evaluating the attractiveness of specific tea shoot volatiles to the tea green leafhopper, Empoaca vitis[J]. Insect Sci,2012,19(2):229-238.
    Mueller MJ. Enzymes involved in jasmonic acid biosynthesis[J]. Physiol Plant,1997,100:653-663.
    Mumm R, Schrank K, Wegener R, et al. Chemical analysis of volatiles emitted by Pinus sylvestris after induction by insect oviposition[J]. J Chem Ecol,2003,29 (5):1235-1252.
    Mur LAJ, Kenton P, Atzorn R, Miersch 0, Wasternack C. The outcomes of concentration-specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death[J]. Plant Physiol,2006,140:249-262.
    Narita JO, Gruissem W. Tomato hydroxymethylglutaryl-CoA reductase is required early in fruit development but not during ripening[J]. Plant Cell,1989,1:181-190.
    Narvaez-Vasquez J, Florin-Christensen J, Ryan CA. Positional specificity of a phospholipase a activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves[J]. Plant Cell,1999, 11:2249-2260.
    Nielsen H, Engelbrecht J, Brunak S. A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites [J]. Protein Eng,1997,10(1):1-6.
    O'Donnell DJ. Ethylene as a signal mediating the wound response of tomato plants[J]. Science,1996, 74:1914-1917.
    Olivier LM, Krisans SK. Peroxisomal protein targeting and identification of peroxisomal targeting signals in cholesterol biosynthetic enzymes[J], Biochim Biophys Acta,2000,1529:89-102.
    Pan Z, Herickhoff L, Backhaus RA. Cloning, characterization and heterologous expression of cDNAs for farnesyl diphosphate synthase from the guayule rubber plant reveals that this prenyltransferase occurs in rubber particles[J].Arch. Biochem. Biophy.,1996,332(l):196-204.
    Pare PW, Tumlinson JH. Plant Volatile Signals in Response to Herbivore Feeding[J]. Flo Entomol, 1996,79(2):93-103.
    Pare PW, Tumlinson JH. De novo biosynthesis of volatiles induced by insect herbivory in cotton plants[J]. Plant Physiol,1997,114 (4):1161-1167.
    Park HS, Denbow CJ, Cramer CL. Structure and nucleotide sequence of tomato HMG2 encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. Plant Mol Biol,1992,20:327-331.
    Pena-cortes H, Albrecht T, Prat S, Weiler EW, Willmitzer L. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis[J]. Planta,1993,191:123-128.
    Pettersson J. An aphid sex attractant.1. Biological studies[J]. Entomol Scand,1970,1:63-73.
    Pi Y, Jiang KJ, Cao Y, Wang Q,Huang ZS, Li L, Hu LC, Li W, Sun XF, Tang KX. Allene oxide cyclase from Camptotheca acuminate improves tolerance against low temperature and salt stress in tobacco and bacteria [J]. Mol Biotechnol,2009,41:115-122.
    Pi Y, Liao ZH, Jiang KJ, Huang BB, Deng ZX, Zhao DL, Zeng HN, Sun XF, Tang KX. Molecular cloning, characterization and expression of a jasmonate biosynthetic pathway gene encoding allene oxide cyclase from Camptothca acuminate [J]. Bioscience Rep,2008,28:349-355.
    Pohlon E, Baldwin IT. Artificial diets "capture" the dynamics of jasmonate-induced defenses in plants[J]. Entomol. Exp.Appl.,2001,100:127-130.
    Preston CA, Laue G, Baldwin IT. Plant-plant signaling:Application of trans-or cis-methyl jasmonate equivalent to sagebrush releases does not elicit direct defenses in native tobacco[J]. J Chem Ecol, 2004,30:2193-2214.
    Rasmann S, Kollner TG, Degenhardt J, et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature,2005,434:732-737.
    Rehman A, Powell W. Host selection behaviour of aphid parasitoids (Aphidiidae:Hymenoptera)[J]. J Plant Breeding and Crop Sci,2010,2:299-311.
    Rohdich F, Lauw S, Kaiser J, Feicht R, Kohler P, Bacher A, Eisenreich W. lsoprenoid biosynthesis in plants -2C-methyl-D-erythritol-4-phosphate synthase (IspC protein) of Arabidopsis thaliana[i]. FEBS J,2006,273(19):4446-4458.
    Rohmer M, Knani M, Simonin P, Sutter B, Sahm H. Isoprenoid biosynthesis in bacteria:a novel pathway for the early steps leading to isopentenyl diphosphate[J]. Biochem J,1993,295:517-524
    Rohmer M. The discovery of a mevalonate-independent pathway for isoprenoid biosynthesis in bacteria, algae and higher plants[J]. Nat. Prod. Rep.,1999,16(5):565-574.
    Rojo E, Titarenko E, Leon J, Berger S, Vancanneyt G, Sanchez-Serrano JJ. Reversible protein phosphorylation regulates jasmonic acid-dependent and-independent wound signal transudation pathways in Arabidopsis thaliana[J]. Plant J,1998,13(2):153-165.
    Rupasinghe HPV, Almquist KC, Paliyath G, Murr DP. Cloning of hmgl and hmg2 cDNAs encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase and their expression and activity in relation to α-farnesene synthesis in apple[J]. Plant Physiol Biochem,2001,39:933-947.
    Ryals JA, Neuenschwander UH, Willits MG, et al. Systemic acquired resistance[J]. Plant Cell,1996, 8:1809-1819.
    Saedler R, Baldwin IT. Virus-induced gene silencing of jasmonate-induced direct defences, nicotine and trypsin proteinaseinhibitors in Nicotiana attenuata[l]. JExp Bot,2004,55:151-157.
    Saito N, Nei M. The neighbor joining method a new method for reconstructing phylogenetic trees[J]. Mol Biol Evo,1987,4:406-425.
    Sambrook J, Russell DW. Molecular Cloning:A Laboratory Manual [M].2002.
    Sanmiya K, Ueno O, Matsuoka M, Yamamoto N. Localization of farnesyl diphosphate synthase in chloroplasts[J]. Plant Cell Physiol,1999,40:348-354.
    Saona CR, Craft SJ, Pare PW, et al. Exogenous methyl jasmonate induces volatile emissions in cotton plants[J]. J Chem Ecol,2001,27:679-695.
    Schaller F. Enzymes of the biosynthesis signaling molecules[J]. JExp Bot,2001,52:11-23.
    Schaller F, Biesgen C, Mussig C, Altmann T, Weiler EW.12-oxophytodienoate reductase 3 (OPR3) is the isoenzyme involved in jasmonate biosynthesis[J]. Planta,2000,210:979-984.
    Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis[J]. PNAS,2000, 97(21):11655-1166.
    Schittko U, Hermsmeier D, Baldwin IT. Eating the evidence? Manduca Sexta canot disrupt specific jasmonate induction in N icotiana attenuata by rap id consump tion [J]. Planta 2001,210:343-346.
    Schnee C, Kollner TG, Held M, et al. The products of a single maize sesquiterpene form a volatile defense signal that attracts natural enemies of maize herbivores[J]. PNAS,2006,103:1129-1134.
    Schwender J, Gemunden C, Lichtenthaler HK. Chlorophyta exclusively use the 1-deoxyxylulose 5-phophate/2C-methylerythritol 4-phosphate pathway for the biosynthesis of isoprenoids[J]. Planta, 2001,212:416-423.
    Sembdner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates[J]. Annu Rev Plant Physiol Plant Mol Biol,1993,44:569-589.
    Seo HS, Song JT, Cheong JJ, et al. Jasmonic acid carboxyl methyltransferase:A key enzyme for jasmonate-regulated plant responses[J]. PNAS,2001,98(8):4788-4793.
    Shen GA, Pang YZ, Wu WH, et al. Cloning and characterization of a root-specific expressing gene encoding 3-hydroxy-3-methylglutaryl coenzyme A reductase from Ginkgo biloba[J]. Mol Biol Rep, 2006,33:117-127.
    Shulaev V, Silverman P, Raskin I. Airborne signalling by methyl salicylate in plant pathogen resistance[J]. Nature,1997,385(6618):718-721.
    Simpson M, Gurr GM, Simmons AT, Wratten SD, James DG, Leeson G, Nicol HI. Insect attraction to synthetic herbivore-induced plant volatile-treated field crops[J]. Agr Forest Entomol,2011, 13:45-57.
    Sivasankar S, Sheidrick B, Rothstein SJ. Expression of allene oxide synthase determines defense gene activation in tomato[J]. Plant Physiol,2000,122:1335-1342.
    Song WC, Brash AR. Purification of an allene oxide synthase and identification of the enzyme as a cytochrome P-450[J]. Science,1991,253:781-784.
    Song WC, Funk CD, Brash AR. Molecular cloning of alene oxide synthase:A cytochrome P450 specialized for the metabolism of fatty acid hydroperoxides[J]. PNAS,1993,90:8519-8523.
    Staswick PE, Tiryaki I, Rowe ML. Jasmonate response locus JAR1 and several related Arabidopsis genes encode enzymes of the firefly luciferase superfamily that show activity on jasmonic, salicylic, and indole-3-acetic acids in an assay for adenylation[J]. Plant Cell,2002,14:1405-1415.
    Stenzel I, Hause B, Miersch O, Kurz T, Maucher H, Weichert H, Ziegler J, Feussner I, Wasternack C. Jasmonate biosynthesis and the allene oxide cyclase family of Arabidopsis thaliana[J]. Plant Mol Biol,2003,51:895-911.
    Stintzi A, Browse J. The Arabidopsis male-sterile mutant, opr3, lacks the 12-oxo-phytodienoic acid reductase required for jasmonate synthesis[J]. PNAS,2000,97:10625-10630.
    Stintzi A, Weber H, Reymond P, Browse J, Farmer EE. Plant defense in the absence of jasmonic acid: The role of cyclopentenones[J]. PNAS,2001,98:12837-12842.
    Stotz HU, Pittendrigh BR, Kroymann J, Weniger K, Fritsche J, Bauke A, Mitchell-Olds T. Induced plant defense responses against chewing insects. Ethylene signaling reduces resistance of Arabidopsis against Egyptian cotton worm but not diamondback moth[J]. Plant Physiol.,2000,124:1007-1017.
    Stumpe M, Gobel C, Demchenko K, et al. Identification of allene oxide synthase (cyp74c) that leads to formation of alpha-ketols from 9-hydroperoxides of linoleic and linolenic acid in below-ground organs of potato[J]. Plant J,2006,47:883-896.
    Takahashi S, Kuzuyama T, Watanabe H, Seto H. A 1-deoxy-D-xylulose 5-phosphate reductoisomersase catalyzing the formation of 2C-methl-D-erythritol 4-phosphate in an alternative nonmevalonate pathway for terpenoid biosynthesis[J]. PNAS,1998,95(7):9879-9884.
    Takaya A, Zhang YW, Asawatreratanakul K, et al. Cloning, expression and characterization of a functional cDNA clone encoding geranylgeranyl diphosphate synthase of Hevea brasiliensis[J]. Biochim. Biophys. Acta.,2003,1625(2):214-220.
    Tanford C. The hydrophobic effect and the organization of living matter [J]. Science,1978,200(4345): 1012-1018.
    Tani T, Sobajima H, Okada K, Chujo T, Arimura SI, Tsutsumi N, Nishimura M, Seto H, Nojiri H, Yamane H. Identification of the OsOPR7 gene encoding 12-oxophytodienoate reductase involved in the biosynthesis of jasmonic acid in rice[J]. Planta,2007,227:517-526.
    Tarshis LC, Yan M, Poulter CD, Sacchettini JC. Crystal structure of recombinant farnesyl diphosphate synthase at 2.6-A resolution[J]. Biochemistry,1994,33:10871-10877.
    Thaler JS, Fidantsef AL, Bostock RM. Antagonism between jasmonate-and salicylate-mediated induced plant resistance:effects of concentration and timing of elicitation on defense-related proteins, herbivores, and pathogen performance in tomato[J]. J Chem Ecol,2002,28:1131-1159.
    Thaler JS, Stout MJ, Karban R, Duffey SS. Jasmonate-mediated induced plant resistance affects a community of herbivores[J]. Ecol Enlomol,200],26:312-324.
    Thaler JS. Jasmonic acid mediated interactions between plants, herbivores, parasitoids, and pathogens:a review of field experiments in tomato. In:Agrawal AA, Tuzun S, Bent E, eds. Induced plant defenses against pathogens and herbivores:Biochemistry, ecology, and agriculture[D]. St Paul, Minnesota:The American Phytopathological Society Press,1999,319-334.
    ThinesB, Katsir L, MelottoM, et al. JAZ repressor proteins are targets of the SCF COI1 complex during jasmonate signalling[J]. Nature,2007,448:661-665.
    Thipyapong P, Steffens JC. Tomato polyphenol oxidase-differential response of the polyphenol oxidase F promoter to injuries and wound signal[J]. Plant Physiol.,1997,115:409-4181.
    Tholl D, Kish CM, Orlova I, Sherman D, Gershenzon J, Pichersky E, Dudareva N. Formation of monoterpenes in Antirrhinum majus and Clarkia breweri flowers involves heterodimeric geranyl diphosphate synthases[J]. Plant Cell,2004,16:977-992.
    Thompson JD, Gibson TJ, Plewniaki F. The CLUSTALX windows interface flexible strategies formultiple sequence alignment aided by quality analysis tools [J]. Nucleic Acids Res,1997,25: 4876-4882.
    Turlings TCJ, Benrey B. Effects of plant metabolites on the behavior and development of parasitic wasps[J]. Ecoscience,1998,5(3):321-333.
    Turlings TCJ, Loughrin JH, McCall PJ, REse USR, Lewis WJ, Tumlinson JH. How caterpillar-damaged plants protect themselves by attracting parasitic wasps[J]. PNAS,1995,92:4169-4174.
    Turlings TCJ, Tumlinson JH, Lewis WJ. Exploitation of herbivore-induced plant odors by host-seeking parasitic wasps[J]. Science,1990,250:1251-1253.
    Turner JG, Ellis C, Devoto A. The jasmonate signal pathway[J]. Plant Cell,2002,14(S):153-164.
    Van Dam NM, Hadwich K, Baldwin IT. Induced response in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta[J]. Oecologia,2000,122:371-379.
    Van Poecke RMP, Dicke M. Induced parasitoid attraction by Arabidopsis thaliana:involvement of the octadecanoid and the salicylic pathway[J]. JExp Bot,2002,53(375):1793-1799.
    Verheggen FJ, Arnaud L, Bartram S, Gohy M, Haubruge E. Aphid and plant volatiles induce oviposition in an aphidophagous hoverfly[J]. JChem Ecol,2008,34:301-307.
    Vet LEM, Dicke M. Ecology of infochemical use by natural enemies in a tritrophic context[J]. Annu Rev Entomol,1992,37:141-172.
    Visser JH. Host odor perception in phytophagous insects[J]. Ann. Rev. Entomol.1986,31:121-144.
    Voelckel C, Weisser WW, Baldwin IT. An analysis of plant-aphid interactions by different microarray hybridization strategies[J]. Mol Ecol,2004,13:3187-3195.
    Walling LL. The myriad plant responses to herbivores [J]:J. Plant Growth Regul.2000,19:195-216.
    Walter MH, Hans J, Strack D. Two distantly related genes encoding 1-deoxy-D-xylulose 5-phosphate synthases:differential regulation in shoots and apocarotenoid-accumulating mycorrhizal roots[J]. Plant J,2002,31:243-254.
    Wang Y, Darnay BG, Rodwell VW. Identification of the principal catalytically important acidic residues of 3-hydroxy-3-methylglutaryl coenzyme A reductase[J]. JBiol Chem,1990,265:21634-21641.
    Wastemack C, Mierch O, Kramell R, et al. Jasmonic acid:biosynthesis, signal transudation, gene expression [J]. Fett/Lipid,1998,100:139-146.
    Wei JN, Kang L. Electrophysiological and behavioral responses of a parasitic wasp to plant volatiles induced by two leaf miner species[J]. Chem Senses,2006,31:467-477.
    Whitman DW, Eller FJ. Parasitic wasps orient to green leaf volatiles[J]. Chemoecology,1990,1:69-75.
    Whitman DW, Fred J, Eller, Parasitic wasps orient to green leaf volatiles[J]. Chemeoecology,1990, 1:69-76.
    Wickremasinghe MGV, Van Emden HF. Reactions of adult female parasitoids, particularly Aphidius rhopalosiphi, to volatile chemical cues from the host plants of their aphid prey[J]. Physiol Entomol, 1992,17:297-304.
    Wildung MR, Croteau R. A cDNA clone for taxadiene Synthase, the diterpene cyclase that catalyzes the committed step of taxol biosynthesis[J]. J Biol Chem,1996,271:9201-9204.
    Williams L 3rd, Rodriquez-Saona C, Castle SC, Zhu S. EAG-active herbivore-induced plant volatiles modify behavioral responses and host attack by an egg parasitoid[J]. J Chem Ecol,2008, 34:1190-1201.
    Wu JS, Chon K. The molecular biology research on the action of Jasmonates[J]. Chinese Bulletin of Botany,2002,19(2):164-170.
    Wu Q, Wu JJ, Sun HJ, et al. Sequence and expression divergence of the AOC gene family in soybean: insights into functional diversity for stress responses[J]. Biotechnol Lett,2011,33:1351-1359.
    Xiang S, Usunow G, Lange G, Busch M, Tong L. Crystal structure of 1-deoxy-D-xylulose 5-phosphate synthase, a crucial enzyme for isoprenoids biosynthesis[J]. JBiol Chem,2007,282:2676-2682.
    Yamada A, Saitoh T, Mimura T, Ozeki Y. Expression of mangrove allene oxide cyclase enhances salt tolerance in Escherichia coli, yeast, and tobacco cells [J]. Plant Cell Physiol,2002,43:903-910.
    Yang T, Li J, Wang HX, Zeng Y. A geraniol-synthase gene from Cinnamomum tenuipilum[J]. Phytochemistry,2005,66(3):285-293.
    Yao HY, Gong YF, Zuo KJ, et al. Molecular cloning, expression profiling and functional analysis of a DXR gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase from Camptotheca acuminata [J]. JPlant Physiol,2008,165:203-213.
    Yoshinaga N, Aboshi T, Ishikawa C, et al. FattyAcid Amides, Previously Identified in Caterp illars, Found in the Cricket Teleogryllus taiwanemma and Fruit Fly Drosophila melanogaster Larvae[J]. J Chem Ecol,2007,33:1376-1381.
    Yoshinaga N, Morigaki N, Matsuda F, et al. In vitro biosynthesis of voiicitin in Spodopteralitura[J]. Insect Biochem Molec,2005,35:175-184.
    Zavala JA, Patankar A, Gase K, et al. Constitutive and inducible trypsin proteinase inhibitor production incurs large fitness costs in Nicotiana attenuate[J]. PNAS,2004,101:1607-1612.
    Zavala JA, Patankar A, Gase K, et al. Manipulation of endogenous trypsin proteinase inhibitor production in Nicotiana attenuate demonstrates their function as antiherbivore defenses[J]. Plant Physiol,2004,134:1181-1190.
    Zhang ZP, Baldwin IT. Transport of [2-14C] jasmonic acid from leaves to roots mimics wound-induced changes in endogenous jas-monic pools in Nicotiana sylvesiris[J]. Planta,1997,203:436-441.
    Zheng SJ, DickeM. Ecological genomics of plant-insect interactions:from gene to community[J]. Plant Physiol,2008,146:812-817.
    Zheng SJ, van Dijk JP, Bruinsma M, Dicke M. Sensitivity and speed of induced defense of cabbage (Brassica oleracea L.):Dynamics of BoLOX expression patterns during insect and pathogen attack[J]. Mol Plant-Microbe Interact,2007,20:1332-1345.
    Ziegler J, Hamberg M, Mierseh O, Parthier B. Purification and characterization of allene oxide cyclase from dry corn seeds[J].Plant Physiol,1997,114:565-573.
    Ziegler J, Hamberg M, Mierseh O. Purification and charaeterization of allene oxid cyelase from corn kemels[J]. Plant Physiol,1996,111:450-450.
    Ziegler J, Stenzel I, Hause B, Maucher H, Hamberg M, Grimm R, Ganal M, Wasternack C. Molecular cloning of allene oxide cyclase-the enzyme establishing the stereochemistry of octadecanoids and jasmonates [J]. J Biol Chem,2000,275:19132-19138.
    Ziegler J, Wasternack C, Hamberg M. On the specificity of allene oxide cyclase[J]. Lipids,1999,34, 1005-1015.
    Zien CA, Wang CX, Wang XM, Welti R. In vivo substrates and the contribution of the common phospholipase D, PLDalpha, to wound-induced metabolism of lipids in Arabidopsis[J]. Biochim Biophys Acta,2001,1530:236-248.
    蔡昆争,董桃杏,徐涛.茉莉酸类物质(JAs)的胜利特性及其在逆境胁迫中的抗性作用[J].生态环境,2006,15(2):397-404.
    陈大华,叶和春,李国凤,刘彦.马铃薯HMGR基因的克隆、序列分析及其表达特征[J].植物学报, 2000,42(7):724-727.
    陈凤美,曹小迎,蒋继宏,等.播娘蒿hmgr基因保守区片段的克隆与分析[J].广西植物,2008,28(3):386-389.
    陈建,赵德刚.植物萜类生物合成相关酶类及其编码基因的研究进展[J].分子植物育种,,2004,2(6):757-764.
    陈新.鸭梨a-法尼烯合成酶基因的克隆及其植物表达载体构建[D].山东农业大学硕士学位论文,2007.
    陈宗懋.中国茶经[M].上海:上海文化出版社,1992.
    邓晓军,陈晓亚,杜家纬.植物挥发性物质及其代谢工程[J].植物生理与分子生物学学报,2004,30(1):11-18.
    董乐萌,刘玉军,魏建和.柴胡皂苷合成途径中三个关键酶基因片段的克隆与序列分析[J].世界科学技术一中医药现代化(基础研究),2008,10(5):56-61.
    杜家纬.植物-昆虫间的化学通讯及其行为控制[J].植物生理学报,2001,27(3):193-200.
    杜孟浩,严兴成,娄永根,程家安.褐飞虱唾液中诱导水稻释放挥发物的活性组分研究[J].浙江犬学学报(农业与生命科学版),2005,31(3):237-244.
    段瑞军.红树林耐盐基因(AOC)的克隆及其转化热研五号柱花草的初步探讨[D].华南热带农业大学.2004.
    段瑞军,郭建春,胡新文,等.海莲耐盐基因AOC克隆及转录融合表达载体的构建[J].热带作物学报,2006,27(3):56-60.
    谷文祥,段舜山,骆世明.萜类化合物的生态特性及其对植物的化感作用[J].华南农业大学学报,1998,19(4):108-112.
    桂连友,陈宗懋,刘树生.外源茉莉酸甲酯诱导茶树挥发物对昆虫寄生选择行为的影响(英文)[J].茶叶科学,2004,24(3):166-171.
    桂连友,刘树生,陈宗懋.外源茉莉酸和茉莉酸甲酯诱导植物抗虫作用及其机理[J].尾虫学报,2004,47(4):507-514.
    郭光喜,刘勇,杨景娟,马向真.麦长管蚜唾液中几种酶的鉴定、活力测定与功能分析[J].昆虫学报,2006,49(5):768-774.
    韩宝瑜.茶树-茶蚜-捕食、寄生性天敌间定位、取食的物理、化学通讯机制[D].中国农业科学院博士学位论文1999.
    韩宝瑜.昆虫化学信息物质及其在害虫治理中的应用展望[J].安徽农学通报,2002,8(1):12-16.
    韩宝瑜,林金丽,周孝贵,章金明.假眼小绿叶蝉卵及卵寄生蜂缨小蜂形态观查和寄生率考评[J].安微农业大学学报,2009,36(1):13-17.
    韩宝瑜,周鹏,章金明.茶梢水杨酸甲酯和反-2-己烯醛的诱导释放及其诱集天敌的效应[J].见: 中国茶叶学会 & 台湾茶协会主编:第四届海峡两岸茶业学术研讨会论文集.四川省蒲江,2006年9月3-10日.pp.342-351.
    郝金凤,李彤彤,郭艳琼,等.甜瓜HMGR基因全场cDNA的克隆及序列分析[J].生物技术通报2010,8:106-109.
    黄毅,韩宝瑜,唐茜,徐欢,汪云刚.茶尺蠖绒茧蜂对茶梢挥发物的EAG和行为反应[J].昆虫学报,2009,52(11):1191-1198.
    蒋科技.药用植物茉莉酸合成途径关键酶基因的克隆与研究[D].复旦大学博士学位论文:2007.
    蒋科技,皮妍,侯嵘,唐克轩.植物内源茉莉酸类物质的生物合成途径及其生物学意义[J].植物学报,2010,45(2):137-148.
    江雪梅.球药隔重楼甾体皂甙生物合成相关功能基因的克隆与组织表达分析[D].中南大学,2011.
    雷桅,汤绍虎,周启贵等.桑萜类生物合成酶HMGR的生物信息学分析[J].蚕业科学,2008,34(3):393-399.
    李常保,孙加强,蒋红玲等.番茄系统抗性反应的信号转导[J].科学通报,2005,50(16):1677-1683.
    李富才,王高平,罗礼智.虫害诱导植物产生的挥发性化合物及其对寄生蜂的影响[J].中国昆虫学会第八次全国会员代表大会暨2007年学术年会论文集,2007.
    李红亮.中华蜜蜂头部ESTs文库构建和主要触角特异蛋白基因克隆、定位及其表达鉴定[D].浙江大学博士学位论文.2007.
    李慧玲,林乃铨.假眼小绿叶蝉卵缨小蜂的生物学特性研究[J].茶叶科学,2008,28(6):407-413.
    李萌.苹果a-法尼烯合成酶基因的克隆与表达特性研究[D].山东农业大学硕士学位论文,2005.
    李嵘,王喆之.植物萜类合成酶3-羟基-3-甲基戊二酰辅酶A还原酶的生物信息学分析[J].广西植物,2006,26(5):464-473.
    李绍文.生态生物化学(八):植食性昆虫对食物的选择[J].生态学杂志,1991,10(1):65-70.
    李新岗,刘惠霞,黄建.虫害诱导植物防御的分子机理研究进展[J].应用生态学报,2008,19(4):893-900.
    林金丽.茶树-假眼小绿叶蝉-缨小蜂间化学和色彩通讯机理研究[D].扬州大学硕士学位论文,2010.
    林金丽,韩宝瑜,周孝贵,陈学好.色彩对茶园昆虫的引诱力[J].生态学报,2009,29(8):4303-4316.
    刘本英,王平盛,周红杰等.云南茶组植物ISSR-PCR反应体系的建立[J].云南农业大学学报,2006(增):21-25.
    刘守安,韩宝瑜,付建玉等.茶树Mn-SOD在大肠杆菌中的高效表达[J].安徽农业大学学报.2008,35(2):234-238.
    娄永根,程家安.虫害诱导的植物挥发物:基本特征、生态学功能及释放机制[J].生态学报,2000,20(6):1097-1106.
    娄永根,程家安.植物-植食性昆虫-天敌三营养层次的相互作用及其研究方法[J].应用生态学报,1997,8(3):325-331.
    罗永明,刘爱华,李琴,黄璐琦.植物萜类化合物的生物合成途径及其关键酶的研究进展[J].江西中医学院学报,2003,15(1):45-51.
    骆世明,曾任森,曹潘荣.华南农区典型植物的他感作用研究[J].生态科学,1995,2:114-128.
    吕要斌,刘树生.外源茉莉酸诱导植物反应对菜蛾绒茧蜂寄生选择行为的影响[J].尾虫学报,2004,47:206-212.
    马靓,丁鹏,杨广笑,等.植物类萜生物合成途径及关键酶的研究进展[J].生物技术通报,2006(增刊):22-30.
    毛迎新,邹武,马新华,高明清,林乃铨.假眼小绿叶蝉卵的寄生蜂种类及种群动态[J].尾虫知识,2008,45(3):472-474.
    穆丹.茶树挥发性信息素调控假眼小绿叶蝉及叶蝉三棒缨小蜂行为的功效[D].中国农业科学院博士学位论文2011.
    彭金英,黄勇平.植食性昆虫诱导的挥发物及其在植物通讯中的作用[J].植物生理学通讯,2005,41(5):679-683.
    彭少麟,南蓬,钟扬.高等植物中的萜类化合物及其在生态系统中的作用[J].生态学杂志,2002,21(3):33-38.
    皮妍.喜树中植物防御相关基因的克隆分析及对喜树碱含量的影响[D].复旦大学博士学位论文.2007.
    乔小燕.茶树黄酮合成酶Ⅱ基因的克隆、生物信息学与荧光定量PCR分析[D].中国农业科学院硕士学位论文.2009.
    秦秋菊,高希武.昆虫取食诱导的植物防御反应[J].昆虫学报,2005,48(1):125-134.
    瞿礼嘉,王小菁,王台,等.2007年中国植物科学若干领域重要研究进展[J].植物学报,2009,44:2-26.
    沈少华,刘姬艳,胡江琴等.喜树碱生物合成途径及其相关酶的研究进展[J].中草药,2011,42(9):1862-1868.
    宋平,夏凯,曹显祖.茉莉酸类化合物结构与活性之间的关系及参与茉莉酸生物很成的酶[J].植物生理学通讯,2002,38(1):72-77.
    宋晓君,唐超,覃伟权.虫害诱导植物挥发物的释放机制及应用[J].中国农学通报,2009,25(13):161-165.
    孙清鹏,王小菁.植物伤反应中的茉莉酸类信号[J].植物学通报,2003,20(4):481-488.
    孙美莲,王云生,杨冬青等.茶树实时荧光定量PCR分析中内参基因的选择[J].植物学报,2010,45(5):579-587.
    孙世芹,阎秀峰.喜树幼苗中喜树碱及其代谢相关酶类的分布[J].中草药,2008,39(8):1231-1234.
    汪霞.茉莉酸信号传导途径在褐飞虱诱导的水稻防御反应中的作用研究[D].浙江大学硕士学位论文.2004.
    王志新.蛋白质结构预测的现状与展望[J].生命的化学,1998,18(6):19-22.
    吴春太,李维国,高新生,张晓飞.橡胶HMGR蛋白的生物信息学分析与同源建模[J].热带农业科学,2009,29(10):17-37.
    吴劲松.小麦茉莉酸诱导基因的克隆及表达模式分析[D].中国科学院植物研究所,2003.
    吴劲松,种康.茉莉酸作用的分子生物学研究[J].植物学通报,2002,19(2):164-170.
    吴祖建,高芳銮,沈建国.生物信息学分析实践[M].北京:科学出版社,2010:106-129.
    徐涛,周强,陈威,等.茉莉酸信号传导途径参与了水稻的虫害诱导防御过程[J].科学通报,2003,48(13):1442-1449.
    徐涛,周强,夏嫱,等.虫害诱导的水稻挥发物对褐飞虱寄主选择行为的影响[J].科学通报,2002,47(11):849-853.
    许宁.挥发性物质在茶树-茶尺蠖-绒茧蜂三重营养关系中的化学通讯作用[D].浙江农业大学博士论文,1996.
    许燕华,骆萍,卢山等.次生萜类生物合成的调控[J].中国科学基金,2000,4:197-200.
    颜增光,阎云花,王琛柱.棉铃虫和烟青虫取食诱导的烟草挥发物吸引棉铃虫齿唇姬蜂[J].科学通报,2005,50(12):1220-1227.
    杨鹤,郜玉刚,李璠瑛,张连学.人参皂苷等萜类化合物生物合成途径及HMGR的研究进展[J].中国生物工程杂志,2008,28(10):130-135.
    杨锦芬,何国振,阿迪卡利等.阳春砂3-羟基-3-甲基戊二酰辅酶A还原酶基因的克隆及分析[J].时珍国医国药,2010,21(8):1893-1897.
    杨涛,曾英.植物萜类合酶研究进展[J].云南植物研究,2005,27(1):1-10.
    于涌鲲,郝玉兰,万善霞等.茉莉酸类物质的生物合成及其信号转导研究进展[J].自然科学进展,2008,18(9):961-967.
    翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社,2000:78-193.
    张风娟,任琴,金幼菊.虫害诱导植物体内信号[J].西北林学院学报,2005,20(2):160-163.
    张兴,赵善欢.川楝素对菜青虫体内几种酶系活性的影响[J].昆虫学报,1992,35(2):171-177.
    张瑛,严福顺.虫害诱导的植物挥发性次生物质及其在植物防御中的作用[J].昆虫学报,1998,41(2):204-214.
    张长波,孙红霞,巩中军,祝增荣.植物萜类化合物的天然合成途径及其相关合酶[J].植物生理学通讯,2007,43(4):779-786.
    张成岗,贺福初.生物信息学方法与实践[M].北京:科学出版社,2002.
    赵冬香,高景林,陈宗懋,等.假眼小绿叶蝉对茶树挥发物的定向行为反应[J].华南农业大学学报(自然科学版),2002,23(4):27-29.
    赵冬香,陈宗懋,程家安.茶树-假眼小绿叶蝉-白斑猎蛛间化学通讯物的分离与活性鉴定[J].茶叶科学,2002,22(2):109-114.
    赵国屏.生物信息学[M].北京:科学出版社,2002.
    赵善欢,黄端平,张兴.楝科物质对亚洲玉米螟幼虫取食和生长发育的影响[J].昆虫学报,1985,28(4):125-131.
    赵善欢,张兴,刘秀琼等.印楝素对亚洲玉米螟幼虫生长发育的影响[J].昆虫学报,1984,27(3):241-247.
    钟申丽,孙玉诚,戈峰,肖铁光.茉莉酮酸酯诱导植物抗性的分子机制[J].江西农业学报,2008,20(12):74-76.
    周妮,朱莉,郎志宏,黄大防.萜类化合物在植物间接防御中的作用[J].中国生物工程杂志,2010,30(7):101-107.
    庄家祥,傅建炜,苏庆泉,李建宇,占志雄.福建省茶小绿叶蝉抗药性的地区差异[J].茶叶科学,2009,29(2):154-158.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700