具有复杂拓扑结构的两新性环状聚合物合成研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的结构与性能间的关系一直以来在都在吸引着研究者的兴趣。环形聚合物是一类无端基的特殊拓扑结构聚合物,与相应的线形前驱体相比,具有诸多明显不同的物理化学性能,包括流体力学半径、玻璃化转变温度、本征粘度、临界温度、折光系数、微相分离、溶液中的自组装行为及热稳定性。环形拓扑结构也是自然界中广泛存在的结构之一,生物化学和分子生物学的研究发现在生物体内也存在着一些环形的生物大分子,如环形的DNA、环形多肽以及环形的低聚糖和多糖等。因此,环形聚合物的研究不仅具有重要的理论意义,同时也有助于探索生命的奥秘。但是,相对于对其它拓扑结构的聚合物的研究取得的重大进展,人们对环形聚合物的的研究还很少,主要是由于在环形聚合物的合成方面还存在很大的困难。
     本论文利用多种“活性”/可控聚合技术(如阴离子聚合、开环聚合、原子转移自由基聚合(ATRP))以及高效的成环方法(如‘'Click"化学和“Glaser"偶合),设计并合成了一系列拓扑结构新颖的两亲性环形聚合物。本论文完成的主要工作如下:
     1、通过阴离子开环聚合、配位开环聚合和"Glaser"偶合相结合,合成了“蝌蚪”形聚合物(l-PCL)-b-(c-PEO)-b-(l-PCL),即在环形PEO的对称部位有两根PCL聚合物链。首先,通过环氧乙烷(EO)单体的两次开环聚合和一系列的端基转化,合成了两端含有炔端基和链中间带有两个羟基的线形PEO。然后,在准高稀的条件下,通过分子内的"Glaser"偶合成环,得到在对称位置带有两个羟基的环形PEO(c-PEO)。最后,用c-PEO上的羟基直接引发己内酯(ε-Cl)单体聚合得到目标聚合物(l-PCL)-b-(c-PEO)-b-(l-PCL).对(l-PCL)-b-(c-PEO)-b-(l-PCL)聚合物在水溶液中的自组装行为与其分子量接近的“π”形结构聚合物(PEO/PCL)-b-PEO-b-(PCL/PEO)进行了对比,前者形成了相互缠绕的纤维状组装体,而后者形成了球形的结构,初步的结果表明环形结构影响了聚合物自组装形成的胶束的形态。
     2、通过开环聚合和"Glaser'‘偶合相结合,合成了“蝌蚪”形聚合物c-PEO-(PCL)2,即在环形PEO的同一个位点带两根PCL“尾巴”。首先,链端带有两个炔基、链中间带两个羟基的l-PEO通过季戊四醇半缩醛引发EO聚合及-系列官能团的转化得到。其次,l-PEO分子内的"Glaser"偶合成环得到在环上同一位点具有两个羟基的c-PEO。最后,用c-PEO上的羟基直接引发ε-Cl聚合得到“蝌蚪”形聚合物c-PEO-(PCL)2。
     3、通过阴离子开环聚合、ATRP及"Click"化学相结合,合成了“8”字形共聚物([c-(PEO-b-PS)]2),即每个环形单元由具有亲水性的PEO嵌段和疏水性的PS嵌段构成。首先,采用"Core-first"的方法,通过阴离子开环聚合、ATRP和端基转化得到了PEO端基为炔基、PS端基为叠氮的A2B2型四臂星形共聚物(PEO-Alkyne)2-(PS-N3)2。在准高稀的条件下,前驱体(PEO-Alkyne)2-(PS-N3)2的两次“Click'’分子内成环得到“8”字形共聚物([c-(PEO-b-PS)]2)。最后,为了探索拓扑结构对聚合物自组装行为的影响,对“8”字形共聚物([c-(PEO-b-PS)]2)和其四臂星形前驱体(PEO-Alkyne)2-(PS-N3)2在水溶液中的自组装行为进行了对比。结果表明两者在水溶液中都组装成了球形胶束,但是随着拓扑结构从星形到环形的转变,形成胶束的粒径明显增大。
     4、通过ATRP和‘'Click"化学、“单电子转移氮氧自由基偶合”(SET-NRC)偶合反应相结合,合成了“太阳”形共聚物c-PHEMA-g-(PS-b-PEO),即在环形主链c-PHEMA上带有高密度接枝的两亲性嵌段PS-b-PEO侧链。首先,用2-溴异丁酸3-三甲基硅基炔丙醇酯引发HEMA进行ATRP聚合,然后再将末端的溴基团转化为叠氮得到一端为炔另一端为叠氮的遥爪聚合物l-HC=C-PHEMA-N3。其次,在准高稀的条件下,l-HC=C-PHEMA-N3的“Click"分子内成环得到c-PHEMA。再次,用2-溴异丁酰溴将c-PHEMA上的羟基溴化后,得到的ATRP大分子引发剂引发St聚合得到PS接枝的“太阳”形聚合物c-PHEMA-g-PS。最后,通过TEMPO-PEO与c-PHEMA-g-PS上的PS侧链的"SET-NRC"偶合,得到两亲性嵌段PS-b-PEO接枝的“太阳”形聚合物c-PHEMA-g-(PS-b-PEO)。
     通过多种手段如1HNMR, GPC, FT-IR, MALDI-TOF MS对各种中间产物和目标聚合物的结构进行了详细表征。以期这些聚合物能够作为新模型来探索聚合物结构与性能之间的关系。
Since the polymer's properties are inherently dependent on its architecture, tailored control of polymer architecture has always attracted much attention from polymeric chemists. Because of their unique "endless" topology, cyclic polymers exhibit significant different physical properties in both solution and bulk compared with the linear counterparts, such as higher glass-transition temperature, lower hydrodynamic volume, reduced intrinsic viscosity, higher refractive index. Additionally, cyclic topology is also one of the basic architectures widely spread in the nature. The research in biological chemistry and molecular biology discovered that there were some large cyclic structures in the living body, such as cyclic DNA, cyclic peptides and cyclic oligosaccharides and polysaccharides. Therefore, the study of cyclic polymers not only has important values on thoeiy, but also is helpful for exploring the secret of life. However, compared with the significant development on the study of other complex architectural polymers, cyclic polymer has been less studied due to the synthetic difficulties and lack of the research models.
     In this thesis, by combination of several "living"/controlled polymerization techniques with some high efficient cyclization methods, such as "Click" chemistry and "Glaser" coupling, a series of amphiphilic cyclic copolymers with novel architectures have been designed and synthesized. The main works finished in this thesis show as follow:
     1. A novel amphiphilic tadpole-shaped copolymer [linear-poly(s-caprolactone)]-b-[cyclic-poly(ethylene oxide)]-b-[linear-poly(ε-caprolactone)][(l-PCL)-b-(c-PEO)-b-(l-PCL)] was synthesized by combination of "Glaser" cyclization with ring-opening polymerization (ROP) mechanism. Firstly, a linear PEO precursor with two terminal alkyne groups and two interior active hydroxyl groups was prepared via successive ROP of EO monomers and a series of functional group transformations. Then, a cyclic PEO precursor with two active hydroxyl groups at the opposite sites was obtained by "Glaser" cyclization in dilute conditions. Finally, the target tadpole-shaped copolymer (l-PCL)-b-(c-PEO)-b-(l-PCL) was obtained by ROP of ε-Cl monomers directly from the opposite active hydroxyl groups on cyclic PEO. The self-assembling behaviours of (l-PCL)-b-(c-PEO)-b-(l-PCL) and their π-shaped analogs of (PEO/PCL)-b-PEO-b-(PCL/PEO) with comparable molecular weight in water were preliminarily investigated. The results showed that the tadpole-shaped copolymers formed intertwined fibril-like micells, however, the π-shaped copolymers formed spherical micells.
     2. The tadpole-shaped copolymers [cyclic-poly(ethylene oxide)(PEO)]-b-[linear poly(ε-caprolactone)(PCL)]2[(c-PEO)-b-PCL2] with one PEO ring and two PCL tails were synthesized by combination of "Glaser" coupling with ROP. First, a linear PEO precursor with two terminal alkyne groups and two hydroxyl groups at the chain middle was prepared by ROP of EO monomer and the following transformation of functional groups. Then, cyclic PEO with two hydroxyl groups at the same site was obtained by the "Glaser" cyclization. Finally, the hydroxyl groups on cyclic PEO directly initiated the ROP of ε-CL monomer to produce the target copolymers (c-PEO)-b-PCL2.
     3. An amphiphilic hetero eight-shaped copolymer cyclic-[poly (ethylene oxide)-b-polystyrene]2[c-(PEO-b-PS)]2composed of hydrophilic PEO and hydrophobic PS segments was synthesized by combination of "Click" chemistry with anionic ROP and ATRP mechanisms. According to "core-first" strategy, the A2B2star-shaped precursor was obtained by successive ROP of EO, ATRP of styrene and modification of functional groups. Under high dilution condition, the intramolecular cyclization by "Click" chemistry produced the amphiphilic hetero eight-shaped copolymer [c-(PEO-b-PS)]2. The self-assembling behaviors of the obtained eight-shaped copolymers [c-(PEO-b-PS)]2and their four-arm star-shaped precursors (PEO-Alkyne)2-(PS-N3)2were compared. The results revealed that although both of them formed spherical micells in aqueous solution, the sizes of micells increased significantly with the topologies of the copolymers changing from star to cycle.
     4. The "sun-shaped" copolymer c-PHEMA-g-(PS-b-PEO) consisting of macrocyclic poly(2-hydroxylethyl methacrylate)(c-PHEMA) as backbone and polystyrene-b-poly(ethylene oxide)(PS-b-PEO) amphiphilic block copolymers as side chains was synthesized by combination of ATRP,"Click" chemistry, and single-electron transfer nitroxide radical coupling (SET-NRC). First, a linear a-alkyne-co-azido heterodifunctional PHEMA was prepared by ATRP of HEMA using3-(trimethylsilyl) propargyl2-bromoisobutyrate as initiator, and then chlorine end groups were transformed to-N3group by nucleophilic substitution reaction in DMF in the presence of an excess of NaN3. The3-trimethylsilyl protective groups could be removed in the presence of tetrabutylammonium fluoride, and the obtained product l-(HC=C-PHEMA-N3) was cyclized by "Click" chemistry in high dilution conditions. The hydroxyl groups on c-PHEMA were transferred into bromine groups by esterification with2-bromoisobutyryl bromide and then initiated the ATRP of styrene to afford the macrocyclic molecular brushes c-PHEMA-g-PS. The PS side chains on c-PHEMA-g-PS were coupled with the TEMPO-PEO to afford the target macrocyclic molecular brushes c-PHEMA-g-(PS-b-PEO) by SET-NRC.
     All of the intermerdiates and target copolymers have been characterized in detail by1H NMR, GPC, FT-IR and MALDI-TOF MS. It is expected that all of these amphiphilic cyclic copolymers can be used as novel models to explore the relationship between the polymeric architectures and properties.
引文
[1]Szwarc, M.; Levy, M.; Milkovich, R., Polymerization initiated by electron transfer to monomer-a new method of formation of block polymers. Journal of the American Chemical Society 1956,78:2656-2657.
    [2]Szwarc, M., Living polymers. Nature 1956,178:1168-1169.
    [3]Wang, J. S.; Matyjaszewski, K., Controlled living radical polymerization atom-transfer radical polymerization in the presence of transition-metal complexes. Journal of the American Chemical Society 1995,117:5614-5615.
    [4]Wang, J. S.; Matyjaszewski, K., Living Controlled Radical Polymerization-Transition-Metal-Catalyzed Atom-Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator. Macromolecules 1995,28: 7572-7573.
    [5]Wang, J. S.; Matyjaszewski, K., Controlled living radical polymerization-halogen atom-transfer radical polymerization promoted by a Cu(I)/Cu(II) redox process. Macromolecules 1995,28:7901-7910.
    [6]Moad, G.; Rizzardo, E.; Solomon, D. H., Selectivity of the reaction of free radicals with styrene. Macromolecules 1982,15:909-914.
    [7]Georges, M. K.; Veregin, R. P. N.; Kazmaier, P. M.; Hamer, G. K., Narrow molecular-weight resins by a free-radical polymerization process. Macromolecules 1993,26:2987-2988.
    [8]Veregin, R. P. N.; Georges, M. K.; Kazmaier, P. M.; Hamer, G. K., Free-radical polymerizations for narrow polydispersity resins-electron-spin-resonance studies of the kinetics and mechanism. Macromolecules 1993,26:5316-5320.
    [9]Chiefari, J.; Chong, Y. K.; Ercole,F.; Krstina, J.; Jeffery, J.; Le, T. P. T.; Mayadunne, R. T. A.; Meijs, G. F.; Moad, C. L.; Moad, G.; Rizzardo, E.; Thang, S. H., Living free-radical polymerization by reversible addition-fragmentation chain transfer:The RAFT process. Macromolecules 1998,31:5559-5562.
    [10]Percec, V.; Guliashvili, T.; Ladislaw, J. S.; Wistrand, A.; Stjerndahl, A. Sienkowska, M. J.; Monteiro, M. J.; Sahoo, S., Ultrafast synthesis of ultrahigh molar mass polymers by metal-catalyzed living radical polymerization of acrylates, methacrylates, and vinyl chloride mediated by SET at 25 degrees C. Journal of the American Chemical Society 2006,128:14156-14165.
    [11]Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click chemistry:Diverse chemical function from a few good reactions. Angewandte Chemie-International Edition 2001,40:2004-2021.
    [12]Reppe, W. Athinylierung. Annalen Der Chemie-Justus Liebig 1955,596:1-224.
    [13]Eglinton, G.; Galbraith, A. R. Cyclic Diynes. Chemistry δ Industry 1956,28: 737-738.
    [14]Hay, A. S., Oxidative Coupling of Acetylenes. Journal of Organic Chemistry. 1962,27:3320-3321.
    [15]Morgan, C. R.; Magnotta, F.; Ketley, A. D., Thiol-ene photo-curable polymers. Journal of Polymer Science Part a-Polymer Chemistry 1977,15:627-645.
    [16]Chen, G. J.; Kumar, J.; Gregory, A.; Stenzel, M. H., Efficient synthesis of dendrimers via a thiol-yne and esterification process and their potential application in the delivery of platinum anti-cancer drugs. Chemical Communications 2009,45:6291-6293.
    [17]Konkolewicz, D.; Gray-Weale, A.; Perrier, S., Hyperbranched Polymers by Thiol-Yne Chemistry:From Small Molecules to Functional Polymers. Journal of the American Chemical Society 2009,131:18075-18077.
    [18]Rosen, B. M.; Lligadas, G.; Hahn, C.; Percec, V., Synthesis of Dendrimers Through Divergent Iterative Thio-Bromo "Click" Chemistry. Journal of Polymer Science Part A:Polymer Chemistry 2009,47:3931-3939.
    [19]Fu, Q.; Lin, W. C.; Huang, J. L., A new strategy for preparation of graft copolymers via "Graft onto" by atom transfer nitroxide radical coupling chemistry:Preparation of poly (4-glycidyloxy-2,2,6,6-tetramethylpiperidine-1-oxyl-co-ethylene oxide)-graft-polystyrene and poly(tert-butyl acrylate). Macromolecules 2008,41: 2381-2387.
    [20]Fu, Q.; Zhang, Z. N.; Lin, W. C.; Huang, J. L., Single-Electron-Transfer Nitroxide-Radical-Coupling Reaction at Ambient Temperature:Application in the Synthesis of Block Copolymers. Macromolecules 2009,42:4381-4383.
    [21]Wang, G. W.; Huang, J. L. Preparation of star-shaped ABC copolymers of polystyrene-poly(ethylene oxide)-polyglycidol using ethoxyethyl glycidyl ether as the cap molecule. Macromolecular Rapid Communications 2007,28:298-304.
    [22]Zhao, Y. L.; Higashihara, T.; Sugiyama, K.; Hirao, A. Synthesis of functionalized asymmetric star polymers containing conductive polyacetylene segments by living anionic polymerization. Journal of the American Chemical Society 2005,127:14158-14159.
    [23]He, T.; Li, D. J.; Sheng, X.; Zhao, B. Synthesis of ABC 3-miktoarm star terpolymers from a trifunctional initiator by combining ring-opening polymerization, atom transfer radical polymerization, and nitroxide-mediated radical polymerization. Macromolecules 2004,37:3128-3135.
    [24]Rieger, J.; Coulembier, O.; Dubois, P.; Bernaerts, K. V.; Du Prez, F. E.; Jerome, R.; Jerome, C. Controlled synthesis of an ABC miktoarm star-shaped copolymer by sequential ring-opening polymerization of ethylene oxide, benzyl beta-malolactonate, and epsilon-caprolactone. Macromolecules 2005,38: 10650-10657.
    [25]Fan, X. S.; Wang, G. W.; Zhang, Z.; Huang, J. L. Synthesis and Characterization of Amphiphilic Heterograft Copolymers with PAA and PS Side Chains via "Grafting From" Approach. Journal of Polymer Science Part A:Polymer Chemistry 2011,49:4146-4153.
    [26]Zhang, Y. Q.; Shen, Z.; Yang, D.; Feng, C.; Hu, J. H.; Lu, G. L.; Huang, X. Y. Convenient Synthesis of PtBA-g-PMA Well-Defined Graft Copolymer with Tunable Grafting Density. Macromolecules 2010,43:117-125.
    [27]Wu, D. X.; Song, X. H.; Tang, T.; Zhao, H. Y. Macromolecular Brushes Synthesized by "Grafting From" Approach Based on "Click Chemistry" and RAFT Polymerization. Journal of Polymer Science Part A:Polymer Chemistry 2010,48:443-453.
    [28]Li, Y. G.; Zhang, Y. Q.; Yang, D.; Li, Y. J.; Hu, J. H.; Feng, C.; Zhai, S.J.; Lu, G. L.; Huang, X. Y. PAA-g-PPO Amphiphilic Graft Copolymer:Synthesis and Diverse Micellar Morphologies. Macromolecules 2010,43:262-270.
    [29]Luo, X. L.; Wang, G. W.; Pang, X. C.; Huang, J. L. Synthesis of a novel kind of amphiphilic graft copolymer with miktoarm star-shaped side chains. Macromolecules 2008,41:2315-2317.
    [30]Wan, W. M.; Pan, C. Y. Direct growth of hyperbranched polymers on both ends of a linear polymer. Macromolecules 2008,41:5085-5088.
    [31]Liu, B. L.; Kazlauciunas, A.; Guthrie, J. T.; Perrier, S. One-pot hyperbranched polymer synthesis mediated by reversible addition fragmentation chain transfer (RAFT) polymerization. Macromolecules 2005,38:2131-2136.
    [32]Saha, A.; Ramakrishnan, S. AB(2) plus A type copolymerization approach for the preparation of thermosensitive PEGylated hyperbranched polymers. Macromolecules 2008,41:5658-5664.
    [33]He, C.; Li, L. W.; He, W. D.; Jiang, W. X.; Wu, C. "Click" Long Seesaw-Type A similar to similar to B similar to similar to A Chains Together into Huge Defect-Free Hyperbranched Polymer Chains with Uniform Subchains. Macromolecules 2011,44:6233-6236.
    [34]Trollsas, M.; Claesson, H.; Atthoff, B.; Hedrick, J. L. Layered dendritic block copolymers. Angewandte Chemie-International Edition 1998,37:3132-3136.
    [35]Feng, X.; Taton, D.; Ibarboure, E.; Chaikof, E. L.; Gnanou, Y. Janus-type dendrimer-like poly(ethylene oxide)s. Journal of the American Chemical Society 2008,130:11662-11676.
    [36]Feng, X. S.; Taton, D.; Chaikof, E. L.; Gnanou, Y. Fast Access to Dendrimer-like Poly(ethylene oxide)s through Anionic Ring-Opening Polymerization of Ethylene Oxide and Use of Nonprotected Glycidol as Branching Agent. Macromolecules 2009,42:7292-7298.
    [37]Percec, V.; Barboiu, B.; Grigoras, C.; Bera, T. K. Universal iterative strategy for the divergent synthesis of dendritic macromolecules from conventional monomers by a combination of living radical polymerization and irreversible TER minator Multifunctional INItiator (TERMINI). Journal of the American Chemical Society 2003,125:6503-6516.
    [38]Shi, G. Y.; Tang, X. Z.; Pan, C. Y. Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction. Journal of Polymer Science Part A:Polymer Chemistry 2008,46:2390-2401.
    [39]Li, H. Y.; Riva, R.; Jerome, R.; Lecomte, P. Combination of ring-opening polymerization and "click" chemistry for the synthesis of an amphiphilic tadpole-shaped poly(epsilon-caprolactone) grafted by PEO. Macromolecules 2007,40:824-831.
    [40]Wan, X. J.; Liu, T.; Liu, S. Y. Synthesis of Amphiphilic Tadpole-Shaped Linear-Cyclic Diblock Copolymers via Ring-Opening Polymerization Directly Initiating from Cyclic Precursors and Their Application as Drug Nanocarriers. Biomacromolecules 2011,12:1146-1154.
    [41]Kubo, M.; Hayashi, T.; Kobayashi, H.; Itoh, T. Syntheses of tadpole-and eight-shaped polystyrenes using cyclic polystyrene as a building block. Macromolecules 1998,31:1053-1057.
    [42]Oike, H.; Imaizumi, H.; Mouri, T.; Yoshioka, Y.; Uchibori, A.; Tezuka, Y. Designing unusual polymer topologies by electrostatic self-assembly and covalent fixation. Journal of the American Chemical Society 2000,122: 9592-9599.
    [43]Oike, H.; Washizuka, M.; Tezuka, Y. Designing an "a-ring-with-branches" polymer topology by electrostatic self-assembly and covalent fixation with interiorly functionalized telechelics having cyclic ammonium groups. Macromolecular Rapid Communications 2001,22:1128-1134.
    [44]Dong, Y. Q.; Tong, Y. Y.; Dong, B. T.; Du, F. S.; Li, Z. C. Preparation of Tadpole-Shaped Amphiphilic Cyclic PS-b-linear PEO via ATRP and Click Chemistry. Macromolecules 2009,42:2940-2948.
    [45]Beinat, S.; Schappacher, M.; Deffieux, A. Linear and semicyclic amphiphilic diblock copolymers.1. Synthesis and structural characterization of cyclic diblock copolymers of poly(hydroxyethyl vinyl ether) and linear polystyrene and their linear homologues. Macromolecules 1996,29:6737-6743.
    [46]Fan, X. S.; Wang, G. W.; Huang, J. L. Synthesis of Macrocyclic Molecular Brushes with Amphiphilic Block Copolymers as Sidle Chains. Journal of Polymer Science Part A:Polymer Chemistry 2011,49:1361-1367.
    [47]Jia, Z. F.; Fu, Q.; Huang, J. L. Synthesis of amphiphilic macrocyclic graft copolymer consisting of a poly(ethylene oxide) ring and multi-polystyrene lateral chains. Macromolecules 2006,39:5190-5193.
    [48]Lahasky, S. H.; Serem, W. K.; Guo, L.; Garno, J. C.; Zhang, D. H. Synthesis and Characterization of Cyclic Brush-Like Polymers by N-Heterocyclic Carbene-Mediated Zwitterionic Polymerization of N-Propargyl N-Carboxyanhydride and the Grafting-to Approach. Macromolecules 2011,44: 9063-9074.
    [49]Li, H. Y.; Jerome, R.; Lecomte, P. Amphiphilic sun-shaped polymers by grafting macrocyclic copolyesters with PEO.Macromolecules 2008,41:650-654.
    [50]Laurent, B. A.; Gray son, S. M. An efficient route to well-defined macrocyclic polymers via "Click" cyclization. Journal of the American Chemical Society 2006,128:4238-4239.
    [51]Hoskins, J. N.; Grayson, S. M. Synthesis and Degradation Behavior of Cyclic Poly(epsilon-caprolactone). Macromolecules 2009,42:6406-6413.
    [52]Ge, Z. S.; Zhou, Y. M.; Xu, J.; Liu, H. W.; Chen, D. Y.; Liu, S. Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media. Journal of the American Chemical Society 2009,131:1628-1629.
    [53]Gross, M.; Maskos, M., Dye loading of unimolecular, amphiphilic polymeric nanocontainers. Polymer 2005,46:3329-3336.
    [54]Xu, P. S.; Van Kirk, E. A.; Li, S. Y.; Murdoch, W. J.; Ren, J.; Hussain, M. D.; Radosz, M.; Shen, Y. Q., Highly stable core-surface-crosslinked nanoparticles as cisplatin carriers for cancer chemotherapy. Colloids and Surfaces B-Biointerfaces 2006,48:50-57.
    [55]Gudipati, C. S.; Finlay, J. A.; Callow, J. A.; Callow, M. E.; Wooley, K. L. The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva Langmuir 2005,21:3044-3053.
    [56]Lee, C. C.; Yoshida, M.; Frechet, J. M. J.; Dy, E. E.; Szoka, F. C. Synthesis of Eight-shaped Poly(ethylene oxide) by the Combination of Glaser Coupling with Ring-opening Polymerizati. Bioconjugate Chemistry 2005,16:535-541.
    [57]Chen, H. T.; Neerman, M. F.; Parrish, A. R.; Simanek, E. E. Cytotoxicity, hemolysis, and acute in vivo toxicity of dendrimers based on melamine, candidate vehicles for drug delivery. Journal of the American Chemical Society 2004,126:10044-10048.
    [58]Endo, K. Synthesis and Properties of Cyclic Polymers. Advances in Polymer Science 2008,217:121-183.
    [59]Kricheldorf, H. R. J. Cyclic Polymers:Synthetic Strategies and Physical Properties. Journal of Polymer Science Part A:Polymer Chemistry 2010,48: 251-284
    [60]Minatti, E.; Borsali, R.; Schappacher, M.; Deffieux, A.; Soldi, V.; Narayanan, T. Putaux, J. L. Effect of cyclization of polystyrene/polyisoprene block copolymers on their micellar morphology. Macromolecular Rapid Communications 2002,23: 978-982.
    [61]Schappacher, M.; Deffieux, A. Atomic Force Microscopy Imaging and Dilute Solution Properties of Cyclic and Linear Polystyrene Combs. Journal of the American Chemical Society 2008,130:14684-14689.
    [62]Tezuka, Y.; Ohtsuka, T.; Adachi, K.; Komiya, R.; Ohno, N.; Okui, N. A defect-free ring polymer:Size-controlled cyclic poly(tetrahydrofuran) consisting exclusively of the monomer unit. Macromolecular Rapid Communications 2008, 29:1237-1241.
    [63]Xu, J.; Ye, J.; Liu, S. Y. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior. Macromolecules 2007,40:9103-9110.
    [64]Ge, Z. S.; Zhou, Y. M.; Xu, I.; Liu, H. W.; Chen, D. Y.; Liu, S. Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media. Journal of the American Chemical Society 2009,131:1628-1629.
    [65]Bayro, M. J.; Mukhopadhyay, J.; Swapna, G. V. T.; Huang, J. Y.; Ma, L. C.; Sineva, E.; Dawson, P. E.; Montelione, G. T.; Ebright, R. H. Structure of antibacterial peptide microcin J25:A 21-residue lariat protoknot. Journal of the American Chemical Society 2003,125:12382-12383.
    [66]Wilson, K. A.; Kalkum, M.; Ottesen, J.; Yuzenkova, J.; Chait, B. T.; Landick, R.; Muir, T.; Severinov, K.; Darst, S. A. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. Journal of the American Chemical Society 2003,125:12475-12483.
    [67]Rosengren, K. J.; Clark, R. J.; Daly, N. L.; Goransson, U.; Jones, A.; Craik, D. J. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. Journal of the American Chemical Society 2003, 125:12464-12474.
    [68]Guliashvili, T.; Percec, V., A comparative computational study of the homolytic and heterolytic bond dissociation energies involved in the activation step of ATRP and SET-LRP of vinyl monomers. Journal of Polymer Science Part a-Polymer Chemistry 2007,45:1607-1618.
    [69]Coelho, J. F. J.; Silva, A.; Popov, A. V.; Percec, V.; Abreu, M. V.; Goncalves, P.; Gil, M. H., Synthesis of poly(vinyl chloride)-b-poly(n-butyl acrylate)-b-poly(vinyl chloride) by the competitive single-electron-transfer/degenerative-chain-transfer-mediated living radical polymerization in water. Journal of Polymer Science Part a-Polymer Chemistry 2006,44:3001-3008.
    [70]Lligadas, G.; Percec, V., Ultrafast SET-LRP of methyl acrylate at 25 degrees C in alcohols. Journal of Polymer Science Part a-Polymer Chemistry 2008,46: 2745-2754.
    [71]Lligadas, G.; Rosen, B. M.; Bell, C. A.; Monteiro, M. J.; Percec, V., Effect of Cu(0) Particle Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25 degrees C. Macromolecules 2008,41: 8365-8371.
    [72]Laurent, B. A.; Grayson, S. M., Synthetic approaches for the preparation of cyclic polymers. Chemical Society Reviews 2009,38:2202-2213.
    [73]Bielawski, C. W.; Benitez, D.; Grubbs, R. H., An "endless" route to cyclic polymers. Science 2002,297:2041-2044.
    [74]Bielawski, C. W.; Benitez, D.; Grubbs, R. H., Synthesis of cyclic polybutadiene via ring-opening metathesis polymerization:The importance of removing trace linear contaminants. J. Am. Chem. Soc.2003,125:8424-8425.
    [75]Roovers, J.; Toporowski, P. M., Synthesis of High Molecular Weight Ring Polystyrenes. Macromolecules 1983,16:843-849.
    [76]Jia, Z. F.; Fu, Q.; Huang, J. L. Synthesis of amphiphilic macrocyclic graft copolymer consisting of a poly(ethylene oxide) ring and multi-polystyrene lateral chains. Macromolecules 2006,39:5190-5193.
    [77]Kubo, M.; Hayashi, T.; Kobayashi, H.; Itoh, T., Syntheses of Tadpole-and Eight-shaped Polystyrenes using Cyclic Polystyrene as a Building Block. Macromolecules 1998,31:1053-1057.
    [78]Lepoittevin, B.; Perrot, X.; Masure, M.; Hemery, P. New route to synthesis of cyclic polystyrenes using controlled free radical polymerization. Macromolecules 2001,34:425-429.
    [79]Laurent, B. A.; Grayson, S. M., An efficient route to well-defined macrocyclic polymers via "Click" cyclization. Journal of the American Chemical Society 2006,128:4238-4239.
    [80]Adachi, K.; Honda, S.; Hayashi, S.; Tezuka, Y., ATRP-RCM Synthesis of Cyclic Diblock Copolymers. Macromolecules 2008,41:7898-7903.
    [81]Zhang, Y. N.; Wang, G. W.; Huang, J. L. Synthesis of Macrocyclic Poly(ethylene oxide) and Polystyrene via Glaser Coupling Reaction. Macromolecules 2010,43: 10343-10347.
    [1]Kang, J. M.; Beers, K. J. Synthesis and characterization of PCL-b-PEO-b-PCL-based nano structured and porous hydrogels. Biomacromolecules 2006,7:453-458.
    [2]Maglio, G.; Nicodemi, F.; Conte, C.; Palumbo, R.; Tirino, P.; Panza, E.; Ianaro, A.; Ungaro, F.; Quaglia, F. Nanocapsules Based on Linear and Y-Shaped 3-Miktoarm Star-Block PEO-PCL Copolymers as Sustained Delivery System for Hydrophilic Molecules.Biomacromolecules 2011,12:4221-4229.
    [3]Rieger, J.; Dubois, P.; Jerome, R.; Jerome, C. Controlled synthesis and interface properties of new amphiphilic PCL-g-PEO copolymers. Langmuir 2006,22: 7471.7479.
    [4]Ge, Z. S.; Zhou, Y. M.; Xu, J.; Liu, H. W.; Chen, D. Y.; Liu, S. Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media. Journal of the American Chemical Society 2009,131:1628-1629.
    [5]Bayro, M. J.; Mukhopadhyay, J.; Swapna, G. V. T.; Huang, J. Y.; Ma, L. C.; Sineva, E.; Dawson, P. E.; Montelione, G. T.; Ebright, R. H. Structure of antibacterial peptide microcin J25:A 21-residue lariat protoknot. Journal of the American Chemical Society 2003,125:12382-12383.
    [6]Wilson, K. A.; Kalkum, M.; Ottesen, J.; Yuzenkova, J.; Chait, B. T.; Landick, R.; Muir, T.; Severinov, K.; Darst, S. A. Structure of microcin J25, a peptide inhibitor of bacterial RNA polymerase, is a lassoed tail. Journal of the American Chemical Society 2003,125:12475-12483.
    [7]Rosengren, K. J.; Clark, R. J.; Daly, N. L.; Goransson, U.; Jones, A.; Craik, D. J. Microcin J25 has a threaded sidechain-to-backbone ring structure and not a head-to-tail cyclized backbone. Journal of the American Chemical Society 2003, 125:12464-12474.
    [8]Dong, Y. Q.; Tong, Y. Y.; Dong, B. T.; Du, F. S.; Li, Z. C. Preparation of Tadpole-Shaped Amphiphilic Cyclic PS-b-linear PEO via ATRP and Click Chemistry. Macromolecules 2009,42:2940-2948.
    [9]Oike, H.; Imaizumi, H.; Mouri, T.; Yoshioka, Y.; Uchibori, A.; Tezuka, Y. Designing unusual polymer topologies by electrostatic self-assembly and covalent fixation. Journal of the American Chemical Society 2000,122: 9592-9599.
    [10]Li, H. Y.; Riva, R.; Jerome, R.; Lecomte, P. Combination of ring-opening polymerization and "click" chemistry for the synthesis of an amphiphilic tadpole-shaped poly(epsilon-caprolactone) grafted by PEO. Macromolecules 2007,40:824-831.
    [11]Peng, Y.; Liu, H. W.; Zhang, X. Y.; Liu, S. Y.; Li, Y. S. Macrocycle-Terminated Core-Cross-Linked Star Polymers:Synthesis and Characterization. Macromolecules 2009,42:6457-6462.
    [12]Lonsdale, D. E.; Monteiro, M. J. Various polystyrene topologies built from tailored cyclic polystyrene via CuAAC reactions. Chemical Communications 2010,46:7945-7947.
    [13]Zhang, Y. N.; Wang, G. W.; Huang, J. L. Synthesis of Macrocyclic Poly(ethylene oxide) and Polystyrene via Glaser Coupling Reaction. Macromolecules 2010,43: 10343-10347.
    [14]Zhang, Y. N.; Wang, G. W.; Huang, J. L. Preparation of Amphiphilic Poly(ethylene oxide)-block-Polystyrene Macrocycles via Glaser Coupling Reaction under CuBr/Pyridine System. Journal of Polymer Science Part A: Polymer Chemistry 2011,49:4766-4770.
    [15]Wang, G. W.; Fan, X. S.; Hu, B.; Zhang, Y. N.; Huang, J. L. Synthesis of Eight-shaped Poly(ethylene oxide) by the Combination of Glaser Coupling with Ring-opening Polymerization. Macromolecular Rapid Communications 2011,32: 1658-1663.
    [1]Schappacher, M.; Deffieux, A. Controlled Syntheses of Bicyclic 8-Shaped Poly(chloroethyl vinyl ether)s. Macromolecules 1995,28:2629-2636.
    [2]Kubo, M.; Hayashi, T.; Kobayashi, H.; Itoh, T. Syntheses of tadpole-and eight-shaped polystyrenes using cyclic polystyrene as a building block. Macromolecules 1998,31:1053-1057.
    [3]Oike, H.; Hamada, M.; Eguchi, S.; Danda, Y.; Tezuka, Y. Novel synthesis of single-and double-cyclic polystyrenes by electrostatic self-assembly and covalent fixation with telechelics having cyclic ammonium salt groups. Macromolecules 2001,34:2776-2782.
    [4]Tezuka, Y.; Komiya, R.; Washizuka, M. Designing 8-shaped polymer topology by metathesis condensation with cyclic poly(THF) precursors having allyl groups. Macromolecules 2003,36:12-17.
    [5]Shi, G. Y.; Pan, C. Y. Synthesis of Well-Defined Figure-of-Eight-Shaped Polymers by a Combination of ATRP and Click Chemistry. Macromolecular Rapid Communications.2008,29:1672-1678.
    [6]Shi, G. Y.; Yang, L. P.; Pan, C. Y. Synthesis and characterization of well-defined polystyrene and poly(epsilon-caprolactone) hetero eight-shaped copolymers. Journal of Polymer Science Part A:Polymer Chemistry 2008,46:6496-6508.
    [7]Wang, G. W.; Fan, X. S.; Hu, B.; Zhang, Y. N.; Huang, J. L. Synthesis of Eight-shaped Poly(ethylene oxide) by the Combination of Glaser Coupling with Ring-opening Polymerization. Macromolecular Rapid Communications.2011, 32:1658-1663.
    [8]Yu, K.; Eisenberg, A. Multiple morphologies in aqueous solutions of aggregates of polystyrene-block-poly(ethylene oxide) diblock copolymers. Macromolecules 1996,29:6359-6361.
    [9]Yu, K.; Eisenberg, A. Bilayer morphologies of self-assembled crew-cut aggregates of amphiphilic PS-b-PEO diblock copolymers in solution. Macromolecules 1998, 31:3509-3518.
    [10]Tsitsilianis, C.; Alexandridis, P.; Lindman, B. Lyotropic liquid crystalline structures formed by amphiphilic heteroarm star copolymers. Macromolecules 2001,34:5979-5983.
    [11]Peleshanko, S.; Jeong, J.; Shevchenko, V. V.; Genson, K. L.; Pikus, Y.; Ornatska, M.; Petrash, S.; Tsukruk, V. V. Synthesis and properties of asymmetric heteroarm PEOn-b-PSm star polymers with end functionalities. Macromolecules 2004,37:7497-7506.
    [12]Gu, L. N.; Shen, Z.; Zhang, S.; Lu, G. L.; Zhang, X. H.; Huang, X. Y. Novel amphiphilic centipede-like copolymer bearing polyacrylate backbone and poly(ethylene glycol) and polystyrene side chains. Macromolecules 2007,40: 4486-4493.
    [13]Sahkulubey, E. L.; Durmaz, Y. Y.; Demirel, A. L.; Yagci, Y. Perfectly Alternating Amphiphilic Poly(p-phenylene) Graft Copolymers by Combination of Controlled Radical Polymerization and Suzuki Coupling Processes. Macromolecules 2010,43:2732-2738.
    [14]Honda, S.; Yamamoto, T.; Tezuka, Y. Journal of the American Chemical Society 2010,132:10251-10253.
    [1]Lehn, J. M.; Malthete, J.; Levelut, A. M. Tubular Mesophases-Liquid-Crystals Consisting of Macrocyclic Molecules. Chemical Communications 1985,25: 1794-1796.
    [2]Fernandez-Lopez, S.; Kim, H. S.; Choi, E. C.; Delgado, M.; Granja, J. R. Khasanov, A.; Kraehenbuehl, K.; Long, G.; Weinberger, D. A.; Wilcoxen, K. M.; Ghadiri, M. R. Antibacterial agents based on the cyclic D,L-alpha-peptide architecture (vol 412, pg 452,2001). Nature 2001,414:329-329.
    [3]Jia, Z. F.; Fu, Q.; Huang, J. L. Synthesis of amphiphilic macrocyclic graft copolymer consisting of a poly(ethylene oxide) ring and multi-polystyrene lateral chains. Macromolecules 2006,39:5190-5193.
    [4]Pang, X. C.; Jing, R. K.; Huang, J. L. Synthesis of amphiphilic macrocyclic graft copolymer consisting of a poly(ethylene oxide) ring and multi-poly(epsilon-caprolactone) lateral chains. Polymer 2008,49:893-900.
    [5]Pang, X. C.; Wang, G. W.; Jia, Z. F.; Liu, C.; Huang, J. L. Preparation of the amphiphilic macro-rings of poly(ethylene oxide) with multi-polystyrene lateral chains and their extraction for dyes. Journal of Polymer Science Part A:Polymer Chemistry 2007,45:5824-5837.
    [6]Jakubowski, W.; Kirci-Denizli, B.; Gil, R. R.; Matyjaszewski, K. Polystyrene with improved chain-end functionality and higher molecular weight by ARGET ATRP. Macromolecular Chemistry and Physics 2008,209:32-39.
    [7]Lutz, J. F.; Matyjaszewski, K. Nuclear magnetic resonance monitoring of chain-end functionality in the atom transfer radical polymerization of styrene. Journal of Polymer Science Part A:Polymer Chemistry 2005,43:897-910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700