蜡梅非特异性脂转移蛋白基因nsLTP家族成员克隆及其抗逆功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物非特异性脂转移蛋白(nonspecific lipid transfer protein,nsLTP)是一类广泛存在于高等植物中的碱性小分子蛋白,编码nsLTP的基因在许多植物中都以基因家族的形式存在,如拟南芥、大麦等。nsLTP成员具有不同的生物学功能,主要涉及角质合成,用以调节脂质储藏的分解代谢的β氧化、体细胞胚胎形成、植物信号转导、参与植物有性生殖、花粉发育、对病原物的防御以及对生物和非生物胁迫的应答等。明确不同成员在植物抗性形成方面的作用,对于调控植物抗性和利用基因工程改良植物抗性有重要意义。
     本论文克隆得到了蜡梅脂转移基因家族4个成员,并进行了启动子分离工作,利用生物信息学、荧光定量PCR、原核表达等方法对获得的蜡梅脂转移蛋白基因家族成员抗逆性的差异进行了分析,主要结果如下:
     1蜡梅nsLTP基因家族4个成员的克隆与分子特征分析
     在已构建的蜡梅花cDNA文库及EST分析的基础上,通过对文库cDNA克隆全长测序,得到了4个编码蜡梅非特异性脂转移蛋白的基因(nsLTP),分别命名为CpLTP1,CpLTP2,CpLTP3和CpLTP4,GenBank登录号为FJ889521,FJ904082,FJ904083和FJ904084。它们的cDNA全长分别为611、1016、656和997 bp,ORF分别为360、360、351和660 bp,无内含子,5′和3′端的非翻译区的长度不等,存在的调控基序有所不同。
     运用生物信息学手段对蜡梅nsLTP基因家族4个成员编码蛋白CpLTP1、CpLTP2、CpLTP3和CpLTP4的结构特点与性质进行了分析,CpLTP1、CpLTP2、CpLTP3具有明显的植物脂转移蛋白nsLTPI类的特征,分子量都为9KD,含有保守的4个螺旋区、8个半胱氨酸位点和脂质结合基序,具有明显的信号肽序列,定位于细胞外的可能性最高,进一步的三级结构预测也显示能够形成管状的疏水腔。而CpLTP4与其他3个编码蛋白显著不同,具有较高的分子量(19.7KD),虽然同样具有8个保守的半胱氨酸位点,但第8个位点的位置与nsLTPI类有一定的差异,细胞定位有所不同,定位于质膜的可能性最高,三级结构预测显示形成上宽下窄的类似于三角形的疏水腔,聚类分析时与同样高分子量的刚毛怪柳、蓖麻等的脂转移蛋白聚在一支,这种高分子量的脂转移蛋白有可能形成一个新的类别。
     2蜡梅nsLTP基因家族4个成员的原核表达及其产物抑菌活性分析
     成功构建LTP1-pET、LTP2-pET、LTP3-pET、LTP4-pET原核表达载体,转化Origami(DE3)表达菌株,通过诱导条件优化,在28℃、0.5m MIPTG、诱导6h能够获得较好的可溶性表达。利用His-Bind蛋白纯化回收试剂盒获得4个纯化的重组蛋白。体外抑菌试验结果表明,4个重组蛋白都具有抑菌活性但有差异,其中LTP4重组蛋白抑制小麦赤霉菌生长的能力最强,LTP1最弱。对于细菌的抑制活性还有待进一步试验验证。
     3蜡梅nsLTP基因家族4个成员非生物胁迫表达的荧光定量分析
     对蜡梅植株进行低温、干旱、高盐和ABA诱导处理,利用荧光定量PCR技术分析蜡梅nsLTP基因家族4个成员在蜡梅叶片中的表达情况,结果表明,4个nsLTP基因在蜡梅幼苗中的表达受干早、ABA、低温和NaCl处理的影响程度不同。CpLTP1、CpLTP2、CpLTP3基因在胁迫处理下表达总体下调,而CpLTP4基因在胁迫处理下表达总体上调,其中在低温处理下表达量最高。结果表明虽然CpLTP1、CpLTP2、CpLTP3基因来自于同一基因家族,但其功能上具有明显的差异,可能在蜡梅幼苗的水分平衡、耐受低温、离子代谢等过程中发挥着不同的作用,CpLTP4基因可能对蜡梅抵抗非生物胁迫起更重要的作用。
     4蜡梅CpLTP3、CpLTP4基因启动子的克隆及瞬时表达分析
     利用hiTAIL-PCR法分离分别得到了CpLTP3、CpLTP4基因5′端上游的一段长1298bp和838bp的序列,二者的序列差异较大,Identity值为27.75%。经序列测定及软件分析表明,这两个序列具有典型的启动子结构,除含有TATA-box、CAAT-box等启动子基本元件,另外都含有较多的光应答元件、与植物非生物胁迫相关的一些响应元件,如ABRE、G-BOX、HSE。仅在CpLTP4pro发现GARE-motif、TATC-box、MBS、TC-rich repeats,在CpLTP3pro启动子发现与细胞周期调控有关的顺式调控元件MSA-like和胚乳表达必须的顺式调控元件Skn-1_motif。将克隆得到的蜡梅启动子CpLTP3pro、CpLTP4pro代替pBI121中的CaMV35S启动子构建成适于瞬时表达研究的植物表达载体pB1121-CpLTP3pro和pBI121-CpLTP4pro。通过农杆菌介导的瞬时表达研究,在GA3诱导下,CpLTP4pro能够驱动GUS基因在烟草叶片中的表达,而CpLTP3pro不能。在CpLTP3pro、CpLTP4pro驱动下,GUS基因在烟草叶片中的表达都受ABA、Nacl、PEG、4℃、37℃等处理诱导。表明蜡梅启动子CpLTP3pro、CpLTP4pro具有作为胁迫诱导驱动目标基因表达的潜力。
     论文研究结果表明,蜡梅nsLTP基因家族4个成员CpLTP1,CpLTP2,CpLTP3和CpLTP4的抗逆性存在差异,CpLTP4可能与蜡梅抗逆性的关系最为密切。为了进一步鉴别蜡梅nsLTP基因家族成员的抗逆性差异,尚需克隆蜡梅nsLTP基因家族其他成员及启动子,并利用转基因等技术对编码蛋白的抗逆性和启动子活性的诱导差异性进行深入研究才能完成。
Nonspecific lipid transfer protein(nsLTP) is one kind of the low molecular weight basic proteins, which is widespread in higher plants.The genes encoding the nsLTP are usually in the form of gene family in many plants,such as arabidopsis,barley,et al.The nsLTP memebers have the different biological functions mainly involving synthesis of cutin,regulation of theβ-oxidation in the lipid storage catabolism,formation of somatic embryo,plant signal conduction,plant sexual reproduction,pollen development,defense against the pathogen and the response to the biotic and abiotic stresses,et al.
     In this paper,four genes encoding the nonspecific lipid transfer protein and two promoters were cloned from Chimonanthus praecox(L.) Link,and the bioinformatics,real time quantitative PCR, prokaryotic expression were used to analyze the difference of the stress resistance among the four Chimonanthus praecox nonspecific lipid transfer protein gene family members.The main results are as follows:
     (1) Cloning and molecular characteristics of four nsLTP genes from Chimonanthus praecox
     We cloned four nsLTP genes,named CpLTP1,CpLTP2,CpLTP3 and CpLTP4,the Genebank accession numbers of which are FJ889521,FJ904082,FJ904083and FJ904084 respectively,based on the cDNA library construction from Chimonanthus Praecox flower and its EST analysis.The full-length cDNA of the four genes are 611,1016,656 and 997 bp respectively,with similar opening reading frame(ORF) of 360 bp,360 bp,351 and 660 bp without the intron,but have different 5' and 3' untranslated region length and different regulation motifs.
     Analysis of the structure characteristics and properties of the four nsLTP genes by bioinformatics: With similar molecular weight of 9KD,the CpLTP1,CpLTP2 and CpLTP3 have the significant features of the plant nonspecific lipid transfer protein I(nsLTPI),containing four conversedα-Helix,eight cysteine residues and lipid-binding motifs,obvious signal peptide sequence.All the three proteins are most probably localized in extracellular,and can form the tubular hydrophobic cavity by further tertiary structure prediction.On the contrary,CpLTP4 is very different from the other three encoding proteins.It has the high molecular weight(19.7KD).Although CpLTP4 also has the eight conversed cysteine residues,the position of the eighth cysteine residues exhibits some differences from the nsLTPI type. The CpLTP4 is most likely to be located in the plasma membrane,which is different from the other three members.The tertiary structure prediction indicates that it can form the wide top and narrow bottom triangle-shaped hydrophobic cavity.Cluster Analysis shows that it can get together with the tamarix hispida and ricinus communis,maybe they can form a new type of the lipid transfer protein.
     (2) Prokaryotic expression and analysis of antibacterial activity against product of four nsLTP genes from Chimonanthus praecox in Escherichia Coli
     The Prokaryotic expression vector LTP1-pET,LTP2-pET,LTP3-pET and LTP4-pET were constructed and transformed into the expression strain Origami(DE3).A fairly good soluble expression can be gained under the conditions of 28℃,0.5m MIPTG and 6h induced by optimizing the induced conditions.Four purified recombinant protein were obtained by the His-Bind protein Purification Kit.The results of the bacteriostatic test in vitro sbow that both of the four recombinant protein have the different antibacterial activity.The LTP4-pET recombinant protein has the most strong ability to inhibit the wheat phytoalexin where as the LTP1-pET recombinant protein has the weakest ability on it.The antibacterial activity of the four recombinant proteins against the bacteria should be verified by further research.
     (3) Abiotic stresses respond analysis of four nsLTP genes from Chimonanthus praecox by real time quantitative PCR.
     The Chimonanthus praecox plants were treated by cold temperature,drought,high salt and ABA. Then real-time quantitative RT-PCR was used to analyse the expression of four nsLTP genes in Chimonanthus praecox leaves.The results revealed that the four genes were differently regulated by drought,salinity,cold and ABA(abscisic acid).The expression of CpLTP1,CpLTP2 and CpLTP3 genes were general down-regulated by the stress treatment.But the expression of CpLTP4 was general up-regulated and had the highest expression under the cold treatment.The results suggest that although CpLTP1,CpL TP2 and CpLTP3 genes are from the same gene family,they have the distinct differences in functions and probably play different roles in water balance,chilling tolerance, metabolism and other physiological processes of Chimonanthus Praecox.CpLTP4 may play a more important role in resisting the abiotic stress of Chimonanthus Praecox.
     (4) Isolation and transient expression assays analysis of Chimonanthus praecox CpLTP3 and CpLTP4 promoter
     The promoter fragment of 1298bp and 838bp upstream from the 5' upper of the CpLTP3 and CpLTP4 genes was isolated from the genomic DNA of Chimonanthus praecox respectively by hiTAIL-PCR.There is great difference between the two sequences with the identity value of 27.75%. The sequencing and soft analysis suggest that the two sequences have the typical promoter structure. Besides the basic promoter elements like TATA-box,CAAT-box and so on,both of the CpLTP3 and CpLTP4 genes contain many light responsive elements,cis-acting element involved in the plant abiotic stress such as ABRE,G-box and HSE.Some elements such as GARE-motif,TATC-b0x,MBS and TC-rich repeats were only found in the CpLTP4pro sequence,while the cis-acting element MSA-like involved in cell cycle regulation,and cis-acting regulatory element Skn-1_motif required for endosperm expression were found in CpLTP3pro promoter sequence.In order to research the transient expression assays,plant expression vector pBI121- CpLTP3pro and pBI121- CpLTP4pro were constructed by replacing the CaMV35S promoter in pBI121 vector by the Chimonanthus praecox CpLTP3 and CpLTP4 promoter
     Using leaf disc transformation method,pBI121-CpLTP3pro and pBI121-CpLTP4pro were transfered into tobacco(W38).The results show that under the induction of GA3,CpLTP4pro promoter can drive the expression of GUS gene,but the CpLTP3pro promoter doesn't have the same ability.In Agrobacterium-mediated transient expression assay,activation of the CpLTP3 and CpLTP4 promoter region(1298bp and 838bp long) occurs in tobacco leaves after treatments with ABA,Nacl,PEG,cold temperature(4℃) and high temperature(37℃) which indicates that the Chimonanthus praecox CpLTP3 and CpLTP4 promoter have the potential of driving the expression of the target genes under the induced condition.
     To sum up the above results,four nsLTP Genes CpLTP1,CpLTP2,CpLTP3 and CpLTP4 from Chimonanthus praecox(L.) Link have the different stress resistance,CpLTP4 gene probably has the closest relationship with the stress resistance of Chimonanthus praecox(L.) Link.In order to identify the difference among the Chimonanthus praecox(L.) Link nsLTP gene family members,the other gene members and their promoters should be cloned.It is necessary to do some deep research on exploring the differences of the encoding proteins' stress resistance and promoter inducing activity by transgenic and other related technologies.
引文
[1] Borey JS.Plant productivity and environment.Science, 1982,218:443-448.
    
    [2] Luigi Cattivelli, Fulvia Rizza, Franz-W. Badeck,et al. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crops Research,2008,105:1-14.
    [3] Watanabe S, Hamano M, Kakeshita H, et al.Mannitol-1-phosphate dehydrogenase(Mtl D) is required for mannitol and glucitol assimilation in Bacillus subtilis: Possible cooperation of mtl and gut operons. J Bacteriol,2003,185:4816-4824.
    [4] Roosens NH, Albitar F, Loenders K, et al. Overexpression of ornithine-8-aminotransferase increases proline biosynthesis and confers osmo tolerance in transgenic plants.Mol Breed,2002,9:73-80.
    [5] Deronde JA, Spreeth MH, Cress WA. Effect of antisense L-1-pynoline-5-carboxylate reductase transgenic soybean plants subjected to osmotic and drought stress. Plant Growth Reg,2000,32:13-26.
    [6] Yamada M, Morishita H, Urano K, et al. Effect of free proline accumulation in petunias under drought stress.J Exp Bo,2005,56:1975-1981.
    [7] Guo P, Baum M, Grando S, et al. Differentially expressed genes between drought-tolerant and drought-sensitive barley genotypes in response to drought stress during the reproductive stage. J Exp Bot.,2009;60(12):3531-3544.
    [8] Fitzgerald TL, Waters DL, Henry RJ. Betaine aldehyde dehydrogenase in plants. Plant Biol,2009,Mar:11(2):119-30.
    [9] Zhou SF, Chen XY, Xue XN ,et al. Physiological and growth responses of tomato progenies harboring the betaine aldehyde dehydrogenase gene to salt stress. J Integr Plant Biol,2007,49(5):628-637.
    [10] 俞嘉宁,山仑.LEA 蛋白和植物的抗寒[J].生物工程进展,2002,22(2):10-14.
    
    [11] Xiong L, Schumaker KS, Zhu JK. Cell signaling during cold, drought, and salt stress.The Plant Cell,2002,14:165-183.
    
    [12] Mckersie BD, Bowlet SR, Harjanto E, et al. Water-deficit tolerance and field performance of transgenic Alfalfa overexpressing superoxide dismutase.Plant Physiol, 1996,111:1177-1181.
    [13] Jiang Y, Deyholos MK. Comprehensive transcriptional profiling of NaCl-stressed Arabidopsis roots reveals novel classes of responsive genes.BMC plant Biol,2006,(6):25-31.
    [14] Xu DP, Duan X L, Wang B Y. expression of a late embryogenesis abundant protein gene, HVAl,from barley confers tolerance to water deficit and salt stress in transgenic rice.Plant Physiol, 1996,110:249-257.
    
    [15] Tarczynskm C, Jensen R G, Bohnert H J. Stress protection of transgenic tobacco by production of the osmolyte mannitol.Science, 1993,259:508-510.
    [16] Rathinasabapath IB, Mccue KF, Gage DA, et al. Metabolic engineering of glycine betaine synthesis: Plant betaine aldehyde dehydrogenases lacking typical transit peptides are targeted to tobacco chloroplasts where they confer betaine aldehyde resistance.Plant, 1994,193(2): 155-162.
    [17] Winicov I, RBastola D R. Transgenic overexpression of the transcription factor Alfinl enhances expression of the endogenous MsPRP2 gene in Alfalfa and improves salinity tolerance of the p\ants.Plant Physiol,1999, 120:473-480.
    [18] Puhakainen T, Hess M W, Makela P, et al. Cold acclimation of Arabidopsis thaliana: effect on plasma membrane lipid composition and freeze-induced lesions.Plant Molecular Biology,2004,54:743-753.
    [19] Mckersie BD, Chen Y, Debeus M, et al. Superoxide dismutase enhances tolerance of freezing stress in transgenic alfalfa(Medicago sativa L).Plant physiology, 1993,103:1155-1163.
    [20] Ma J, Liu D. Chitinase genes response to cold encodes antifreeze proteins in winter cereals.Plant Physiology, 1996,111 (2):814.
    [21] Liu Q,Kasuga M,Sakuma Y,et al. Two transcription factors, DREB1 and DREB2 with an EREBP/AP2 DNA binding domain separate two cell μ lar signal ransduction pathways in drought and low temperature responsive gene expression, respectively, in Arabidopsis. Plant Cell,1998,10:1391~1406.
    [22] Shao HB,Guo QJ,Chu LY,et al. Understanding molecular mechanism of higher plant plasticity under abiotic stress. Biointerfaces,2007,54:37-45.
    [23]C.Glombitza,P.H.Dubuis,O.Thμlke,et al.,Crosstalk and differential response to abiotic and biotic stressors reflected at the transcriptional level of effector genes from secondary metabolism,Plant Mol.Biol.2004,51:1-19.
    [24]Q.Liu,Y.Zhang,S.Y.Chen.Plant protein kinase genes induced by drought,high salt and cold stresses.Chin.Sci.Bμll,2000,45(13):1153-1157,
    [25]H.B.Shao,Z.S.Liang,M.A.Shao,Molecμlar mechanisms of higher plant adaptation to environment.Acta Ecol.Sin,2005,25(7):1772-1781.
    [26]Jakoby M,Weisshaar B,DrEge2Laser W,et al.bZIP transcription factors in Arabidopsis.Trends in Plant Science,2002,7:106-111.
    [27]杨颖,高世庆,唐益苗,等.植物bZIP转录因子的研究进展[J].麦类作物学报,2009,29(4):730-737.
    [28]Monica Yanez,Susan Caceres,Sandra Orellana,et al.Casaretto An abiotic stress-responsive bZIP transcription factor from wild and cultivated tomatoes regulates stress-related genes.Plant Cell Reports,2009,28(10):1497-1507.
    [29]Kagaya Y,Hobo T,Murata M,et al.Abscisic acid2induced transcription is mediated by phosphorylation of an abscisic acid response element binding factor,TRAB1.The Plant Cell,2002,14:3177-3189.
    [30]王磊,赵军,范云六,等.玉米Catl基因顺式元件ABRE2结合蛋白ABP9的基因克隆及功能分析[J].科学通报,2002,15:1167-1171.
    [31]Casaretto J,Ho TH.The transcription factors HvAB15 and HvVP1 are required for the abscisic acid induction of gene expression in barley aleurone cells.The Plant Cell,2003,15(1):271-284.
    [32]Fujita Y,Fujita M,Satoh R,et al.AREB1 is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances drought stress tolerance in Arabidopsis.The Plant Cell,2005,17:3470-3488.
    [33]Kim JB,Kang JY,Kim S.Overexpression of a transcription factor regulating ABA responsive gene expression confers multiple stress tolerance.Plant Biotechnology Journal,2004,2:459-466.
    [34]Mengiste T,Chen X,Salmeron J,et al.The BOTRYTIS SUSCEPTIBLE1 gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis.Plant Cell,2003,15(11):2551-2565.
    [35]Jung C,Seo JS,Han SW,et al.Overexpression of AtMYB44 enhances stomatal closure to confer abiotic stress tolerance in transgenic Arabidopsis.Plant Physiol,2008,146(2):623-635.
    [36]Agarwal M,Hao YJ,Kapoor A,et al.A R2R3 type MYB transcription factor is involved in the cold regulation of CBF genes and in acquired freezing tolerance,J Biol Chem,2006,281(49):37636-45
    [37]Urao T,Yamaguchi-Shinozaki K,Urao S,et al.An Arabidopsis myb homolog is induced by dehydration stress and its gene product binds to the conserved MYB recognitionsequence.Plant Cell,1993,5(11):1529-39
    [38]Seki M,Narusaka M,Abe H,et al.Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full-length cDNA microarray.Plant Cell,2001,13(1):61-72.
    [39]Feng Qin,Masayuki kakimoto,Yoh Sakuma,et al.Regμlation and funcional analysis of ZmDREB2A in response to drought and heat stressed in Zea mays L.The Plant Journal,2007,50:54-69.
    [40]Hurkm WJ,Tanaka CK,Dupont FM.The effects of salt stress on polypeptides in membrane fractions from barley roots.Plant Physiol,1988,88;1263-1273.
    [41]Costa P,Bahoman N,Frigerio J M,et al.Water-deficit responsive proteins in maritine pine.Plant Mol Biol,1998,38;587-596.
    [42]Chang W W,Huang I,Shen M,et al.Patters of protein synthesis and tolerance of anoxia in root tips of maize seedlings acclimated to a low-oxyqen environment and identification of proteins by mass spectrometry.Plant physiol,2000,122;295-318.
    [43]Vincent D,Ergul A,Bohhnan M,et al.Protean is analysis reveals differences between Vitis vinifera Lev.Chanlonnay and ev.Cabernet Sauvignon and their responses to water deficit and salinity.J Exp Bot,2007,58;1873-1892.
    [44]Alig M,Komatsu S.Proteomic analysis of rice leaf sheath during drought stress.J Proteome Res,2006,5;396-403.
    [45]Salekdeh GH,Siopongco J,Wade LJ,et al.Proteomic analysis of rice leaves during drought stress and recovery.Proteornics,2002,2;1131-1145.
    [46]Yan S,Tang Z,Su W,et al.Proteomic analysis of salt stress-responsive proteins in rice roots.Proteomics,2005,5;235-244.
    [47]Parker R,Flowers TJ,Moore AL,et al.An accurate and reproducible method for proteome profiling of the effects ofsalt stress in the rice leaf lamina.J Exp Bot,2006,57;1109-1118.
    [48]Kin DW,Rakwal R,Agarwal GK,et al.A hydroponic rice seedling culture model system for investigating proteune of salt stress in rice leaf.Electrophoresi,2005,26,4521-4539.
    [49]Yan S,Zhang Q,Tang Z,et al.Comparative proteomic analysis provides new insights into chilling stress responses in rice.Mol Cell Proteomics,2006,5;484-496.
    [50]Goulas E,Schurbert M,Kieselbach T,et al.The chlorPlast lumen and stromal Proteomes of Arabidopsis thaliana show differential sensitivity to short-term exponsure to low-temperature.Plant J,2006,47;720-734.
    [51]Kawamura Y,Uenura M.Mass Spectrum approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation.Plant K,2003,36(2);141-154.
    [52]Baem S,Cho EJ,Choi EY,et al.Analysis of the Arabidopsis nuclear proteome and its response to coll stress.Plant J,2003,36;652-663.
    [53]Cui S,Huang F,Wang I,et al.A proteomic analysis of cold stress responses in rice seedlings.Proteomics,2005,5;3162-3172.
    [54]陈龙清,陈俊愉.用RAPD分析蜡梅自然居群的遗传变异[J].北京林业大学学报,1999,21(21):86-90.
    [55]李根有,金水虎.浙江省野生蜡梅数量及群落学研究[J].北京林业大学学报,2003,25(6):30-32.
    [56]赵冰,张启翔.中国蜡梅种质资源花性状的变异分析[J].园艺学报,2008,35(3):383-388
    [57]赵冰,张启翔.中国蜡梅属种质资源的分布及其特点[J].广西植物,2007,27(5):730-735.
    [58]Kitajima M,Mori I,Arai K.Two new tryptamine-derived alkaloids from Chimonathus praecox L.concolor.TETRAHEDRON LETTERS.2006,47(19):3199-3202.
    [59]Takayama H,Matsuda Y,Masubuchi K.Isolation,structure elucidation,and total synthesis of two new Chimonanthus alkaloids,chimonamidine and chimonanthidine.TETRAHEDRON,2004,60(43:893-900.
    [60]张若蕙,刘洪谔.世界蜡梅[M].北京:中国科学技术出版社,1998.
    [61]宋品玉,方国明.蜡梅及其应用价值和栽培技术[J].浙江大学学报(农业与生命版),1999,25(6):657-660.
    [62]冯菊恩,陈映琦.苏州蜡梅的调查[M].河南:河南科技出版社,1993.
    [63]张灵南,沈雪华.蜡梅品种类型的花部性状编码鉴别法[J].上海农业科技,1998(1):7-8.
    [64]陈志秀,丁宝章.河南蜡梅属植物的研究[J].河南农业大学学报,1987,21(4):413-425.
    [65]张忠义,赵天榜.鄂陵素心蜡梅类品种的模糊聚类研究[J].河南农业大学学报,1990,2.
    [66]赵天榜,陈志秀.中国蜡梅[M].河南科技出版社,1993.
    [67]姚崇怀,王彩云.蜡梅品种分类的二个基本问题[J].北京林业大学学报,1995,17(增11:103-107.
    [68]陈志秀.蜡梅17个品种过氧化物同工酶的研究[J].植物研究,1995,15(3):403-411.
    [69]陈龙清,鲁涤非.蜡梅品种分类研究及武汉地区蜡梅品种调查[J].北京林业大学学报,1995,17(增1):103-107.
    [70]赵凯歌,虞江晋芳,陈龙清.蜡梅品种的数量分类和主要成分分析[J].北京林业大学学报,2004,26(增1):79-83.
    [71]刘雪兰,宫庆华.浅谈南京地区蜡梅分类和栽培利用[J].南京园林,2003.]
    [72]赵凯歌,虞江晋芳,陈龙清.蜡梅品种的数量分类和主要成分分析[J].北京林业大学学报,2004,26(增1):79-83.
    [73]杜灵娟.南京地区蜡梅品种RAPD标记和分类研究[硕士学位论文].南京林业大学,2006.
    [74]赵冰.蜡梅品种的数量分类研究[J].园艺学报,2007,34(4):947-954
    [75]宋品玉,方国明.蜡梅及其应用价值和栽培技术[J].浙江大学学报(农业与生命版),1999,25(6):657-660.
    [76]刘香芬.蜡梅的繁殖方法[J].河北林业科技,1999,2:33-33.
    [77]曹洪霞.蜡梅的栽培与观赏[J].安徽农学通报,2004,10(2):55-77.
    [78]张若蕙,刘洪谔,沈锡康,等.26种亚热带树种扦插繁殖试验[J].浙江林学院学报,1994,11(2):116-120.
    [79]王菲彬,芦建国.蜡梅切花观赏特性的综合评价[J].林业科技开发,2004.
    [80]刘家栋,翟兴礼,王启明.蜡梅扦插繁殖技术研究[J].河南大学学报(自然科学版),2001,31(3):87-88.
    [81]周俊国,扈惠灵,马远,等.蜡梅的继代培养研究初报[J].河南职技师院学报,2001,20(1):19-20.
    [82]曾静,眭顺照,余国武,等.蜡梅的离体培养与植株再生[J].西南大学学报(自然科学版),2007,29(4):120-123.
    [83]陈龙清.蜡梅开发市场广阔[J].中国花卉园艺,2003,1:10-11.
    [84]武爱盛,郭维明,孙智华.蜡梅切花内源激素动态及衰老有关因子的研究[J].北京林业大学学报,1999,21(3):48-53.
    [85]郭维明,贺文婷.超声波及其复合保鲜技术对素心蜡梅切枝短期贮运的影响[J].北京林业大学学报,2004,26(增1):84-87.
    [86]王菲彬,芦建国.蜡梅切花观赏特性的综合评价[J].林业科技开发,2004.
    [87]赵冰,张启翔,周福阳.蜡梅切花品种的选择和切花标准制定[J].西北林学院学报,2008,23(3):133-136.
    [89]刘红岩,袁毅君.天水植物资源调查及开发利用研究-食用与药用花卉[J].甘肃农业,2003(3):47-48.
    [90]卫生部药典委员会.中国药典一部[M].北京:人民卫生出版社,1977,50.附页:16.
    [91]叶水泉.花疗歌[J].中国卫生画报,1993,(2):25.
    [92]张瑞贤.用鲜花防病治病[M].太原:山西科学技术出版社,1992,170.
    [93]肖炳坤,刘耀明.蜡梅属植物分类、化学成分和药理作刚研究进展[J].现代中药研究与实践,2003,17(2):59-61.
    [94]徐文跃,翁伟俭.腊梅止咳露止咳祛痰作用的药理实验[J].江苏药学与临床研究,1999,7(2):10-11.
    [95]徐文跃,姜平月昔梅腊梅止咳露的研制及临床应用[J].苏州医学院学报,2000,20(2):122-123.
    [96]赵萍,陈燕萍.腊梅解毒汤治疗小儿毒热重证型水痘62例[J].江苏中医药,2003,24(3):27-28.
    [97]刘丽,蒋志宏,褚婕.中医腊梅花对正常小鼠免疫系统用的研究[J].天津药学,2000,12(2):29-29.
    [98]王晓,李福伟,耿岩玲.腊梅花提取物抗氧化作用的研究[J].食品科学,2005,26(9):518-520.
    [99]张继文,杨春平,潘朝,等.蜡梅种子抑菌成分研究[J].西北植物学报,2005,25(10):2068-2071.
    [100]Zhang JW,Gao JM,Xu T,et al.Antifungal activity of alkaloids from the seeds of Chimonanthus praecox.Chem Biodivers,2009,6(6):838-845.
    [101]周明芹,向林,陈龙清.蜡梅花香及花色色素成分的初步研究[J].北京林业大学学报,2007,29(增1):22-25.
    [102]眭顺照.蜡梅开花过程基因表达的ESTs分析与凝集素基因功能的初步鉴定[博士学位论文].西南大学,2006.
    [103]眭顺照,李名扬,蒋安,等.蜡梅花cDNA文库构建及其高频出现脂转移蛋白cDNA的表达[J].中国农业科学,2007,40(3):644-648.
    [104]秦华,眭顺照,李名扬,等.蜡梅Chimonanthus praecox(L.)Link COR413蛋白基因(Cpcor413 pm1)的分子特性与表达分析[J].中国生物化学与分子生物学报,2006,22(7):547-552.
    [105]Cohen GS,Crowfoot PD,Murphy,et al.Exchange of phospholipids between mitochondria and microsomes in vitro stimulated by yeast cell cytosol.Biochim.Biophys.Acta,1976,441:255-259.
    [106]Cohen LK,Lueking DR,Kaplan S.Intermembrane phospholipids transfer mediated by cell-free extracts of Rhodopseudomonas sphaeroides.J.Biol.Chem,1979,254:721-728.
    [107]Wirtz KWA,Zilmersmit DB.Exchange of phospholipid between liver mitochondria and microsomes in vitro.J.Biol.Chem,1968,243:3596-3602.
    [108]Kader JC.Proteins and extracellar exchange of lipid.Biochim.Biophys.Acta,1975,380:31-44.
    [109]Kader JC.Lipid transfer protein in plants,Ann.Rev.Plant Physiol.Plant Mol.Biol,1996,47:627-654.
    [110]Wirtz KWA.Phospholipid transfer protein revisited.Biochem.J.,1997,324:353-360.
    [111]Douady D,Grosbois M,Guerbette F.& Kader,J.Purification of a basic phospholipid transfer protein from maize seedlings.Biochim.Biophys.Acta,1982,710:143-53.
    [112]Liu YJ,Samuel D,Lin CH,et al.Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice(Oryza sativa).Biochem Biophys Res Commun,2002,294:535-40,
    [113]Douliez JP,Jegou S,Pato C,et al.Identification of a new form of lipid transfer protein(LTP1) in wheat seeds.J Agric Food Chem,2001,49:1805-1808.
    [114]Chen KC,Lin CY,Kuan CC,et al.A novel defensin encoded by a mungbean cDNA exhibits insecticidal activity against bruchid.Journal of Agricultural and Food Chemistry,2002,50,7258-7263.
    [115]Elena-Maria Yubero-Serrano,Enriqueta Moyano,Nieves Medina-Escobar.Identification of a strawberry gene encoding a nonspecific lipid transfer protein that responds to ABA,wounding and cold stress.J.Experimental botany,2003,389:1865-1877.
    [116]Cammue BPA,Thevissen K,Hendriks M,et al.A potent antimicrobial protein from onion seeds showing sequence homology to plant lipid transfer proteins.Plant Physiol,1995,10:9445-955.
    [117]Regente MC,de la Canal L.Purification,characterization and antifungal properties of a lipid-transfer protein from sunflower(Helianthus annuus) seeds.Physiol Plant,2000,110:158-163.
    [118]Maldonado AM,Doerner P,Dixon RA,et al.A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis.Nature,2002,419:399-403.
    [119]R.Asero,G.Mistrello,S.Amato,et al.Peach fuzz contains large amounts of lipid transfer protein:is this the cause of the high prevalence of sensitization to LTP in Mediterranean countries,Allerg.Immunol.(Paris),2006,38:118-121.
    [120]Samuel D,Liu YJ,Cheng CS,et al.Solution structure of plant nonspecific lipid transfer protein-2 from rice(Oryzasativa).J Biol Chem,2002,277:35267-35273.
    [121]G.W.Han,J.Y.Lee,H.K.Song,et al.Structural basis of nonspecific lipid binding in maize lipid-transfer protein complexes revealed by high-resolution X-ray crystallography.J.Mol.Biol,2001,308:263-278.
    [122]N.Pasquato,R.Berni,C.Folli,et al.Crystal structure of peach Prup3,the prototypic member of the family of plant non-specific lipid transfer protein pan-allergens.J.Mol.Biol,2006,356:684-694.
    [123]Sonja Gaier,Justin Marsh,Christina Oberhuber,et al.Shewry Purification and structural stability of the peach allergens Prup1 and Prup3.Mol.Nutr.Food Res,2008,52:220-229.
    [124]Wermer RB,Sharon T,Jose B,et al.Isolation of a eDNA clone for spinach lipid transfer protein and evidence that the protein is synthesized by the secretory path way.Plant Physiol,1991.95:164-170.
    [125]冯晓燕,于静娟,赵倩,等.谷子脂转移蛋白LTP的克隆受特性研究[J].农业生物技术学报,2003,11:11-15.
    [126]汪少芸,叶秀云,饶平凡.植物非特异脂转移蛋白的研究[J].生物学通报,2004,39(9):11-12.
    [128]Thoma SL,Kaneko Y,Somerville C.et al.An Arabidopsis lipid transfer protein is a cell wall protein.Plant J,1993,3:427-437
    [129]Van Loon LC,Van Strien EA.The families of pathogensis-related protein,their activeities,and comparative analysis of PR-1 type proteins[J].Physiol Mol Plant Pathol,1999,55:85-97.
    [130]Verdoy D,Lucas MM,Manrique E,et al.Differential organ-specific response to salt stress and water deficit in nodulated bean(Phaseolus vulgaris).Plant Cell and Environment,2004,27:757-767.
    [131]Liu YJ,Samuel D,Lin CH,et al.Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice(Oryza sativa).Biochem.Biophys.Res.Commun,2002,294:535-540.
    [132]Freddy Boutrot,Anne Guirao,Remi Alary,et al.Wheat non-specific lipid transfer protein genes display a complex pattern of expression in developing seeds.Biochimica et Biophysica Acta(BBA)-Gene Structure and Expression,2005,1730:114-125.
    [133]Freddy Boutrot,Nathalie Chantret,Marie-Francoise Gautier.Genome-wide analysis of the rice and arabidopsis non-specific lipid transfer protein(nsLtp) gene families and identification of wheat nsLtp genes by EST data mining.BMC Genomics,2008,9(86):1-19.
    [134]J.C.Kader.Lipid-transfer proteins:a puzzling family of plant proteins.Trends Plant Sci,1997,2:66-70.
    [135]Douliez JP,Pato C,Rabesona H,et al.Disulfide bond assignment,lipid transfer activity and secondary structure of a 7-kDa plant lipid transfer protein,LTP2.Eur J Biochem,2001,268:1400-1403.
    [136]Liu YJ,Samuel D,Lin CH,et al.Purification and characterization of a novel 7-kDa non-specific lipid transfer protein-2 from rice(Oryza sativa).Biochem Biophys ResCommun, 2002,294:535-540.
    [137]Samuel D,Liu YJ,Cheng CS,et al.Solution structure of plant nonspecific lipid transfer protein-2 from rice(Oryza sativa).J BiolChem,2002,277:267-273.
    [138]Lee JY,Min K,Cha H,et al.Rice non-specific lipid transfer protein:the 1.6A crystal structure in the unliganded state reveals a small hydrophobic cavity.J.Mol Biol,1998,276:437-448.
    [139]Shin DH,Lee JY,Hwang KY,et al.High-resolution crystal structure of the non-specific lipid transfer protein from maize seedlings.Structure,1995,3:189-199.
    [140]Carvalho AO,Gomes VM.Role of plant lipid transfer proteins in plant cell physiology-a concise review.Peptides,2007,28,1144-1153.
    [141]Buhot N,Douliez JP,Jacquemard A,et al.A lipid transfer protein binds to a receptor involved in the control of plant defence responses.FEBS Lett,2001,509:27-30.
    [142]Gincel E,Simorre JP,Caille A,et al.Three dimensional structure in solution of a wheat lipid transfer protein from multidimentional H-NMR data.Eur Biochem,1994,226:413-422.
    [143]Jerome G,Marie PP,strick S.Solution structure and lipid binding of a non-specific lipid transfer protein extracted from maize seeds.Protein Sci,1996,5:565-557.
    [144]Wang SY,Wu JH,Ng TB.et al.A non-specific lipid Transfer protein with antifungal and antibacterial activities from the mung bean.Peptides,2004,25:1235-1242.
    [145]Cammue B,Thevissen K,Hendriks M.A potent anti icrobial protein frome onion showing sequnence homology to plant lipid transfer proteins.Plant Physiol,1995,10:9445-9455.
    [146]Cheng HC,Cheng PT,Peng P,et al..Lipid binding in rice nonspecific lipid transfer protein- 1 complexes from Oryza sativa.Protein Sci,2004,13,2304-2315.
    [147]Uzma Zaman,Atiya Abbasi.Isolation,purification and characterization of a nonspecific lipid transfer protein from Cuminum cyminum.Phytochemistry,2009,70:979-987.
    [148]Douliez JP,Michon T,Elmorjani K,et al.Structure,biological and technological functions of lipid transfer proteins and indolines,the major lipidbinding proteins from cereal kernels.J.Cereal Sci,2000,32:1-20.
    [149]Jin-Yue Sun,Denis A.Gaudet,Zhen-Xiang Lu,et al.Characterization and Antifungal Propertiesof Wheat Nonspecific Lipid Transfer Proteins.MPMO,2008,21(3):346-360.
    [150]Sodamo P,Caille A,Sy D,et al.1H NMR and fluorescence studies of the complexation of DMPG by wheat non-specific lipid transfer protein.Global fold of the complex.FEBS Lett,1997,416:130-134.
    [151]Zachowski A,Guerbette F,Grosbois M,et al.Characterization of acyl binding by a plant lipid-transfer protein.Eur J Biochem,1998,257:443-448.
    [152]Charvolin D,Douliez JP,Marion D,et al.The crystal structure of a wheat nonspecific lipid transfer protein(ns-LTP1) complexed with two molecules of phospholipid at 2.1 resolution.Eur.J.Biochem,1999,264:562-568.
    [153]Lerche MH,Poulsen FM.Solution structure of barley lipid transfer protein complexed with palmitate.Two different binding modes of palmitate in the homologous maize and barley nonspecific lipid transfer proteins.Protein Sci,1998,7:2490-2498.
    [154]Michon T,Compoint G,Douliez JP,et al.Lipid transfer protein(LTP) from wheat kernel possesses a weak,esterase like activity towards short chain fatty acid esters.In:Gueguen,J,Popineau,Y.(Eds.),Plant Proteins from European Crops.Springer,Berlin,pp,1998,36-40.
    [155]Molina A,Segura A,Garcia-Olmedo F.Lipid transfer proteins(nsLTPs) from barley and maize leaves are potent inhibitors of bacterial and fungal plant pathogens.FEBS,1993,316:119-122.
    [156]Maldona AM,Doerner P.Dixon RA,et al.A putative lipid transfer protein involved in systemic resistance signaling in Arabidopsis.Nature,2002,419:399-403.
    [157]Cheng CS,Samuel D,Liu YJ,et al.Binding mechanism of nonspecific lipid transfer proteins and their role in plant defense.Biochemistry,2004,43:13628-13636.
    [158]Gomes E,Sagot E,Gaillard C,et al.Nonspecific lipid-transfer protein genes expression in grape(Vitis sp.) cells in response to fungal elicitor treatments.Mol Plant Microbe Interact,2003,16:456-464.
    [159]G.Salcedo,R.Sanchez-Monge,D.Barber,et al.Plant non-specific lipid transfer proteins:An interface between plant defence and human allergy.Biochimica et Biophysica Acta,2007,1771:781-791.
    [160]F.Garcia-Olmedo,A.Molina,A.Segura,et al.The defensive role of nonspecific lipid-transfer proteins in plants.Trends Microbiol,1995,3:72-74.
    [161]F.Garcia-Olmedo,A.Molina,J.M.Alamillo,et al.Plant defense peptides.Biopolymers,1998, 47:479-491.
    [162]F.R.Terras,I.J.Goderis,F.Van Leuven,et al.In vitro antifungal activity of a radish (Raphanus sativus L.) seed protein homologous to nonspeeific lipid transfer proteins.Plant Physiol,1992,100:1055-1058.
    [163]X.Ge,J.Chen,N.Li,et al.Resistance function of rice lipid transfer protein LTP110.J.Biochem.Mol.Biol,2003,36:603-607.
    [164]J.M.Caaveiro,A.Molina,J.M.Gonzalez-Manas,et al.Differential effects of five types of antipathogenic plant peptides on model membranes.FEBS Lett,1997,410:338-342.
    [165]M.C.Regente,A.M.Giudici,J.Villalain,et al.The cytotoxie properties of a plant lipid transfer protein involve membrane permeabilization of target cells.Lett.Appl.Microbiol,2005,40:183-189.
    [166]A.Molina,F.Garcia-Olmedo.Enhanced tolerance to bacterial pathogens caused by the transgenic expression of barley lipid transfer protein LTP2.Plant J,1997,12:669-675.
    [167]R.A.Salzman,I.Tikhonova,B.P.Bordelon,et al.Coordinate accumulation of antifungal proteins and hexoses constitutes a developmentally controlled defense response during fruit ripening in grape.Plant Physiol,1998,117:465-472.
    [168]H.W.Jung,W.Kim,B.K.Hwang,Three pathogen-inducible genes encoding lipid transfer protein from pepper are differentially activated by pathogens,abiotic,and environmental stresses.Plant Cell Environ,2003,26:915-928.
    [169]A.K.Sohal,J.A.Pallas,G.I.Jenkins,The promoter ofa Brassica napus lipid transfer protein gene is active in a range of tissues and stimulated by light and viral infection in transgenic Arabidopsis.Plant Mol.Biol,1999,41:75-87.
    [170]C.J.Park,R.Shin,J.M.Park,et al.Induction of pepper cDNA encoding a lipid transfer protein during the resistance response to tobacco mosaic virus.Plant Mol.Biol,2002,48:243-254.
    [171]E.Gomes,E.Sagot,C.Gaillard,et al.Nonspecific lipid-transfer protein genes expression in grape(Vitis sp.) cells in response to fungal elicitor treatments.Mol.Plant-Microb.Interact,2003,16,456-464.
    [172]A.M.Maldonado,P.Doerner,R.A.Dixon,et al.A putative lipid transfer protein involved in systemic resistance signalling in Arabidopsis.Nature,2002,419:399-403.
    [173]H.Suzuki,Y.Xia,R.Cameron,et al.Signals for local and systemic responses of plants to pathogen attack.J.Exp.Bot,2004,55:169-179.
    [174]Xie WQ(谢万钦),Wang Z(王喆),Li ZP(李振鹏),et al.The study of calmodulin binding domain in CaMBP-10.Ordinary General Assembly and Congress of the Chinese Society of Biochemistry and Molecular Biology(in Chinese).2005.
    [175]Qi Q(祁倩),Rao EY(饶恩于),Wang Z(王喆),et al.Cloning and expression of a cDNA encoding CaMBP-10 and CaM binding activity analysis.Chin J Biochem Mol Biol(中国生物化学与分子生物学报),2004,20:451-456.(in Chinese)
    [176]GANG GAO,L I PING JIN,KAI YUN XIE,et al.The potato StLTPa7 gene displays a complex Ca2+-associated pattern of expression during the early stage of potato-Ralstonia solanacearum interaction.Molecular Plant Pathology,2009,10(1):15-27.
    [177]Buhot N,Douliez JP,Jacquemard A.A lipid transfer protein binds to a receptor involved in the control of plant defence responses.FEBS Lett,2001,509:27-30.
    [178]Blein JP,Coutos Thevenot P,Marion D.From elicitins to lipid-transfer protein:A new insight in cell signaling involved in plant defence mechianisms.Trends Plant Sci,2002,7(7):293-296.
    [179]Regente MC,Giudici AM,Viilalain J.The cytotoxic properties of a plant lipid transfer protein involve membrane permeabilization of target cells.Lett in Appl Microbiol,2005,40:183-189.
    [180]Jin-Yue Sun,Denis A.Gaudet,Zhen-Xiang Lu,et al.Characterization and Antifungal Propertiesof Wheat Nonspecific Lipid Transfer Proteins.MPMO,2008,21(3):346-360.
    [181]Xiaofeng Wang,Hai Wang,Yuanli Li AE,et al.A rice lipid transfer protein binds to plasma membrane proteinaceous sites.Mol Biol Rep,2009,36:745-750.
    [182]PastoreUo EA,Farioli L,Pravettoni V,et al.The major allergen of peach(Prunuspersiea)is a lipid transfer protein.J Allergy Clin Immunol,1999,103:520-526.
    [183]Diaz-Perales A,Garcia-Casado G,Sanchez-Monge R,et al.cDNA cloning and heterologous expression of the major allergens from peach and apple belonging to the lipid-transfer protein family.ClinExpAll,2002,32:87-92.
    [184]Pastorello EA,Farioli L,Pravettoni V,et al.Characterization of the major allerge of plum as a lipid transfer protein.J Chromatogr B,200l,756:95-103.
    [185] Pastorello EA,Farioli L,Pravettoni V,et al.Identification of grape and wine allergens as an endochitinase 4,a lipid-transfer protein, and a thaumatin LTP cross-reacting with the peach major allergen.J Allergy ClinImmunol,2003,111:350~359.
    [186] Diaz-Perales A, Tabar AI, Sánchez-Monge R,et al. Characterization of asparagus allergens: a relevant role of lipid transfer proteins.J Allergy ClinImmunol, 2002; 110:790-796.
    [187] Palacín A,Cumplido J,Figueroa J,et al.Cabbage lipid transfer protein Brao3 is a major allergen responsible for cross-reactivity between plant foods and pollens food and pollen allergies..J Allergy Clin Immunol,2006,117,1423-1429.
    [188] Pastorello EA,Farioli L,Pravettoni V,et al.The maize major allergen, which is responsible for food-induced allergic reactions, is a lipid transfer protein..J Allergy Clin Immunol,2000, 106:744-751.
    [189] Van Ree R.Clinical importance of non-specific lipid transfer proteins as food allergens. Biochem Soc Trans,2002, 30:910-913.
    [190] I. Lauer_, N. Dueringer_, S. Pokoj_,et al. The non-specific lipid transfer protein, Ara h 9, is an important allergen in peanut.Clinical et Experimental Allergy,2009,39:1427~1437.
    [191] R. Asero, G. Mistrello, D. Roncarolo, et al. Lipid transfer protein: a panallergenin plant-derived foods that is highly resistant to pepsin digestion. Int. Arch. Allergy Immunol, 2000,122:20-32.
    [192] O.A. Duffort, F. Polo, M. Lombardero,et al. Immunoassay toquantify the major peach allergen Pru p 3 in foodstuffs. Differential allergen release and stability under physiological conditions.J. Agric.Food Chem, 2002,50:7738-7741.
    [193] K. Lindorff-Larsen, J.R. Winther. Surprisingly high stability of barley lipid transfer protein, LTP1, towards denaturant, heat and proteases.FEBS Lett, 2001,488: 145-148.
    [194] S. Scheurer, I. Lauer, K. Foetisch, et al. Strong allergenicity of Pru av 3, the lipid transfer protein from cherry, is related to high stability against thermal processing and digestion.J. Allergy Clin.Immunol, 2004,114:900-907.
    [195] E. Vassilopoulou, N. Rigby, F.J. Moreno, et al. Effect of in vitro gastric and duodenal digestion on the allergenicity of grape lipid transfer protein../. Allergy Clin. Immunol, 2006,118:473-480.
    [196] Asero R,Mistrello G,Roncarolo D, et al.Lipid transfer protein: a pan-allergen in plant-derived foods that is highly resistant to pepsin digestion.Int Arch Allergy Immunol,2000,122:20-32.
    [197] Lindorff-Larsen K,Winther JR.Surprisingly high stability of barley lipid transfer protein,LTPl,towards denaturant, heat and proteases.FEBS Lett,2001,488:145-148.
    [198] O. Brenna, C. Pompei, C. Ortolani, et al. Technological processes to decrease the allergenicity of peach juice and nectar. J. Agric. Food Chem,2000,48: 493-497.
    [199] R. Asero, G. Mistrello, D. Roncarolo, et al, Analysis of the heat stability of lipid transfer protein from apple. J. Allergy Clin. Immunol, 2003,112:1009-1011.
    [200] A.I. Sancho, N.M. Rigby, L. Zuidmeer, et al. The effect of thermal processing on the IgE reactivity of the nonspecific lipid transfer protein from apple Mal d 3.Allergy ,2005,60: 1262-1268.
    [201] G. Garcia-Casado, J.F. Crespo, J. Rodriguez, et al. Isolation and characterization of barley lipid transfer protein and protein Z as beer allergens.J Allergy Clin. Immunol, 2001,108: 647-649.
    [202] S.G. Schad, J. Trcka, S. Vieths,et al. Wine anaphylaxis in a German patient: IgE-mediated allergy against a lipid transfer protein of grapes. Int. Arch. Allergy Immunol, 2005,136: 159-164.
    [203] Breiteneder H, Mills ENC.Molecular properties of food allergens.J Allergy Clin Immunol, 2005,115:14-23.
    [204] Van Do T, Elsayed S, Florvaag E, et al. Allergy to fish parvalbumins: studies on the cross-reactivity of allergens from 9 commonly consumed fish by some of the tested patients.J Allergy Clin Immunol, 2005, 116:1314-1320.
    [205] Vassilopoulou E,Rigby N,Moreno FJ, et al.Effect of in vitro gastric and duodenal digestion on the allergenicity of grape lipid transfer protein.J Allergy Clin Immunol,2006,118:473-480.
    [206] Lehrer SB, Bannon GA.Risks of allergic reactions to biotech proteins in foods:perception and reality.Allergy,2005,60:559-564.
    [207] Matthew A.,et al.Cuticular Waxes of Arabidopsis,The Arabidopsis Book,2002.
    [208]Preuss D.,et al.Aconditional sterile mutation eliminates surface components fron Arabidopsis pollen and disrupts cell signaling during fertilization.Genes Dev,1993,7:974-985.
    [209]Vincent Arondel,Chantal Vergnolle,Catherine Cantrel,Jean-Claude Kader.Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana.Plant Science,2000,157:1-12.
    [210]Pyee J,Yu H,Kolattukudy P E,et al.Identifieation of a lipid transfer protein as the major protein in the surface wax of broccoli(Brassie aoleracea) leaves.Areh.Bioehem.Biophys,1994,311:460-468.
    [211]Thoma S.,et al.Tissue-specific expression ofa gene encoding a cell wall localized lipid transfer protein from Arabildopsis.Plant Physiology,1994,105:35-45.
    [212]Kunst L,Samuels AL.Bioynthesis and secretion of plant cuticular wax.Progress in Lipid Researeh,2003,42:51-80.
    [213]Hughes MA.,et al.An abscisic-acid responsive,low-temperature inducible barley gene has Homology with a maize phospholipid transfer protein.Plant Cell Environ,1992,15:861-865.]
    [214]Cheol Seong Jang,Ho Joung Lee Suck,Joo ChangYong,et al.Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat(Triticum aestivum L.).Plant Science,2004,167:995-1001.
    [215]Ho Won Jung,Chae Woo Lim,Byung Kook Hwang.Isolation and functional analysis of a pepper lipid transfer protein Ⅲ(CALTPⅢ) gene promoter during signaling to pathogen,abiotic and environmental stresses.Plant Science,2006,170:258-266.
    [216]A.O.Carvalho,G.A.Souza-Filho.et al.Cloning and characterization of a cowpea seed lipid transfer protein cDNA:expression analysis during seed development and under fungal and cold stresses in seedlings' tissues.Plant Physiology and Biochemistry,2006,44:732-742.
    [217]Cheol Seong Jang,Won Cheol Yim,Jun-Cheol Moon,et al.Evolution of non-speciWc lipid transfer protein(nsLTP) genes in the Poaceae family:their duplication and diversity.Mol Genet Genomics.2008.279:481-497.
    [218]聂丽娜,夏兰琴,徐兆师,等.植物基因启动子的克隆及其功能研究进展[J].植物遗传资源学报,2008,9(3):385-391.
    [219]路静,赵华燕,何奕昆,等.高等植物启动子及其应用研究进展[J].自然科学进展,2004,14(8):856-862.
    [220]朱玉贤,李毅.现代分子生物学[M].北京:高等教育出版社,1997.
    [221]Uno Y,Furihata T,Yoshida HAR,et al.A rabidopsis basic leucine zipper transcrip tion factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions.PNAS,2000,97:11632-11637.
    [222]Liu S,Kriz A,Duncan D,et al.Abscisic acid-regulated Glbltransient expression in cultured maize P3377 cells.Plant Cell Rep,1998,17:650-655.
    [223]Chung HJ,Fu HY,Thomas TL.Abscisic acid-induciblenuclear proteins bind to bipartite promoter elements required for ABA response and embryo-regulated expression of the carrot Dc3 gene.Plant,2005,220:424-433.
    [224]Jung HW,Kim KD,HwangB K.Identification of pathogen-responsive regions in the p romoter of a pepper lip id transfer protein gene(CALTP1) and the enhanced resistance of the CALTPI transgenic A rabidopsis against pathogen and environmental stresses.Plant,2005,221:361-373.
    [225]Hong JK,Lee SC,HwangBK.Activation of pepper basic PR21 gene promoter during defense signaling to pathogen.Abiotic and environmental stresses.Gene,2005,356:169-180.
    [226]Endt DV,SilvaM S,Kijne JW,et al.Identification of a bipartite jasmonate-responsive promoter element in the Catharanthusroseus ORCA3 transcription factor gene that interacts specifically with AT2Hook DNA2binding proteins.Plant Physiol,2007,144:1680-1689.
    [227]Yamaguchi-Shinozaki K,Shinozaki K.Organization of cis-acting regulatory elements in osmoticand cold-stress responsive promoters.Trends in Plant Science,2005,10(2):88-94.
    [228]Yamaguchi-Shinozaki K,Shinozaki K.A novel cis-acting element in an Arabidopsis gene is involved in responsiveness to drought,low-temperature,or high-salt stress.The Plant Cell,1994,6(2):251-264.
    [229]Bastola DR,Pethe VV,Winicov I.Alfinl,a novel zincfinger protein in alfalfa roots that binds to promoter elements in the salt-inducible M sPRP2 gene.Plant Mol Biol,1998,38:1123-1135.
    [230]Joshi CP.An inspection of the domain between putative TATA box and translation start site in 79 plant genes.Nucleic Acids Reseach,1987,15(16):6643-6665.
    [231]张春晓,王文棋,蒋湘宁,等.植物基因启动子研究进展[J].遗传学报,2004,31(12):1455-1464.
    [232]李一醌,王金发.高等植物启动子研究进展[J].植物学通报,1998,15(增刊):1-6.
    [233]Huang WW,Bateman E.TATA elements direct bi-directional transcription by RNA polymerases Ⅱ and Ⅲ.Nucleic acids Res,1996,24(6):1158-1163.
    [234]Zhu Q,Lamb C.TATA box and initiator functions in the accurate transcription of a plant minimal promoter in vitro.Plant Cell,1995,7(10):1681-1689.
    [235]Shirsat A,Wilford N,Croy R,et al.Sequences responsible for the tissue specific promoter activity of a pea legumin gene in tobacco.Mol Gen Genet.1989,Jan,215(2):26-31.
    [236]Atsushi Kita,Hironori Yamasaki,Hironaga Kuwahara,et al.Identification of the promoter region required for human adiponectin gene transcription:Association with CCAAT/enhancer binding protein-β and tumor necrosis factor-α.Biochemical and Biophysical Research Communications,Volume 331,Issue 2,3 June 2005,Pages 484-490.
    [237]Wu CY,Haruhiko W,Yasuyukio.Quantitative nature of the prolamin-box,ACGT and AACA motifs in a rice glutelin gene promoter:minimal cis-element requirements for endosperm-specific gene expression.Plant J,2000,23:415-421.
    [238]刘良式.植物分子遗传学[M].北京:科学出版社,1998.
    [239]王关林,方宏筠.植物基因工程原理与技术[M].北京:科学出版社,2002.
    [240]Holtorf S,Apel K,Bohlmann H.Comparison of different constitutive and inducible promoters for the transgenes in Arabidopsis thaliana.PlantMol Biol,1995,29:637-646.
    [241]Benfey PN,Ren L,Chua NH.Combinatorial and synergistic properties of CaMV 35S enhancer subdomains.EMBO J,1990,9(6):1685-1696.
    [242]Benfey PN,Ren L,Chua NH.Tissue2specific exp ression from CaMV 35S enhancer subdomains in early stages of plant development.EMBO J,1990,9(6):1677-1684.
    [243]Schledzewski K,Mendel RR.Quantitative transient gene expression:Comparison of the promoters for maize polyubiquitinl,rice actin 1,maize2derived Em u and CaMV 35S in cells of barley,maize and tobacco.Transgenic Res,1994,3:249-255.
    [244]Keller B,Lamb CJ.Specific expression of a novel cell wall hydroxyproline-rich glycoprotein gene in lateral root initiation.Genes Dev,1989,3:1639-1646.
    [245]Keller B,Baumgartner C.Vascular-specific expression of the bean GRP1.8gene is negatively regulated.Plant Cell,1991,3:1051-1061.
    [246]Nitz I,Berkefeld H,Puzio P S,et al.Pyk10,a seedling and root specific gene and promoter from Arabidopsis thaliana.Plant Science,2001,161:337-346.
    [247]Kyozuka J,McElroy D,Hayakawa T,et al.Light-regulated and cell-specific expression of tomato rbcS-gusA and rice rbcS-gusA fusion genes in transgenic rice.Plant Physiol,1993,102:991-1000.
    [248]Iris M,Kristie L,Callan,et al.Organ-specific differential regulation of a promoter subfamily for the ribuiose-1,5-bisphosphate carboxylase/oxygenase small subunit genes in tomato.Plant physiol,1995,107:1105-1118.
    [249]刘巧泉,于恒秀,张文娟,等.番茄rbcS3A启动子控制的GUS融合基因在转基因水稻中的表达[J].植物生理与分子生物学报,2007,33(3):251-257.
    [250]Mariani C,De Bucklers M,Truettner J.Induction of male sterility in plants by a chimeric ribonuclease gene.Nature,1990,347:737-741.
    [251]Annadana S,Beekwilder MJ,Kuipers G.Cloning of the chrysanthemum UEP1 promoter and comparative expression in florets and leaves of Dendranthema frandiflora.Transgenic Res,2002,11:437-445.
    [252]Bate N,Twell D.Functional architecture of a late pollen p romoter:Pollen2specific transcrip tion is developmentally regulated by multip le stage2specific and co2dependent activator elements.PlantMol Biol,1998,37(5):859-869.
    [253]刘昱辉,贾士荣.维管束特异表达启动子及其顺式调控元件.生物工程学报,2003,19:131-135.
    [254]Guo H,Chen X,Zhang H,et al.Characterization and activity enhancement of the phloem-specific pumpkin PP2 gene promoter.Transgenic Rasearch,2004,13:559-566.
    [255]Bhattacharyya-Pakrasi M,Peng J,Elmer J S,et al.Specificity of a promoter from the rice tungro bacilliform virus for exp ression in phloem tissues.Plant J,1993,4:71-79.
    [256]尹涛,张上隆,刘敬梅,等.果实特异型启动子研究现状及应用.农业生物技术学报,2009,17(2):355-360.
    [257]Sheehy RE,Kramer M,Hiatt WR.Reduction of polygalacturonase activity in tomato fruit by antisense RNA.Proceedings of the National Academy of Sciences of the USA.1988.85:8805-8809.
    [258]毛自朝,于秋菊,甄伟,等.果实专一性启动子驱动ipt基因在番茄中的表达及其对番茄果实发育的影响[J].科学通报,2002,47:444-448.
    [259]Yamagata H,Yonesu K,Hirata A,et al.TGTCACA motif is a novel cis2regulatory enhancer element involved in fruit-specific expression of the cucumisin gene.Biol Chem,2002,277:11582-11590.
    [260]郝彦玲,朱本忠,栾春光,等.向日葵种子特异性启动子Hads10G1的克隆及其功能验证[J].农业生物技术学报,2006,14(6):922-925.
    [261]Yamaguchi-Shinozaki K,Shinozaki K.Characterization of the expression of a desiccation-responsive rd29 gene of A rabidopsis thaliana and analysis of its promoter in transgenic plants.MO I Gen Genet,1993,236:331-340.
    [262]Park HC,Kim ML,Kang YH,et al.Pathogen and NaCl-induced expression of the SCaM24promoter ismediated in part by a GT21 box that interactswith a GT212like transcription factor.Plant Physiol.2004.135:2150-2161.
    [263]张毅,尹辉,李丹,等.植物启动子的化学因素诱导元件[J].植物生理与分子生物学,2007,43(4):787-794.
    [264]Li HY,Li Y,WeiW,et al.SA induction of a grapevine classⅢ chitinase gene VCH3promoter in transgenic tobacco vascular tissue.Journal of Integrative Plant Biology,2004,46(2):148-153.
    [265]Wang XH,Replogle A,Davis EL,et al.The tobacco Cel7 gene promoter is auxin-responsive and locally induced in nematode feeding site of heterologous plant.Molecular Plant Pathology,2007,8(4):423-436.
    [266]Zheng HQ,Lin SZ,Zhang Q,et al.Isalation and analysis of aTIR2specific p romoter from poplar.For Stud China,2007,9(2):95-106.
    [267]彭建令,董宏平,包志龙,等.受细菌诱导的植物启动子的克隆及其在转基因烟草中的活性[J].南京农业大学学报,2003,26(3):36-40.
    [268]Schmid CD,PrazV,DelorenziM,et al.The eukaryotic promoter database EPD:The impact of in silico primer extension.Nucleic Acids Res,2004,32:82-85.
    [269]Fordor I,Krasnikova OV,Berets E.Cloning,structure and features of a Saccharom yces cerevisiae DNA fragment causing the expression of reporter genes.MolBiol(Mosk),1990,24(5):1411-1418.
    [270]Moore D,Wu JP,Hamilton CM,et al.Analysis of transfer genes and gene products within the traB-trac region of the Escherichia coli feritility factor F.J Bacteriol,1987,169:3994-4002.
    [271]Vida TA,Crabam TR,Emr SD.In vitro reconstitution of intercompartmental protein transport to the yeast vacuole.J Cell Biol,1990,111:2871-2874.
    [272]Friedrich G,Soriano P.Promoter traps in embryonic stem cells:a genetic screen to identify and mutate development genes in rice.Genes Dev,1991,5:1513-1523.
    [273]Lindsey K,Wei W,Clarke MC,et al.Tagging genomic sequences that direct transgenic expression by activation of a promoter trap in plants.Transgenic Res,1993,2:33-47.
    [274]Rinehart JA,Petersen MW,John ME.Tissue-specific and developmental regulation of cotton gene FbL2A.Plant Physiol,1996,112:1331-1334.
    [275]韩志勇,王新其,沈革志.反向PCR克隆转基因水稻的外源基因旁侧序列[J].上海农业学报,2001,17(2):27-32.
    [276]Kim M j,Kim H,Shin J S,et al.Seed-specific expression of sesame microsemal oleie acid desaturase is controlled by combinatorial properties between negative cis-regulatory elements in the SeFAD2 promoter and enhancers in the 5'-UTR intron.Mecular Genetics and Gcnomics,2006.276:351-368.
    [277]李鹏丽,马媛媛,李小平,等.大豆类受体蛋白激酶基因rlpk2启动子克隆及初步分析[J].植物生理与分子生物学报,2006,32(3):315-319.
    [278]闫明旭.矮牵牛PMADS9基因启动子的克隆及功能分析[硕士毕业论文].西南大学,2009.
    [279]Liu YG.,and Whittier RF.Thermal asymmetric interlaced PCR:Automatable amplification andsequencing of insert end fragments from P1 and YAC clones for chromosome walking.Genomics,1995,25:674-681.
    [280]Yao-Guang Liu and Yuanling Chen.High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences.BioTechniques,2007,43(5):pp 649-656.http://www.biotechniques.com
    [281]Gento Tsuji,Satoshi Fuji,Naoki Fujihara,et al.Agrobacterium tumefaciens-medicated transformation for randon insertional mutagenesis in Collectotrichum lagenarium.Gen Plant Pathol,2003,69:230-239.
    [282]Zhang Q,Liu HZ,Cao JS.Identification and preliminary analysis of a new PCP promoter from B rassicarapassp.Chinensis.Mol Biol Rep,2007,10:1107-1114.
    [283]Terauchi R,Kahl G.Rapid isolation of promoter sequences by TAIL-PCR:The 5'-fanking regions of Pal and Pgi genes from yams(D ioscorea).Mol Gen Genet,2000,263:554-560.
    [284]陈军营,孙佩,于德勤,等.一种改良的克隆小麦GLP3基因启动子的TAIL-PCR技术[J].植物生理学通讯,2007,43(4):754-758.
    [285]仇艳光,田景汉,葛荣朝,等.TAIL-PCR的改良及其在分离小麦基因启动子中的应用.生物工程学报2008,24(4):695-699.
    [286]Schmid CD,PrazV,DelorenziM,et al.The eukaryotic promoter database EPD:The impact of in silico p rimer extension.Nucleic Acids Res,2004,2:82-85.
    [287]Heinemeyer T,Wingender E,Reuter I,et al.Databases on transcrip tional regulation:TRANSFAC,TRRD and COMPEL.Nucleic Acids Res,1998,26:362-367.
    [288]Higo K,Ugawa Y,IwamotoM,et al.Plant cis2acting regulatory DNA elements(PLACE)database:1999.Nucleic Acids Res.1999,27:297-300.
    [289]谢纯政,李万福,刘海燕,等.花生病程诱导蛋白基因AhPIP1和启动子的克隆、序列分析及原核表达[J].分子植物育种,2009,7(1):177-183.
    [290]刘振林,曹华雯,夏新莉,等.甘菊BADH基因启动子的克隆与瞬时表达分析[J].园艺学报,2008,35(12):1787-1794.
    [291]宗成文,章镇,房经贵,等.葡萄LEAFY基因启动子的克隆与序列分析[J].南京农业大学学报,2007,30(4):20-25.
    [292]石磊,董彩华,白泽涛,等.白菜型油菜PABP5基因启动子的克隆及表达特性分析[J].分子植物育种,2009,7(2):341-346.
    [293]孙啸,董建辉,陈明,等.大豆抗逆基因GmDREB3启动子的克隆及调控区段分析[J].作物学报,2008,34(8):1475-1479.
    [294]杨英军,周鹏,李艳梅,等.番木瓜凝乳蛋白酶基因启动子的克隆及功能研究[J].园艺学报,2008,35(7):973-978.
    [295]张俊莲,王蒂,张金文,等.用绿色荧光蛋白和洋葱表皮细胞检测拟南芥rd29A基因启动子活性的方法[J].植物生理学通讯,2005,41(6):815-819.
    [296]Delaney SK,Orford SJ,Martin-HarrisM,et al.The fiber specificity of the cotton FS ltp4 gene p romoter is regulated by an AT-Rich promoter region and the AT-Hook transcription factor GhAT1.Plant Cell Physiol,2007,48(10):1426-1437.
    [297]Yin Y,Beachy RN.The regulatory regions of the rice tungro bacilliform virus promoter and interacting nuclear factors in riee(Oryza sativa L.).Plant J,1995,7(6):969-980.
    [298]KasugaM,Miura S,Shinozaki K,et al.A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought and low-temperature stress tolerance in tobacco by gene transfer.Plant Cell Physiol,2004,4 5(3):346-350.
    [299]Pellegrineschi A,Reynolds M,Pacheco M,et al.Stress-induced expression in wheat of the Arabidopsis thaliana DREB 1A gene delays water stress symp toms under greenhouse conditions.Genome,2004,47:493-500.
    [300]Arondel Vincent,Chantal Vincent Vergnolle,Catherine Cantrel,et al.Lipid transfer proteins are encoded by a small multigene family in Arabidopsis thaliana.Plant Science,2000,157:1-12.
    [301]Jang CS,Kim DS,Bu S Y.Isolation and characterization of lipid transfer protein(LTP) genes from a wheat-rye translocation line.Plant Cell Reports,2002,170:961-966.
    [302]Jang Cheol Seong,Lee Ho Joung,ChangSuck Joo,et al.Expression and promoter analysis of the TaLTP1 gene induced by drought and salt stress in wheat(Triticum aestivum L.).Plant Science,2004,167:995-1001.
    [303]Feng X Y(冯晓燕),Yu J J(于静娟),Zhao Q(赵倩) et al.Cloning and characterization of a Stetaria italica lipid transfer protein cDNA.Journal of Agricultural Biotechnology(农业生物技术学报),2003,11:11-15(in Chinese with English abstract).
    [304]Tian A M(田爱梅),Cao J S(曹家树).Lipid transfer proteins in plants.Chinese Journal of Cell Biology(细胞生物学报).2008,30:483-488.(in Chinese with English abstract).
    [305]Wang X W(王晓雯),Yang X Y(杨星勇),Li D M(李德谋),et al..Analysis of disease resistance of nsLTPs-like antimicrobial protein gene transgenic tobacco against brown leaf spot and granville blast.Journal of Agricultural Biotechnoiogy(农业生物技术学报),2006,14(3):365-370(in Chinese with English abstract).
    [306]Marcela B Trevin~o,Mary A O'Connell.Three Drought-Responsive Members of the Nonspecific Lipid-Transfer Protein Gene Family in Lycopersicon pennellii Show Different Developmental Patterns of Expression.Plant Physiology,1998,116(1998):1461-1468.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700