基于响应性聚合物组装体的生物医用与检测功能材料
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去十年中,响应性聚合物自组装方面的相关研究已相当深入和系统。响应性聚合物超分子自组装体在催化化学、材料制备、生物医药等多方面具有极为广泛的应用价值,已经成为21世纪最重要的研究课题之一。目前该领域未来的发展方向应该是在现有的研究成果基础上,利用响应性聚合物的独特性质探索和发展新型功能材料和器件。本论文结合活性自由基聚合,点击化学与生物偶联等方法制备了多种具有不同组成,不同拓扑结构的响应性聚合物,详细研究了这些聚合物的组装行为,并在此基础之上,进一步将响应性聚合物与无机纳米技术,化学传感概念相结合,发展了新型的智能药物传输载体以及更灵敏的比率型化学传感体系。具体来说,本论文的工作包括以下四个方面:
     1.结合原子转移自由基聚合(ATRP),开环聚合(ROP)和点击化学合成了两亲性热敏感环-线形二嵌段聚合物形聚(N-异丙基丙烯酰胺)-b-线形聚己内酯(c-PNIPAM)-b-PCL。首先,由特殊设计的含有炔基,羟基以及ATRP引发基元的三官能团分子alkynyl-(OH)-Br出发,用原子转移自由基聚合进行NIPAM单体的聚合,并通过叠氮化反应和点击化学反应合成环形PNIPAM前体(c-PNIPAM)-OH;接着利用(c-PNIPAM)-OH为大分子引发剂,直接在PNIPAM环上进行开环聚合,得到结构明确的两亲性环-线嵌段共聚物(c-PNIPAM)-b-PCL。此外,为了对比,还合成了与目标环-线聚合物化学组成相类似的线型二嵌段聚合物(l-PNIPAM)-b-PCL,并详细比较了这两者在组装,以及药物负载/释放方面的性能差异。
     2.结合ATRP与点击化学,将酶蛋白的辅助因子-锌配位原卟啉(PPIXZn)改性到温敏性PNIPAM长链的端基上,得到PPIXZn-PNIPAM,然后将其与去除了原卟啉辅基的肌红蛋白(myoglobin)进行辅助因子重构反应,得到了生物杂化的热敏感双亲水性嵌段共聚物myoglobin-b-PNIPAM。在较低的溶液温度下,所得嵌段共聚物单链溶解于水,而在较高的温度下,则会逐渐组装成具有生物活性,以疏水的PNIPAM为核,以亲水的肌红蛋白链为壳的胶束。另外,还结合ATRP和点击化学制备了有具有不同链构造和分子量的生物素(Biotin)功能化均聚物、二嵌段聚合物,其中生物素分别被标记于共聚物与嵌段聚合物的链端或嵌段连接点处。利用生物素和亲和素(Avidin)之间强烈的特异性相互作用,可以有效的制备星型聚合物,星型二嵌段聚合物和杂臂星型聚合物等。高分子化的生物素由于聚合物链的存在,在与亲和素结合的过程表现出位阻效应。本节用Avidin/HABA分析法详细研究了这种位阻效应的规律。
     3.结合可控药物释放以及荧光检测两种功能,构筑了一种具有pH荧光检测功能的无机/有机杂化多孔硅药物可控释放体系。首先,在多孔硅的表面通过可逆加成-断裂链转移(RAFT)聚合原位共聚三种单体,分别是可交联因子聚(N-羟基琥珀酰亚胺丙烯酸酯) (NAS),生物相容的亲水性单体聚乙二醇单甲醚甲基丙烯酸酯(OEGMA),以及基于1, 8-萘酰亚胺的荧光pH检测单体(NaphMA)。所得的无机/有机杂化纳米粒子在水溶液中可以良好的分散,当环境pH在4-8之间的变化时也有明显的响应。在多孔硅中载入罗丹明B (RhB)之后,可以利用胱胺交联多孔硅表面的聚合物刷。在还原剂二硫苏糖醇(DTT)存在条件下,多孔硅内包裹的RhB分子能够被释放出来。通过调节DTT的浓度,刺激释放的速率也可以得到有效地控制。此外,基于多孔硅材料还可实现多种药物共同释放。在另外一个体系中,我们利用pH可电荷反转的聚电解质多层膜P(DMA-co-TPAMA)/PAH来封堵装载了RhB分子的多孔硅,并在聚电解质多层膜中负载抗癌药物顺铂。其中PAH是聚阳离子聚烯丙基胺,聚阴离子P(DMA-co-TPAMA)是由亲水性的聚N,N二甲基丙烯酰胺(DMA)和pH可电荷反转的β-羧基取代酰胺衍生物TPAMA经过自由基共聚而得。当环境pH值低于6时,聚阴离子中的β-羧基取代酰胺键会断裂,产生电荷反转生成聚阳离子氨丙基甲基丙烯酰胺(APMA)。在静电斥力的作用下,多孔硅表面的聚电解质多层膜解离,从而释放多孔硅内包裹的RhB以及聚电解质层中吸附的顺铂,实现两种药物的共同释放。
     4.利用温度敏感的核交联胶束作为新型离子检测载体,实现对Hg~(2+)离子的比率型检测。首先,将Hg~(2+)离子探针通过共聚的方式接入到温敏双亲水性嵌段聚合物PEO-b-P(NIPAM-co-NAS-co-NUMA)中,并比较了此体系在不同温度,交联前后对Hg~(2+)离子的检测情况,其中PEO,NUMA分别为聚环氧乙烷和基于1, 8-萘酰亚胺的Hg~(2+)荧光检测单体。在Hg~(2+)离子存在条件下,检测体系的表观颜色会由黄色变为无色,荧光发射也会有相应的蓝移,由绿色荧光转变为蓝色荧光。将聚合物胶束交联后,体系对Hg~(2+)离子的检测限会进一步降低。同时,这种体系具有较好的生物相容性,在细胞中也可以灵敏的对Hg~(2+)离子进行检测。在另外一个体系中,我们还分别将荧光共振能量(FRET)给体7-硝基-2,1,3-苯并氧杂恶二唑(NBD)和两个pH敏感的RhB-乙二胺衍生物受体分别标记到温敏性无规共聚物的中间以及两端,得到遥爪型聚合物NBD-(P(OEGMA-co-DEGMA)-RhB_2)。DEGMA和OEGMA分别是二甘醇单甲醚甲基丙烯酸酯和寡聚乙二醇单甲醚甲基丙烯酸酯。聚合物端基上的荧光受体RhB-乙二胺衍生物经特殊设计,对环境的pH值具有灵敏的响应,即在中性和碱性条件下没有荧光,而在酸性条件下出现强的荧光发射。此外,在较高温度下,无规共聚物P(OEGMA-co- DEGMA)单链塌缩会拉近NBD与RhB之间的距离,增强FRET的效果,实现pH和温度的双重比率型检测。
Supramolecular assemblies fabricated from stimuli-responsive polymers have attracted considerable interests in the past decades due to their promising applications in diverse fields, such as catalysis, material preparation, and biomedicine, which render this interdisciplinary research subject as one of the promising scientific issues in the 21st century. The field of responsive polymers has nowadays been thoroughly and systematically explored, which evolved well beyond the demonstration of novel and interesting properties. Currently, the development of useful and advanced functions, e.g., drug or gene carriers with triggered release properties, catalysis, detection and imaging, environmentally adaptive coatings, and self-healing materials, have emerged to be a more relevant subject. In this case, we reported on the facile fabrication of numerous well-defined specific functionalized polymers with varying chemical architectures in the combination of controlled/living radical polymerization, click chemistry and bioconjugation protocols, and investigated their self-assembly behavior in aqueous solution. Moreover, the following combination of stimuli-responsive polymers with inorganic nanoparticles and chemical sensors demonstrated that this kind of intelligent material can be utilized as promising functional nanocarriers for controlled drug delivery and ratiometric chemical sensing. Specifically, the dissertation includes the following four parts:
     1. We report a novel approach for the synthesis of amphiphilic and thermoresponsive tadpole-shaped linear-cyclic diblock copolymer, (c-PNIPAM)-b-PCL, consisting of hydrophobic linear poly(ε-caprolactone) (PCL) and thermoresponsive macrocyclic PNIPAM via the ring-opening polymerization (ROP) of CL monomer directly initiating from the cyclic PNIPAM precursor bearing a single hydroxyl functionality. We then investigated the self-assembly of (c-PNIPAM)-b-PCL in aqueous solution and thermal phase transition of c-PNIPAM corona within the micellar nanoparticles, and compared to those of the linear diblock copolymer, (l-PNIPAM)-b-PCL, with comparable molecular weight and composition. The temperature-dependent release profiles from drug-loaded micelles of (c-PNIPAM)-b-PCL and (l-PNIPAM)-b-PCL were also explored in detail.
     2. We report on the fabrication of thermoresponsive biohybrid double hydrophilic block copolymer (DHBC) via cofactor reconstitution approach. PNIPAM bearing a porphyrin moiety at the chain terminal, PPIXZn-PNIPAM, was synthesized via the combination of atom transfer radical polymerization (ATRP) and click chemistry. The subsequent cofactor reconstitution process between apomyoglobin and PPIXZn-PNIPAM afforded well-defined myoglobin-b-PNIPAM protein- polymer bioconjugates. Behaving as typical responsive DHBCs, the obtained myoglobin-b-PNIPAM biohybrid diblock copolymer exhibits thermo-induced aggregation behavior in aqueous solution due to the presence of thermoresponsive PNIPAM block. Moreover, we also reported the facilely fabrication of well-defined protein-polymer bioconjugates with different chain architecture, and investigated their binding steric crowding effects. First, a series of biotinylated homopolymers and diblock copolymers with varying architecture and molecular weight were synthesized via a combination of ATRP and click chemistry. The locations of biotin in polymer chains were precisely varied: at the chain end or in the middle of homopolymer, at the chain end or the junction point of diblock copolymer. Taking advantage of the special interaction between avidin and biotin, we facilely fabricated star polymers, star block copolymers, and heteroarm star polymers. However, as the hydrophilic biotinylated polymers dissolved molecularly in aqueous media and existed as extended random coil, the binding course between biotin and avidin would experience steric crowding effect in a certain extent. The effects of the DP of biotinylated polymer, and the location of biotin bound to the polymer chain on the conjugation efficiency were investigated in detail via standard avidin/HABA assays.
     3. We report on the fabrication of fluorescent pH-sensing organic/inorganic hybrid mesoporous silica nanoparticles (MSN) capable of tunable redox-responsive release of embedded guest molecules. Random copolymers composed of N-acryloxysuccinimide (NAS), oligo(ethylene glycol) monomethyl ether methacrylate (OEGMA), and 1,8-naphthalimide-based fluorescent pH-sensing monomer (NaphMA) were anchored at the surface of MSN via surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization. The obtained hybrid MSN exhibits excellent water dispersibility and can act as sensitive fluorescent pH probe in the range of pH 4-8 due to the presence of NaphMA moieties. After loading with model drug molecules, rhodamine B (RhB), and crosslinking the polymer brushes with cystamine, the redox-responsive release of encapsulated guest molecules from organic/inorganic MSN can be facilely tuned by varying the concentrations of externally added dithiothreitol (DTT). In another case, we report on the fabrication of pH-disintegrable polyelectrolyte multilayer-coated MSN capable of triggered co-release of cisplatin and model drug molecules. The outer polyelectrolyte multilayer was assembled from permanently cationic polyelectrolyte, poly(allyl amine hydrochloride) (PAH), and negatively charged polyelectrolyte composed of N,N-dimethylacrylamide (DMA) and 3,4,5,6-tetrahydrophthalic anhydride-functionalized N-(3-aminopropyl)methacrylamide (TPAMA), which exhibits pH-induced charge conversion characteristics. Model drug molecule RhB was loaded into the interior mesopores of amine-functionalized MSN at first, this was followed by the layer-by-layer (LBL) deposition of P(DMA-co-TPAMA) and PAH at the outer surface of MSNs to effectively block the mesopore entrances. For cisplatin loading, it was mixed with the aqueous solution of P(DMA-co-TPAMA) and embedded into the polyelectrolyte multilayer in the LBL assembly process. The structural stability of TPAMA moieties within the negatively charged pH-triggerable charge conversion polymer, P(DMA-co-TPAMA) is highly pH-dependent, i.e, stable under neutral media and hydrolyzed into positively charged N-(3-aminopropyl)methacrylamide (APMA) moieties in weakly acidic media. Thus, the subtle alteration of solution pH from 7.4 to ~5-6 can lead to the disintegration outer polyelectrolyte multilayers, accompanied with the co-release of cisplatin and RhB.
     4. We report on the fabrication of core cross-linked (CCL) micelles possessing thermoresponsive cores and their application as sensitive and selective ratiometric Hg~(2+) probes with thermo-tunable detection efficiency. Well-defined DHBC bearing naphthalimide-based Hg~(2+)-reactive moieties (NUMA, 4), PEO-b- P(NIPAM-co-NAS-co-NUMA), was synthesized via RAFT polymerization, where PEO represents poly(ethylene oxide). The obtained DHBC can self-assemble into core-shell nanoparticles possessing thermoresponsive PNIPAM cores. After core cross-linking of the micellar nanoparticles formed at elevated temperatures, structurally stable CCL micelles with well-solvated PEO coronas and thermoresponsive cores embedded with Hg~(2+)-reactive NUMA moieties were obtained. Upon Hg~(2+) addition, the aqueous dispersion of CCL micelles exhibit a colorimetric transition from yellowish to colorless and a fluorometric emission transition from green to bright blue. The Hg~(2+)-sensing capability of PEO-b-P(NIPAM-co-NAS-co-NUMA) unimers and CCL micelles at temperatures below and above the critical phase transition temperature was then determined and compared in detail. The fluorescence imaging assay of Hg~(2+) ions in living cells was also investigated. In the last section, we reported on the synthesis of well-defined thermoresponsive polymers respectively labeled with fluorescence resonance energy transfer (FRET) pairs at chain middle and terminals, which can act as dual ratiometric fluorescent probes for pH and temperatures. Starting from difunctional initiator containing 7-nitro-2,1,3-benzoxadiazole (NBD) moiety, the ATRP process of OEGMA and di(ethylene glycol) monomethyl ether methacrylate (DEGMA), and the subsequent terminal group functionalization with RhB-ethylenediamine derivative afforded NBD-P(OEGMA-co-DEGMA)-RhB_2, which were labeled with FRET donor (NBD) and acceptor moieties (RhB) at the chain middle and terminals of the thermoresponsive polymer. The fluorescence emission of terminal RhB functionalities is highly pH-dependent, i.e, non-fluorescent in neutral or alkaline media (spirolactam form) and highly fluorescent in acidic media (ring-opened acyclic form), thus the off/on switching of FRET process can be facilely modulated by solution pH. Moreover, at acidic pH and highly dilute conditions, the thermo-induced chain collapse and extension of NBD-P(OEGMA-co- DEGMA)-RhB_2 can effectively modulate the spatial distance between FRET donor and acceptor moieties, leading to prominent changes in fluorescence intensity ratios. The incorporation of one FRET donor and two pH-switchable acceptors at the chain middle and terminals of thermoresponsive polymers allows for the effective off/on switching and the modulation of efficiency of FRET processes by dually playing with solution pH and temperatures.
引文
[1] Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Polymers with complex architecture by living anionic polymerization[J]. Chemical Reviews. 2001, 101(12):3747-3792.
    [2] Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chemical Reviews. 2001, 101(12):3661-3688.
    [3] Hadjichristidis N, Iatrou H, Pitsikalis M, Pispas S, Avgeropoulos A. Linear and non-linear triblock terpolymers. Synthesis, self-assembly in selective solvents and in bulk[J]. Progress in Polymer Science. 2005, 30(7):725-782.
    [4] Hadjichristidis N, Iatrou H, Pitsikalis M, Mays J. Macromolecular architectures by living and controlled/living polymerizations[J]. Progress in Polymer Science. 2006, 31(12):1068-1132.
    [5] Webster O W. Living Polymerization Methods[J]. Science. 1991, 251(4996):887-893.
    [6] Mochizuki K, Tomita I. pi-allylnickel-catalyzed living coordination polymerization of allene having homochiral phenylcarbamoyloxy-substituted binaphthyl function[J]. Macromolecules. 2006, 39(19):6336-6340.
    [7] Braunecker W A, Matyjaszewski K. Controlled/living radical polymerization: Features, developments and perspectives (vol 32, pg 93, 2007)[J]. Progress in Polymer Science. 2008, 33(1):165-165.
    [8] Hawker C J, Barclay G G, Orellana A, Dao J, Devonport W. Initiating systems for nitroxide-mediated ''living'' free radical polymerizations: Synthesis and evaluation[J]. Macromolecules. 1996, 29(16):5245-5254.
    [9] Gelvan D, Saltman P, Powell S R. Cardiac Reperfusion Damage Prevented by a Nitroxide Free-Radical[J]. Proceedings of the National Academy of Sciences of the United States of America. 1991, 88(11):4680-4684.
    [10] Matyjaszewski K, Xia J H. Atom transfer radical polymerization[J]. Chemical Reviews. 2001, 101(9):2921-2990.
    [11] Wang J S, Matyjaszewski K. Controlled Living Radical Polymerization - Atom-Transfer Radical Polymerization in the Presence of Transition-Metal Complexes[J]. Journal of theAmerican Chemical Society. 1995, 117(20):5614-5615.
    [12] Patten T E, Xia J H, Abernathy T, Matyjaszewski K. Polymers with very low polydispersities from atom transfer radical polymerization[J]. Science. 1996, 272(5263):866-868.
    [13] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process[J]. Macromolecules. 1998, 31(16):5559-5562.
    [14] Mayadunne R T A, Rizzardo E, Chiefari J, Chong Y K, Moad G, Thang S H. Living radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization) using dithiocarbamates as chain transfer agents[J]. Macromolecules. 1999, 32(21):6977-6980.
    [15] Chong Y K, Le T P T, Moad G, Rizzardo E, Thang S H. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process[J]. Macromolecules. 1999, 32(6):2071-2074.
    [16] Kato M, Kamigaito M, Sawamoto M, Higashimura T. Polymerization of Methyl-Methacrylate with the Carbon-Tetrachloride Dichlorotris(Triphenylphosphine)Ruthenium(Ii) Methylaluminum Bis(2,6-Di-Tert-Butylphenoxide) Initiating System - Possibility of Living Radical Polymerization[J]. Macromolecules. 1995, 28(5):1721-1723.
    [17] Gao H F, Matyjaszewski K. Synthesis of low-polydispersity miktoarm star copolymers via a simple "Arm-First" method: Macromonomers as arm precursors[J]. Macromolecules. 2008, 41(12):4250-4257.
    [18] Liu S Y, Armes S P. Synthesis and aqueous solution behavior of a pH-responsive schizophrenic diblock copolymer[J]. Langmuir. 2003, 19(10):4432-4438.
    [19] Xu J, Ge Z S, Zhu Z Y, Luo S Z, Liu H W, Liu S Y. Synthesis and micellization properties of double hydrophilic A(2)BA(2) and A(4)BA(4) non-linear block copolymers[J]. Macromolecules. 2006, 39(23):8178-8185.
    [20] Matyjaszewski K, Miller P J, Pyun J, Kickelbick G, Diamanti S. Synthesis and characterization of star polymers with varying arm number, length, and composition from organic and hybrid inorganic/organic multifunctional initiators[J]. Macromolecules. 1999, 32(20):6526-6535.
    [21] Liu H, Jiang X Z, Fan J, Wang G H, Liu S Y. Aldehyde surface-functionalized shellcross-linked micelles with pH-tunable core swellability and their bioconjugation with lysozyme[J]. Macromolecules. 2007, 40(25):9074-9083.
    [22] Gong F H, Tang H L, Liu C L, Jiang B B, Ren Q, Yang Y. Preparation of hyperbranched polymers through ATRP of in situ formed AB* monomer[J]. Journal of Applied Polymer Science. 2006, 101(2):850-856.
    [23] Tsarevsky N V, Matyjaszewski K. "Green" atom transfer radical polymerization: From process design to preparation of well-defined environmentally friendly polymeric materials[J]. Chemical Reviews. 2007, 107(6):2270-2299.
    [24] Teodorescu M, Matyjaszewski K. Atom transfer radical polymerization of (meth)acrylamides[J]. Macromolecules. 1999, 32(15):4826-4831.
    [25] Rademacher J T, Baum R, Pallack M E, Brittain W J, Simonsick W J. Atom transfer radical polymerization of N,N-dimethylacrylamide[J]. Macromolecules. 2000, 33(2):284-288.
    [26] Wu D X, Yang Y F, Cheng X H, Liu L, Tian J, Zhao H Y. Mixed molecular brushes with PLLA and PS side chains prepared by AGET ATRP and ring-opening polymerization[J]. Macromolecules. 2006, 39(22):7513-7519.
    [27] Tsarevsky N V, Sarbu T, Gobelt B, Matyjaszewski K. Synthesis of styrene-acrylonitrile copolymers and related block copolymers by atom transfer radical polymerization[J]. Macromolecules. 2002, 35(16):6142-6148.
    [28] Lepoittevin B, Matmour R, Francis R, Taton D, Gnanou Y. Synthesis of dendrimer-like polystyrene by atom transfer radical polymerization and investigation of their viscosity behavior[J]. Macromolecules. 2005, 38(8):3120-3128.
    [29] Ishizu K, Yamada H. Architecture of prototype copolymer brushes by grafting-from ATRP approach from functionalized alternating comb-shaped copolymers[J]. Macromolecules. 2007, 40(9):3056-3061.
    [30] Ostmark E, Harrisson S, Wooley K L, Malmstrom E E. Comb polymers prepared by ATRP from hydroxypropyl cellulose[J]. Biomacromolecules. 2007, 8(4):1138-1148.
    [31] Xu J, Ye J, Liu S Y. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior[J]. Macromolecules. 2007, 40(25):9103-9110.
    [32] Wu T, Zhang Y F, Wang X F, Liu S Y. Fabrication of hybrid silica nanoparticles denselygrafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization[J]. Chemistry of Materials. 2008, 20(1):101-109.
    [33] Lowe A B, McCormick C L. Reversible addition-fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media[J]. Progress in Polymer Science. 2007, 32(3):283-351.
    [34] Mitsukami Y, Donovan M S, Lowe A B, McCormick C L. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT[J]. Macromolecules. 2001, 34(7):2248-2256.
    [35] Scales C W, Convertine A J, McCormick C L. Fluorescent labeling of RAFT-generated poly(N-isopropylacrylamide) via a facile maleimide-thiol coupling reaction[J]. Biomacromolecules. 2006, 7(5):1389-1392.
    [36] Convertine A J, Lokitz B S, Vasileva Y, Myrick L J, Scales C W, Lowe A B, et al. Direct synthesis of thermally responsive DMA/NIPAM diblock and DMA/NIPAM/DMA triblock copolymers via aqueous, room temperature RAFT polymerization[J]. Macromolecules. 2006, 39(5):1724-1730.
    [37] Convertine A J, Lokitz B S, Lowe A B, Scales C W, Myrick L J, McCormick C L. Aqueous RAFT polymerization of acrylamide and N,N-dimethylacrylamide at room temperature[J]. Macromolecular Rapid Communications. 2005, 26(10):791-795.
    [38] McCormick C L, Sumerlin B S, Lokitz B S, Stempka J E. RAFT-synthesized diblock and triblock copolymers: thermally-induced supramolecular assembly in aqueous media[J]. Soft Matter. 2008, 4(9):1760-1773.
    [39] Mayadunne R T A, Rizzardo E, Chiefari J, Krstina J, Moad G, Postma A, et al. Living polymers by the use of trithiocarbonates as reversible addition-fragmentation chain transfer (RAFT) agents: ABA triblock copolymers by radical polymerization in two steps[J]. Macromolecules. 2000, 33(2):243-245.
    [40] Zheng Q, Pan C Y. Synthesis and characterization of dendrimer-star polymer using dithiobenzoate-terminated poly(propylene imine) dendrimer via reversible addition-fragmentation transfer polymerization[J]. Macromolecules. 2005, 38(16):6841-6848.
    [41] Mayadunne R T A, Jeffery J, Moad G, Rizzardo E. Living free radical polymerization withreversible addition-fragmentation chain transfer (RAFT polymerization): Approaches to star polymers[J]. Macromolecules. 2003, 36(5):1505-1513.
    [42] Patton D L, Mullings M, Fulghum T, Advincula R C. A facile synthesis route to thiol-functionalized alpha,w-telechelic polymers via reversible addition fragmentation chain transfer polymerization[J]. Macromolecules. 2005, 38(20):8597-8602.
    [43] Carter S, Hunt B, Rimmer S. Highly branched poly(N-isopropylacrylamide)s with imidazole end groups prepared by radical polymerization in the presence of a styryl monomer containing a dithioester group[J]. Macromolecules. 2005, 38(11):4595-4603.
    [44] Qiu X P, Tanaka F, Winnik F M. Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution[J]. Macromolecules. 2007, 40(20):7069-7071.
    [45] Hong J, Wang Q, Lin Y Z, Fan Z Q. Styrene polymerization in the presence of cyclic trithiocarbonate[J]. Macromolecules. 2005, 38(7):2691-2695.
    [46] He T, Zheng G H, Pan C Y. Synthesis of cyclic polymers and block copolymers by monomer insertion into cyclic initiator by a radical mechanism[J]. Macromolecules. 2003, 36(16):5960-5966.
    [47] You Y Z, Hong C Y, Pan C Y. A novel strategy for synthesis of multiblock copolymers[J]. Chemical Communications. 2002, (23):2800-2801.
    [48] Hong J, Wang Q, Fan Z Q. Synthesis of multiblock polymer containing narrow polydispersity blocks[J]. Macromolecular Rapid Communications. 2006, 27(1):57-62.
    [49] Kolb H C, Finn M G, Sharpless K B. Click chemistry: Diverse chemical function from a few good reactions[J]. Angewandte Chemie-International Edition. 2001, 40(11):2004-+.
    [50] Bock V D, Hiemstra H, van Maarseveen J H. Cu-I-catalyzed alkyne-azide "click" cycloadditions from a mechanistic and synthetic perspective[J]. European Journal of Organic Chemistry. 2005, (1):51-68.
    [51] Binder W H, Sachsenhofer R. 'Click' chemistry in polymer and materials science[J]. Macromolecular Rapid Communications. 2007, 28(1):15-54.
    [52] Moses J E, Moorhouse A D. The growing applications of click chemistry[J]. Chemical Society Reviews. 2007, 36(8):1249-1262.
    [53] Lutz J F. 1,3-dipolar cycloadditions of azides and alkynes: A universal ligation tool in polymer and materials science[J]. Angewandte Chemie-International Edition. 2007,46(7):1018-1025.
    [54] Wu P, Feldman A K, Nugent A K, Hawker C J, Scheel A, Voit B, et al. Efficiency and fidelity in a click-chemistry route to triazole dendrimers by the copper(I)-catalyzed ligation of azides and alkynes[J]. Angewandte Chemie-International Edition. 2004, 43(30):3928-3932.
    [55] Kolb H C, Sharpless K B. The growing impact of click chemistry on drug discovery[J]. Drug Discovery Today. 2003, 8(24):1128-1137.
    [56] Fournier D, Hoogenboom R, Schubert U S. Clicking polymers: a straightforward approach to novel macromolecular architectures[J]. Chemical Society Reviews. 2007, 36(8):1369-1380.
    [57] Helms B, Mynar J L, Hawker C J, Frechet J M J. Dendronized linear polymers via "click chemistry"[J]. Journal of the American Chemical Society. 2004, 126(46):15020-15021.
    [58] Gao H F, Matyjaszewski K. Synthesis of star polymers by a combination of ATRP and the "click" coupling method[J]. Macromolecules. 2006, 39(15):4960-4965.
    [59] Xu J, Liu S Y. Synthesis of Well-Defined 7-Arm and 21-Arm Poly (N-isopropylacrylamide) Star Polymers with beta-Cyclodextrin Cores via Click Chemistry and Their Thermal Phase Transition Behavior in Aqueous Solution[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2009, 47(2):404-419.
    [60] Shi G Y, Tang X Z, Pan C Y. Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2008, 46(7):2390-2401.
    [61] Laurent B A, Grayson S M. An efficient route to well-defined macrocyclic polymers via "Click" cyclization[J]. Journal of the American Chemical Society. 2006, 128(13):4238-4239.
    [62] Rao J Y, Zhang Y F, Zhang J Y, Liu S Y. Facile Preparation of Well-Defined AB(2) Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry[J]. Biomacromolecules. 2008, 9(10):2586-2593.
    [63] Zhang Y F, Liu H, Dong H F, Li C H, Liu S Y. Micelles Possessing Mixed Cores and Thermoresponsive Shells Fabricated from Well-Defined Amphiphilic ABC Miktoarm Star Terpolymers[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2009, 47(6):1636-1650.
    [64] Jiang X Z, Zhang G Y, Narain R, Liu S Y. Fabrication of Two Types of Shell-Cross-Linked Micelles with "Inverted" Structures in Aqueous Solution from Schizophrenic Water-Soluble ABC Triblock Copolymer via Click Chemistry[J]. Langmuir. 2009, 25(4):2046-2054.
    [65] Ge Z S, Zhou Y M, Xu J, Liu H W, Chen D Y, Liu S Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media[J]. Journal of the American Chemical Society. 2009, 131(5):1628-+.
    [66] Zhang Y F, Li C H, Liu S Y. One-Pot Synthesis of ABC Miktoarm Star Terpolymers by Coupling ATRP, ROP, and Click Chemistry Techniques[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2009, 47(12):3066-3077.
    [67] Li C H, Ge Z S, Fang J, Liu S Y. Synthesis and Self-Assembly of Coil-Rod Double Hydrophilic Diblock Copolymer with Dually Responsive Asymmetric Centipede-Shaped Polymer Brush as the Rod Segment[J]. Macromolecules. 2009, 42(8):2916-2924.
    [68] Ge Z S, Wang D, Zhou Y M, Liu H W, Liu S Y. Synthesis of Organic/Inorganic Hybrid Quatrefoil-Shaped Star-Cyclic Polymer Containing a Polyhedral Oligomeric Silsesquioxane Core[J]. Macromolecules. 2009, 42(8):2903-2910.
    [69] Jiang X Z, Zhang J Y, Zhou Y M, Xu J, Liu S Y. Facile preparation of core-crosslinked micelles from azide-containing thermoresponsive double hydrophilic diblock copolymer via click chemistry[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2008, 46(3):860-871.
    [70] Zhang J Y, Zhou Y M, Zhu Z Y, Ge Z S, Liu S Y. Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via "click" chemistry[J]. Macromolecules. 2008, 41(4):1444-1454.
    [71] Shi G Y, Pan C Y. Synthesis of Well-Defined Figure-of-Eight-Shaped Polymers by a Combination of ATRP and Click Chemistry[J]. Macromolecular Rapid Communications. 2008, 29(20):1672-1678.
    [72] Shi G Y, Yang L P, Pan C Y. Synthesis and characterization of well-defined polystyrene and poly(epsilon-caprolactone) hetero eight-shaped copolymers[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2008, 46(19):6496-6508.
    [73] Shi G Y, Pan C Y. An Efficient Synthetic Route to Well-Defined Theta-Shaped Copolymers[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2009, 47(10):2620-2630.
    [74] Lutz J F, Borner H G, Weichenhan K. Combining atom transfer radical polymerization and click chemistry: A versatile method for the preparation of end-functional polymers[J]. Macromolecular Rapid Communications. 2005, 26(7):514-518.
    [75] Lutz J F, Borner H G, Weichenhan K. Combining ATRP and "click" chemistry: a promisingplatform toward functional biocompatible polymers and polymer bioconjugates[J]. Macromolecules. 2006, 39(19):6376-6383.
    [76] Sun X L, Stabler C L, Cazalis C S, Chaikof E L. Carbohydrate and protein immobilization onto solid surfaces by sequential Diels-Alder and azide-alkyne cycloadditions[J]. Bioconjugate Chemistry. 2006, 17(1):52-57.
    [77] Alexandridis P, lindman B. Amphiphilic Block Copolymers: Self-assembly and Application [M]. Amsterdam: Elsevier.[J]. 2000.
    [78] Liu S Y, Billingham N C, Armes S P. A schizophrenic water-soluble diblock copolymer[J]. Angewandte Chemie-International Edition. 2001, 40(12):2328-+.
    [79] Halperin A, Tirrell M, Lodge T P. Tethered Chains in Polymer Microstructures[J]. Advances in Polymer Science. 1992, 100:31-71.
    [80] Zhang L F, Yu K, Eisenberg A. Ion-induced morphological changes in ''crew-cut'' aggregates of amphiphilic block copolymers[J]. Science. 1996, 272(5269):1777-1779.
    [81] Zhang L F, Eisenberg A. Multiple Morphologies of Crew-Cut Aggregates of Polystyrene-B-Poly(Acrylic Acid) Block-Copolymers[J]. Science. 1995, 268(5218):1728-1731.
    [82] Zhang L F, Eisenberg A. Crew-cut aggregates from self-assembly of blends of polystyrene-b-poly(acrylic acid) block copolymers and homopolystyrene in solution[J]. Journal of Polymer Science Part B-Polymer Physics. 1999, 37(13):1469-1484.
    [83] Zhang L F, Eisenberg A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution[J]. Polymers for Advanced Technologies. 1998, 9(10-11):677-699.
    [84] Zhang L F, Eisenberg A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions[J]. Macromolecules. 1996, 29(27):8805-8815.
    [85] Gan Z H, Jim T F, Li M, Yuer Z, Wang S G, Wu C. Enzymatic biodegradation of poly(ethylene oxide-b-epsilon-caprolactone) diblock copolymer and its potential biomedical applications[J]. Macromolecules. 1999, 32(3):590-594.
    [86] Kim S Y, Lee Y M. Taxol-loaded block copolymer nanospheres composed of methoxy poly(ethylene glycol) and poly(epsilon-caprolactone) as novel anticancer drug carriers[J]. Biomaterials. 2001, 22(13):1697-1704.
    [87] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance[J]. Advanced Drug Delivery Reviews. 2001, 47(1):113-131.
    [88] Antonietti M, Forster S, Hartmann J, Oestreich S. Novel amphiphilic block copolymers by polymer reactions and their use for solubilization of metal salts and metal colloids[J]. Macromolecules. 1996, 29(11):3800-3806.
    [89] Colfen H. Double-hydrophilic block copolymers: Synthesis and application as novel surfactants and crystal growth modifiers[J]. Macromolecular Rapid Communications. 2001, 22(4):219-252.
    [90] Gil E S, Hudson S M. Stimuli-reponsive polymers and their bioconjugates[J]. Progress in Polymer Science. 2004, 29(12):1173-1222.
    [91] Wu C, Zhou S Q. Thermodynamically Stable Globule State of a Single Poly(N-Isopropylacrylamide) Chain in Water[J]. Macromolecules. 1995, 28(15):5388-5390.
    [92] Liu S Y, Armes S P. Polymeric surfactants for the new millennium: A pH-responsive, zwitterionic, schizophrenic diblock copolymer[J]. Angewandte Chemie-International Edition. 2002, 41(8):1413-1416.
    [93] Wang D, Wu T, Wan X J, Wang X F, Liu S Y. Purely salt-responsive micelle formation and inversion based on a novel schizophrenic sulfobetaine block copolymer: Structure and kinetics of micellization[J]. Langmuir. 2007, 23(23):11866-11874.
    [94] Butun V, Billingham N C, Armes S P. Unusual aggregation behavior of a novel tertiary amine methacrylate-based diblock copolymer: Formation of micelles and reverse micelles in aqueous solution[J]. Journal of the American Chemical Society. 1998, 120(45):11818-11819.
    [95] Zhao Y. Rational design of light-controllable polymer micelles[J]. Chemical Record. 2007, 7(5):286-294.
    [96] Lee H I, Wu W, Oh J K, Mueller L, Sherwood G, Peteanu L, et al. Light-induced reversible formation of polymeric micelles[J]. Angewandte Chemie-International Edition. 2007, 46(14):2453-2457.
    [97] Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery[J]. Advanced Drug Delivery Reviews. 2006, 58(15):1655-1670.
    [98] Schild H G. Poly (N-Isopropylacrylamide) - Experiment, Theory and Application[J]. Progressin Polymer Science. 1992, 17(2):163-249.
    [99] Lutz J F, Akdemir O, Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: Is the age of poly(NIPAM) over?[J]. Journal of the American Chemical Society. 2006, 128(40):13046-13047.
    [100] Lutz J F, Weichenhan K, Akdemir O, Hoth A. About the phase transitions in aqueous solutions of thermoresponsive copolymers and hydrogels based on 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate[J]. Macromolecules. 2007, 40(7):2503-2508.
    [101] Lutz J F. Polymerization of oligo(ethylene glycol) (meth)acrylates: Toward new generations of smart biocompatible materials[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2008, 46(11):3459-3470.
    [102] Arotcarena M, Heise B, Ishaya S, Laschewsky A. Switching the inside and the outside of aggregates of water-soluble block copolymers with double thermoresponsivity[J]. Journal of the American Chemical Society. 2002, 124(14):3787-3793.
    [103] Weaver J V M, Armes S P, Butun V. Synthesis and aqueous solution properties of a well-defined thermo-responsive schizophrenic diblock copolymer[J]. Chemical Communications. 2002, (18):2122-2123.
    [104] Philippova O E, Hourdet D, Audebert R, Khokhlov A R. pH-responsive gels of hydrophobically modified poly(acrylic acid)[J]. Macromolecules. 1997, 30(26):8278-8285.
    [105] Gillies E R, Frechet J M J. pH-responsive copolymer assemblies for controlled release of doxorubicin[J]. Bioconjugate Chemistry. 2005, 16(2):361-368.
    [106] Sawant R M, Hurley J P, Salmaso S, Kale A, Tolcheva E, Levchenko T S, et al. "SMART" drug delivery systems: Double-targeted pH-responsive pharmaceutical nanocarriers[J]. Bioconjugate Chemistry. 2006, 17(4):943-949.
    [107] Kramer M, Stumbe J F, Turk H, Krause S, Komp A, Delineau L, et al. pH-responsive molecular nanocarriers based on dendritic core-shell architectures[J]. Angewandte Chemie-International Edition. 2002, 41(22):4252-4256.
    [108] Liu F T, Eisenberg A. Preparation and pH triggered inversion of vesicles from poly(acrylic acid)-block-polystyrene-block-poly(4-vinyl pyridine)[J]. Journal of the American Chemical Society. 2003, 125(49):15059-15064.
    [109] Caliceti P, Veronese F M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates[J]. Advanced Drug Delivery Reviews. 2003, 55(10):1261-1277.
    [110] Canalle L A, Lowik D W P M, van Hest J C M. Polypeptide-polymer bioconjugates[J]. Chemical Society Reviews. 2010, 39(1):329-353.
    [111] Velonia K, Rowan A E, Nolte R J M. Lipase polystyrene giant amphiphiles[J]. Journal of the American Chemical Society. 2002, 124(16):4224-4225.
    [112] Boerakker M J, Botterhuis N E, Bomans P H H, Frederik P M, Meijer E M, Nolte R J M, et al. Aggregation Behavior of giant amphiphiles prepared by cofactor reconstitution[J]. Chemistry-a European Journal. 2006, 12(23):6071-6080.
    [113] Wan X J, Liu S Y. Fabrication of a Thermoresponsive Biohybrid Double Hydrophilic Block Copolymer by a Cofactor Reconstitution Approach[J]. Macromolecular Rapid Communications. 2010, 31(23):2070-2076.
    [114] De P, Li M, Gondi S R, Sumerlin B S. Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization[J]. Journal of the American Chemical Society. 2008, 130(34):11288-+.
    [115] Ding Z L, Chen G H, Hoffman A S. Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin[J]. Journal of Biomedical Materials Research. 1998, 39(3):498-505.
    [116] Heredia K L, Maynard H D. Synthesis of protein-polymer conjugates[J]. Organic & Biomolecular Chemistry. 2007, 5(1):45-53.
    [117] Tao L, Kaddis C S, Loo R R O, Grover G N, Loo J A, Maynard H D. Synthesis of Maleimide-End-Functionalized Star Polymers and Multimeric Protein-Polymer Conjugates[J]. Macromolecules. 2009, 42(21):8028-8033.
    [118] Tao L, Liu J Q, Davis T P. Branched Polymer-Protein Conjugates Made From Mid-Chain-Functional P(HPMA)[J]. Biomacromolecules. 2009, 10(10):2847-2851.
    [119] Dirks A J, Nolte R J M, Cornelissen J J L M. Protein-Polymer Hybrid Amphiphiles[J]. Advanced Materials. 2008, 20(20):3953-3957.
    [120] Le Droumaguet B, Nicolas J. Recent advances in the design of bioconjugates from controlled/living radical polymerization[J]. Polymer Chemistry. 2010, 1(5):563-598.
    [121] Bontempo D, Maynard H D. Streptavidin as a macroinitiator for polymerization: In situ protein-polymer conjugate formation[J]. Journal of the American Chemical Society. 2005, 127(18):6508-6509.
    [122] Le Droumaguet B, Velonia K. In situ ATRP-Mediated hierarchical formation of giant amphiphile bionanoreactors[J]. Angewandte Chemie-International Edition. 2008, 47(33):6263-6266.
    [123] Ding Z L, Fong R B, Long C J, Stayton P S, Hoffman A S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield[J]. Nature. 2001, 411(6833):59-62.
    [124] Reynhout I C, Cornelissen J J L M, Nolte R J M. Self-assembled architectures from biohybrid triblock copolymers[J]. Journal of the American Chemical Society. 2007, 129(8):2327-2332.
    [125] Alarcon C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications[J]. Chemical Society Reviews. 2005, 34(3):276-285.
    [126] Tsien R Y. Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments[J]. Biochemistry. 1980, 19:2396-2404.
    [127] deSilva A P, Gunaratne H Q N, Gunnlaugsson T, Huxley A J M, McCoy C P, Rademacher J T, et al. Signaling recognition events with fluorescent sensors and switches[J]. Chemical Reviews. 1997, 97(5):1515-1566.
    [128] Basabe-Desmonts L, Reinhoudt D N, Crego-Calama M. Design of fluorescent materials for chemical sensing[J]. Chemical Society Reviews. 2007, 36(6):993-1017.
    [129] Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion[J]. Chemical Reviews. 2008, 108(9):3443-3480.
    [130] Nolan E M, Lippard S J. Small-Molecule Fluorescent Sensors for Investigating Zinc Metalloneurochemistry[J]. Accounts of Chemical Research. 2009, 42(1):193-203.
    [131] Tao S Y, Li G T, Zhu H S. Metalloporphyrins as sensing elements for the rapid detection of trace TNT vapor[J]. Journal of Materials Chemistry. 2006, 16(46):4521-4528.
    [132] Adhikari B, Majumdar S. Polymers in sensor applications[J]. Progress in Polymer Science. 2004, 29(7):699-766.
    [133] McQuade D T, Pullen A E, Swager T M. Conjugated polymer-based chemical sensors[J].Chemical Reviews. 2000, 100(7):2537-2574.
    [134] Zeng Q, Cai P, Li Z, Qin J G, Tang B Z. An imidazole-functionalized polyacetylene: convenient synthesis and selective chemosensor for metal ions and cyanide[J]. Chemical Communications. 2008, (9):1094-1096.
    [135] He H R, Mortellaro M A, Leiner M J P, Fraatz R J, Tusa J K. A fluorescent sensor with high selectivity and sensitivity for potassium in water[J]. Journal of the American Chemical Society. 2003, 125(6):1468-1469.
    [136] Allard E, Larpent C. Core-shell type dually fluorescent polymer nanoparticles for ratiometric pH-sensing[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2008, 46(18):6206-6213.
    [137] Hornig S, Biskup C, Grafe A, Wotschadlo J, Liebert T, Mohr G J, et al. Biocompatible fluorescent nanoparticles for pH-sensoring[J]. Soft Matter. 2008, 4(6):1169-1172.
    [138] Hu J M, Li C H, Liu S Y. Hg2+-Reactive Double Hydrophilic Block Copolymer Assemblies as Novel Multifunctional Fluorescent Probes with Improved Performance[J]. Langmuir. 2010, 26(2):724-729.
    [139] Liu T, Hu J M, Yin J, Zhang Y F, Li C H, Liu S Y. Enhancing Detection Sensitivity of Responsive Microgel-Based Cu(II) Chemosensors via Thermo-Induced Volume Phase Transitions[J]. Chemistry of Materials. 2009, 21(14):3439-3446.
    [140] Wu T, Zou G, Hu J M, Liu S Y. Fabrication of Photoswitchable and Thermotunable Multicolor Fluorescent Hybrid Silica Nanoparticles Coated with Dye-Labeled Poly(N-isopropylacrylamide) Brushes[J]. Chemistry of Materials. 2009, 21(16):3788-3798.
    [141] Yin J, Guan X F, Wang D, Liu S Y. Metal-Chelating and Dansyl-Labeled Poly(N-isopropylacrylamide) Microgels as Fluorescent Cu2+ Sensors with Thermo-Enhanced Detection Sensitivity[J]. Langmuir. 2009, 25(19):11367-11374.
    [142] Yin J, Li C H, Wang D, Liu S Y. FRET-Derived Ratiometric Fluorescent K+ Sensors Fabricated from Thermoresponsive Poly(N-isopropylacrylamide) Microgels Labeled with Crown Ether Moieties[J]. Journal of Physical Chemistry B. 2010, 114(38):12213-12220.
    [143] Li C H, Zhang Y X, Hu J M, Cheng J J, Liu S Y. Reversible Three-State Switching of Multicolor Fluorescence Emission by Multiple Stimuli Modulated FRET Processes within Thermoresponsive Polymeric Micelles[J]. Angewandte Chemie-International Edition. 2010,49(30):5120-5124.
    [144] Li C H, Liu S Y. Responsive nanogel-based dual fluorescent sensors for temperature and Hg2+ ions with enhanced detection sensitivity[J]. Journal of Materials Chemistry. 2010, 20(47):10716-10723.
    [145] Wan X J, Wang D, Liu S Y. Fluorescent pH-Sensing Organic/Inorganic Hybrid Mesoporous Silica Nanoparticles with Tunable Redox-Responsive Release Capability[J]. Langmuir. 2010, 26(19):15574-15579.
    [146] Hu J M, Liu S Y. Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments[J]. Macromolecules. 2010, 43(20):8315-8330.
    [147] Yin J, Hu H B, Wu Y H, Liu S Y. Thermo-and light-regulated fluorescence resonance energy transfer processes within dually responsive microgels[J]. Polymer Chemistry. 2011, 2(2):363-371.
    [148] Vivero-Escoto J L, Slowing I I, Trewyn B G, Lin V S Y. Mesoporous Silica Nanoparticles for Intracellular Controlled Drug Delivery[J]. Small. 2010, 6(18):1952-1967.
    [149] Hong C Y, Li X, Pan C Y. Smart core-shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition-fragmentation chain transfer polymerization[J]. Journal of Physical Chemistry C. 2008, 112(39):15320-15324.
    [150] Trewyn B G, Slowing I I, Giri S, Chen H T, Lin V S Y. Synthesis and functionalization of a mesoporous silica nanoparticle based on the sol-gel process and applications in controlled release[J]. Accounts of Chemical Research. 2007, 40(9):846-853.
    [151] Aznar E, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Amoros P, et al. pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports[J]. Journal of the American Chemical Society. 2009, 131(19):6833-6843.
    [152] Nguyen T D, Leung K C F, Liong M, Liu Y, Stoddart J F, Zink J I. Versatile supramolecular nanovalves reconfigured for light activation[J]. Advanced Functional Materials. 2007, 17(13):2101-2110.
    [153] Climent E, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Rurack K, et al. The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification[J]. Angewandte Chemie-International Edition. 2009, 48(45):8519-8522.
    [154] Manzano M, Vallet-Regi M. New developments in ordered mesoporous materials for drug delivery[J]. Journal of Materials Chemistry. 2010, 20(27):5593-5604.
    [155] Vallet-Regi M, Ramila A, del Real R P, Perez-Pariente J. A new property of MCM-41: Drug delivery system[J]. Chemistry of Materials. 2001, 13(2):308-311.
    [156] Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angewandte Chemie-International Edition. 2007, 46(40):7548-7558.
    [157] Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates - Nanoscopic reactors coming of age[J]. Advanced Materials. 2000, 12(19):1403-1419.
    [158] Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angewandte Chemie-International Edition. 2005, 44(32):5038-5044.
    [159] Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere[J]. Journal of the American Chemical Society. 2009, 131(10):3462-+.
    [160] Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. Journal of the American Chemical Society. 2003, 125(15):4451-4459.
    [161] Torney F, Trewyn B G, Lin V S Y, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nature Nanotechnology. 2007, 2(5):295-300.
    [162] Liu R, Zhang Y, Zhao X, Agarwal A, Mueller L J, Feng P Y. pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker[J]. Journal of the American Chemical Society. 2010, 132(5):1500-+.
    [163] Schlossbauer A, Kecht J, Bein T. Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica[J]. Angewandte Chemie-International Edition. 2009, 48(17):3092-3095.
    [1] Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. Polymers with complex architecture by living anionic polymerization[J]. Chem Rev. 2001, 101(12):3747-3792.
    [2] Hadjichristidis N, Pitsikalis M, Iatrou H. Synthesis of block copolymers[J]. Adv Polym Sci. 2005, 189:1-124.
    [3] Inoue K. Adv Polym Sci. 2000, 25:453-571.
    [4] Pispas S, Hadjichristidis N, Potemkin I, Khokhlov A. Effect of architecture on the micellization properties of block copolymers: A(2)B miktoarm stars vs AB diblocks[J]. Macromolecules. 2000, 33(5):1741-1746.
    [5] Cai Y L, Tang Y Q, Armes S P. Direct synthesis and stimulus-responsive micellization of Y-shaped hydrophilic block copolymers[J]. Macromolecules. 2004, 37(26):9728-9737.
    [6] Ge Z S, Zhou Y M, Xu J, Liu H W, Chen D Y, Liu S Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media[J]. Journal of the American Chemical Society. 2009, 131(5):1628-+.
    [7] Li C H, Hu J M, Yin J, Liu S Y. Click Coupling Fullerene onto Thermoresponsive Water-Soluble Diblock Copolymer and Homopolymer Chains at Defined Positions[J]. Macromolecules. 2009, 42(14):5007-5016.
    [8] Xu J, Ye J, Liu S Y. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior[J]. Macromolecules. 2007, 40(25):9103-9110.
    [9] Qiu X P, Tanaka F, Winnik F M. Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution[J]. Macromolecules. 2007, 40(20):7069-7071.
    [10] Braunecker W A, Matyjaszewski K. Controlled/living radical polymerization: Features,developments, and perspectives[J]. Prog Polym Sci. 2007, 32(1):93-146.
    [11] Matyjaszewski K, Xia J H. Atom transfer radical polymerization[J]. Chem Rev. 2001, 101(9):2921-2990.
    [12] Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization[J]. Prog Polym Sci. 2001, 26(3):337-377.
    [13] Patten T E, Matyjaszewski K. Atom transfer radical polymerization and the synthesis of polymeric materials[J]. Adv Mater. 1998, 10(12):901-915.
    [14] Chiefari J, Chong Y K, Ercole F, Krstina J, Jeffery J, Le T P T, et al. Living free-radical polymerization by reversible addition-fragmentation chain transfer: The RAFT process[J]. Macromolecules. 1998, 31(16):5559-5562.
    [15] Chong Y K, Le T P T, Moad G, Rizzardo E, Thang S H. A more versatile route to block copolymers and other polymers of complex architecture by living radical polymerization: The RAFT process[J]. Macromolecules. 1999, 32(6):2071-2074.
    [16] Perrier S, Takolpuckdee P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization[J]. J Polym Sci, Part A: Polym Chem. 2005, 43(22):5347-5393.
    [17] Hawker C J, Bosman A W, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations[J]. Chem Rev. 2001, 101(12):3661-3688.
    [18] Cheng C, Qi K, Khoshdel E, Wooley K L. Tandem synthesis of core-shell brush copolymers and their transformation to peripherally cross-linked and hollowed nanostructures[J]. J Am Chem Soc. 2006, 128(21):6808-6809.
    [19] Bielawski C W, Benitez D, Grubbs R H. An "endless" route to cyclic polymers[J]. Science. 2002, 297(5589):2041-2044.
    [20] Laurent B A, Grayson S M. An efficient route to well-defined macrocyclic polymers via "Click" cyclization[J]. J Am Chem Soc. 2006, 128(13):4238-4239.
    [21] Ge Z S, Zhou Y M, Xu J, Liu H W, Chen D Y, Liu S Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media[J]. J Am Chem Soc. 2009, 131(5):1628-1629.
    [22] Kricheldorf H R. Cyclic Polymers: Synthetic Strategies and Physical Properties[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2010, 48(2):251-284.
    [23] Honda S, Yamamoto T, Tezuka Y. Topology-Directed Control on Thermal Stability: Micelles Formed from Linear and Cyclized Amphiphilic Block Copolymers[J]. Journal of the American Chemical Society. 2010, 132(30):10251-10253.
    [24] Sun J, Deng C, Chen X S, Yu H J, Tian H Y, Sun J R, et al. Self-assembly of polypeptide-containing ABC-type triblock copolymers in aqueous solution and its pH dependence[J]. Biomacromolecules. 2007, 8(3):1013-1017.
    [25] Karatzas A, Iatrou H, Hadjichristidis N, Inoue K, Sugiyama K, Hirao A. Complex macromolecular chimeras[J]. Biomacromolecules. 2008, 9(7):2072-2080.
    [26] Rao J Y, Zhang Y F, Zhang J Y, Liu S Y. Facile Preparation of Well-Defined AB(2) Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry[J]. Biomacromolecules. 2008, 9(10):2586-2593.
    [27] Hedrick J L, Trollsas M, Hawker C J, Atthoff B, Claesson H, Heise A, et al. Dendrimer-like star block and amphiphilic copolymers by combination of ring opening and atom transfer radical polymerization[J]. Macromolecules. 1998, 31(25):8691-8705.
    [28] Choi Y R, Bae Y H, Kim S W. Star-shaped poly(ether-ester) block copolymers: Synthesis, characterization, and their physical properties[J]. Macromolecules. 1998, 31(25):8766-8774.
    [29] Beers K L, Gaynor S G, Matyjaszewski K, Sheiko S S, Moller M. The synthesis of densely grafted copolymers by atom transfer radical polymerization[J]. Macromolecules. 1998, 31(26):9413-9415.
    [30] Ostmark E, Harrisson S, Wooley K L, Malmstrom E E. Comb polymers prepared by ATRP from hydroxypropyl cellulose[J]. Biomacromolecules. 2007, 8(4):1138-1148.
    [31] Zhang M F, Muller A H E. Cylindrical polymer brushes[J]. J Polym Sci, Part A: Polym Chem. 2005, 43(16):3461-3481.
    [32] Zhang J Y, Zhou Y M, Zhu Z Y, Ge Z S, Liu S Y. Polyion complex micelles possessing thermoresponsive coronas and their covalent core stabilization via "click" chemistry[J]. Macromolecules. 2008, 41(4):1444-1454.
    [33] Pang X C, Wang G W, Jia Z F, Liu C, Huang J L. Preparation of the amphiphilic macro-rings of poly(ethylene oxide) with multi-polystyrene lateral chains and their extraction for dyes[J]. J Polym Sci, Part A: Polym Chem. 2007, 45(24):5824-5837.
    [34] Pang X C, Jing R K, Huang J L. Synthesis of amphiphilic macrocyclic graft copolymerconsisting of a poly(ethylene oxide) ring and multi-poly(epsilon-caprolactone) lateral chains[J]. Polymer. 2008, 49(4):893-900.
    [35] Li H Y, Jerome R, Lecomte P. Amphiphilic sun-shaped polymers by grafting macrocyclic copolyesters with PEO[J]. Macromolecules. 2008, 41(3):650-654.
    [36] Iatrou H, Willner L, Hadjichristidis N, Halperin A, Richter D. Aggregation phenomena of model PS/PI super-H-shaped block copolymers. Influence of the architecture[J]. Macromolecules. 1996, 29(2):581-591.
    [37] Li Y G, Shi P J, Pan C Y. Synthesis, characterization, and thermal behavior of H-shaped copolymers prepared by atom transfer radical polymerization[J]. Macromolecules. 2004, 37(14):5190-5195.
    [38] Xu J, Ge Z S, Zhu Z Y, Luo S Z, Liu H W, Liu S Y. Synthesis and micellization properties of double hydrophilic A(2)BA(2) and A(4)BA(4) non-linear block copolymers[J]. Macromolecules. 2006, 39(23):8178-8185.
    [39] Shi G Y, Pan C Y. An Efficient Synthetic Route to Well-Defined Theta-Shaped Copolymers[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2009, 47(10):2620-2630.
    [40] Tezuka Y, Tsuchitani A, Yoshioka Y, Oike H. Synthesis of theta-shaped poly(THF) by electrostatic self-assembly and covalent fixation with three-armed star telechelics having cyclic ammonium salt groups[J]. Macromolecules. 2003, 36(1):65-70.
    [41] Shi G Y, Tang X Z, Pan C Y. Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction[J]. Journal of Polymer Science Part a-Polymer Chemistry. 2008, 46(7):2390-2401.
    [42] Dong Y Q, Tong Y Y, Dong B T, Du F S, Li Z C. Preparation of Tadpole-Shaped Amphiphilic Cyclic PS-b-linear PEO via ATRP and Click Chemistry[J]. Macromolecules. 2009, 42(8):2940-2948.
    [43] Beinat S, Schappacher M, Deffieux A. Linear and semicyclic amphiphilic diblock copolymers .1. Synthesis and structural characterization of cyclic diblock copolymers of poly(hydroxyethyl vinyl ether) and linear polystyrene and their linear homologues[J]. Macromolecules. 1996, 29(21):6737-6743.
    [44] Li L Y, He W D, Li J, Han S C, Sun X L, Zhang B Y. Synthesis of Twin-Tail Tadpole-Shaped Hydrophilic Copolymers and Their Thermo-Responsive Behavior[J]. Journal ofPolymer Science Part a-Polymer Chemistry. 2009, 47(24):7066-7077.
    [45] Monteiro M J, Lonsdale D E. Various polystyrene topologies built from tailored cyclic polystyrene via CuAAC reactions[J]. Chemical Communications 2010, 46: 7945-7947.
    [46] Li H Y, Riva R, Jerome R, Lecomte P. Combination of ring-opening polymerization and "click" chemistry for the synthesis of an amphiphilic tadpole-shaped poly(epsilon-caprolactone) grafted by PEO[J]. Macromolecules. 2007, 40(4):824-831.
    [47] Adachi K, Irie H, Sato T, Uchibori A, Shiozawa M, Tezuka Y. Electrostatic self-assembly and covalent fixation with cationic and anionic telechelic precursors for new loop and branch polymer topologies[J]. Macromolecules. 2005, 38(24):10210-10219.
    [48] Kubo M, Hayashi T, Kobayashi H, Itoh T. Syntheses of tadpole- and eight-shaped polystyrenes using cyclic polystyrene as a building block[J]. Macromolecules. 1998, 31(4):1053-1057.
    [49] Ge Z S, Wang D, Zhou Y M, Liu H W, Liu S Y. Synthesis of Organic/Inorganic Hybrid Quatrefoil-Shaped Star-Cyclic Polymer Containing a Polyhedral Oligomeric Silsesquioxane Core[J]. Macromolecules. 2009, 42(8):2903-2910.
    [50] Tezuka Y, Oike H. Topological polymer chemistry: Systematic classification of nonlinear polymer topologies[J]. Journal of the American Chemical Society. 2001, 123(47):11570-11576.
    [51] Oike H, Uchibori A, Tsuchitani A, Kim H K, Tezuka Y. Designing loop and branch polymer topology with cationic star telechelics through effective selection of mono- and difunctional counteranions[J]. Macromolecules. 2004, 37(20):7595-7601.
    [52] Kubo M, Hayashi T, Kobayashi H, Tsuboi K, Itoh T. Synthesis of alpha-carboxyl, omega-amino heterodifunctional polystyrene and its intramolecular cyclization[J]. Macromolecules. 1997, 30(9):2805-2807.
    [53] Lepoittevin B, Perrot X, Masure M, Hemery P. New route to synthesis of cyclic polystyrenes using controlled free radical polymerization[J]. Macromolecules. 2001, 34(3):425-429.
    [54] Whittaker M R, Goh Y K, Gemici H, Legge T M, Perrier S, Monteiro M J. Synthesis of monocyclic and linear polystyrene using the reversible coupling/cleavage of thiol/disulfide groups[J]. Macromolecules. 2006, 39(26):9028-9034.
    [55] Han D H, Tong X, Zhao Y, Galstian T, Zhao Y. Cyclic Azobenzene-Containing Side-Chain Liquid Crystalline Polymers: Synthesis and Topological Effect on Mesophase Transition, Order,and Photoinduced Birefringence[J]. Macromolecules. 2010, 43(8):3664-3671.
    [56] Ye J, Xu J, Hu J M, Wang X F, Zhang G Z, Liu S Y, et al. Comparative study of temperature-induced association of cyclic and linear poly(N-isopropylacrylamide) chains in dilute solutions by laser light scattering and stopped-flow temperature jump[J]. Macromolecules. 2008, 41(12):4416-4422.
    [57] Peng Y, Liu H W, Zhang X Y, Liu S Y, Li Y S. Macrocycle-Terminated Core-Cross-Linked Star Polymers: Synthesis and Characterization[J]. Macromolecules. 2009, 42(17):6457-6462.
    [58] Sugai N, Heguri H, Ohta K, Meng Q Y, Yamamoto T, Tezuka Y. Effective Click Construction of Bridged- and Spiro-Multicyclic Polymer Topologies with Tailored Cyclic Prepolymers (kyklo-Telechelics)[J]. Journal of the American Chemical Society. 2010, 132(42):14790-14802.
    [59] Ge Z S, Liu S Y. Supramolecular Self-Assembly of Nonlinear Amphiphilic and Double Hydrophilic Block Copolymers in Aqueous Solutions[J]. Macromol Rapid Commun. 2009, 30(18):1523-1532.
    [60] Hu J M, Liu S Y. Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments[J]. Macromolecules. 2010, 43(20):8315-8330.
    [61] Xu J, Liu S Y. Polymeric nanocarriers possessing thermoresponsive coronas[J]. Soft Matter. 2008, 4(9):1745-1749.
    [62] Clampolini M, Nardi N. Five-Coordinated High- Spin Complexes of Bivalent Cobalt, Nickel, and Copper with Tris(2-dime thylaminoe thy1)amine[J]. Inorganic Chemistry. 1966, 5(1):41-44.
    [63] Wu P, Malkoch M, Hunt J N, Vestberg R, Kaltgrad E, Finn M G, et al. Multivalent, bifunctional dendrimers prepared by click chemistry[J]. Chem Commun. 2005, (46):5775-5777.
    [64] Xia Y, Yin X C, Burke N A D, Stover H D H. Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules. 2005, 38(14):5937-5943.
    [65] Xia Y, Burke N A D, Stover H D H. End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization[J]. Macromolecules. 2006, 39(6):2275-2283.
    [66] Zhu M Q, Wang L Q, Exarhos G J, Li A D Q. Thermosensitive gold nanoparticles[J]. J Am Chem Soc. 2004, 126(9):2656-2657.
    [67] Wu T, Zhang Y F, Wang X F, Liu S Y. Fabrication of hybrid silica nanoparticles densely grafted with thermoresponsive poly(N-isopropylacrylamide) brushes of controlled thickness via surface-initiated atom transfer radical polymerization[J]. Chem Mater. 2008, 20(1):101-109.
    [68] Luo S Z, Xu J, Zhu Z Y, Wu C, Liu S Y. Phase transition behavior of unimolecular micelles with thermoresponsive poly(N-isopropylacrylamide) coronas[J]. J Phys Chem B. 2006, 110(18):9132-9139.
    [69] Liu B, Perrier S. Thermoresponsive micelles from well-defined block copolymers synthesized via reversible addition-fragmentation chain transfer polymerization[J]. J Polym Sci, Part A: Polym Chem. 2005, 43(16):3643-3654.
    [70] Alarcon C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications[J]. Chem Soc Rev. 2005, 34(3):276-285.
    [71] Oh J K, Siegwart D J, Lee H I, Sherwood G, Peteanu L, Hollinger J O, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: Synthesis, biodegradation, in vitro release, and bioconjugation[J]. J Am Chem Soc. 2007, 129(18):5939-5945.
    [72] Sun H L, Guo B N, Li X Q, Cheng R, Meng F H, Liu H Y, et al. Shell-Sheddable Micelles Based on Dextran-SS-Poly(epsilon-caprolactone) Diblock Copolymer for Efficient Intracellular Release of Doxorubicin[J]. Biomacromolecules. 2010, 11(4):848-854.
    [73] Zhang W L, Li Y L, Liu L X, Sun Q Q, Shuai X T, Zhu W, et al. Amphiphilic Toothbrushlike Copolymers Based on Poly(ethylene glycol) and Poly(epsilon-caprolactone) as Drug Carriers with Enhanced Properties[J]. Biomacromolecules. 2010, 11(5):1331-1338.
    [74] Chung J E, Yokoyama M, Yamato M, Aoyagi T, Sakurai Y, Okano T. Thermo-responsive drug delivery from polymeric micelles constructed using block copolymers of poly(N-isopropylacrylamide) and poly(butylmethacrylate)[J]. J Controlled Release. 1999, 62(1-2):115-127.
    [1] Duncan R. The dawning era of polymer therapeutics[J]. Nat Rev Drug Discovery. 2003, 2(5):347-360.
    [2] Ding Z L, Fong R B, Long C J, Stayton P S, Hoffman A S. Size-dependent control of the binding of biotinylated proteins to streptavidin using a polymer shield[J]. Nature. 2001, 411(6833):59-62.
    [3] Caliceti P, Veronese F M. Pharmacokinetic and biodistribution properties of poly(ethylene glycol)-protein conjugates[J]. Adv Drug Delivery Rev. 2003, 55(10):1261-1277.
    [4] Heredia K L, Maynard H D. Synthesis of protein-polymer conjugates[J]. Org Biomol Chem.2007, 5(1):45-53.
    [5] Canalle L A, Lowik D W P M, van Hest J C M. Polypeptide-polymer bioconjugates[J]. Chem Soc Rev. 2010, 39(1):329-353.
    [6] Veronese F M, Harris J M. Preface - Introduction and overview of peptide and protein pegylation[J]. Adv Drug Delivery Rev. 2002, 54(4):453-456.
    [7] Roberts M J, Bentley M D, Harris J M. Chemistry for peptide and protein PEGylation[J]. Adv Drug Delivery Rev. 2002, 54(4):459-476.
    [8] Meng F H, Hennink W E, Zhong Z. Reduction-sensitive polymers and bioconjugates for biomedical applications[J]. Biomaterials. 2009, 30(12):2180-2198.
    [9] Ding Z L, Chen G H, Hoffman A S. Unusual properties of thermally sensitive oligomer-enzyme conjugates of poly(N-isopropylacrylamide)-trypsin[J]. Journal of Biomedical Materials Research. 1998, 39(3):498-505.
    [10] Magnusson J P, Bersani S, Salmaso S, Alexander C, Caliceti P. In Situ Growth of Side-Chain PEG Polymers from Functionalized Human Growth Hormone-A New Technique for Preparation of Enhanced Protein-Polymer Conjugates[J]. Bioconjugate Chem. 2010, 21(4):671-678.
    [11] Shi W, Dolai S, Averick S, Fernando S S, Saltos J A, L'Amoreaux W, et al. A General Methodology Toward Drug/Dye Incorporated Living Copolymer-Protein Hybrids: (NIRF Dye-Glucose) Copolymer-Avidin/BSA Conjugates as Prototypes[J]. Bioconjugate Chem. 2009, 20(8):1595-1601.
    [12] Velonia K, Rowan A E, Nolte R J M. Lipase polystyrene giant amphiphiles[J]. J Am Chem Soc. 2002, 124(16):4224-4225.
    [13] De P, Li M, Gondi S R, Sumerlin B S. Temperature-regulated activity of responsive polymer-protein conjugates prepared by grafting-from via RAFT polymerization[J]. J Am Chem Soc. 2008, 130(34):11288-11289.
    [14] Mantovani G, Lecolley F, Tao L, Haddleton D M, Clerx J, Cornelissen J J L M, et al. Design and synthesis of N-maleimido-functionalized hydrophilic polymers via copper-mediated living radical polymerization: A suitable alternative to PEGylation chemistry[J]. J Am Chem Soc. 2005, 127(9):2966-2973.
    [15] Tao L, Kaddis C S, Loo R R O, Grover G N, Loo J A, Maynard H D. Synthesis of Maleimide-End-Functionalized Star Polymers and Multimeric Protein-Polymer Conjugates[J].Macromolecules. 2009, 42(21):8028-8033.
    [16] Heredia K L, Grover G N, Tao L, Maynard H D. Synthesis of Heterotelechelic Polymers for Conjugation of Two Different Proteins[J]. Macromolecules. 2009, 42(7):2360-2367.
    [17] Da Pieve C, Williams P, Haddleton D M, Palmer R M J, Missailidis S. Modification of Thiol Functionalized Aptamers by Conjugation of Synthetic Polymers[J]. Bioconjugate Chem. 2010, 21(1):169-174.
    [18] Bulmus V, Ding Z L, Long C J, Stayton P S, Hoffman A S. Site-specific polymer-streptavidin bioconjugate for pH-controlled binding and triggered release of biotin[J]. Bioconjugate Chem. 2000, 11(1):78-83.
    [19] Li M, De P, Gondi S R, Sumerlin B S. Responsive polymer-protein bioconjugates prepared by RAFT polymerization and copper-catalyzed azide-alkyne click chemistry[J]. Macromol Rapid Commun. 2008, 29(12-13):1172-1176.
    [20] Dirks A J T, van Berkel S S, Hatzakis N S, Opsteen J A, van Delft F L, Cornelissen J J L M, et al. Preparation of biohybrid amphiphiles via the copper catalysed Huisgen [3+2] dipolar cycloaddition reaction[J]. Chem Commun. 2005, (33):4172-4174.
    [21] Govindaraju T, Jonkheijm P, Gogolin L, Schroeder H, Becker C F W, Niemeyer C M, et al. Surface immobilization of biomolecules by click sulfonamide reaction[J]. Chem Commun. 2008, (32):3723-3725.
    [22] Hong V, Presolski S I, Ma C, Finn M G. Analysis and Optimization of Copper-Catalyzed Azide-Alkyne Cycloaddition for Bioconjugation[J]. Angew Chem, Int Ed. 2009, 48(52):9879-9883.
    [23] Dirks A J, Cornelissen J J L M, Nolte R J M. Monitoring Protein-Polymer Conjugation by a Fluorogenic Cu(I)-Catalyzed Azide-Alkyne 1,3-Dipolar Cycloaddition[J]. Bioconjugate Chem. 2009, 20(6):1129-1138.
    [24] Breinbauer R, Kohn M. Azide-alkyne coupling: A powerful reaction for bioconjugate chemistry[J]. ChemBioChem. 2003, 4(11):1147-1149.
    [25] van Dijk M, Rijkers D T S, Liskamp R M J, van Nostrum C F, Hennink W E. Synthesis and Applications of Biomedical and Pharmaceutical Polymers via Click Chemistry Methodologies[J]. Bioconjugate Chem. 2009, 20(11):2001-2016.
    [26] Bontempo D, Heredia K L, Fish B A, Maynard H D. Cysteine-reactive polymers synthesizedby atom transfer radical polymerization for conjugation to proteins[J]. J Am Chem Soc. 2004, 126(47):15372-15373.
    [27] Liu J Q, Bulmus V, Herlambang D L, Barner-Kowollik C, Stenzel M H, Davis T P. In situ formation of protein-polymer conjugates through reversible addition fragmentation chain transfer polymerization[J]. Angew Chem, Int Ed. 2007, 46(17):3099-3103.
    [28] Heredia K L, Bontempo D, Ly T, Byers J T, Halstenberg S, Maynard H D. In situ preparation of protein - "Smart" polymer conjugates with retention of bioactivity[J]. J Am Chem Soc. 2005, 127(48):16955-16960.
    [29] Heredia K L, Nguyen T H, Chang C W, Bulmus V, Davis T P, Maynard H D. Reversible siRNA-polymer conjugates by RAFT polymerization[J]. Chem Commun. 2008, (28):3245-3247.
    [30] Tao L, Liu J Q, Davis T P. Branched Polymer-Protein Conjugates Made From Mid-Chain-Functional P(HPMA)[J]. Biomacromolecules. 2009, 10(10):2847-2851.
    [31] Tao L, Geng J, Chen G J, Xu Y J, Ladmiral V, Mantovani G, et al. Bioconjugation of biotinylated PAMAM dendrons to avidin[J]. Chem Commun. 2007, (33):3441-3443.
    [32] Hannink J M, Cornelissen J J L M, Farrera J A, Foubert P, De Schryver F C, Sommerdijk N A J M, et al. Protein-polymer hybrid amphiphiles[J]. Angew Chem, Int Ed. 2001, 40(24):4732-4734.
    [33] Oh J K, Siegwart D J, Lee H I, Sherwood G, Peteanu L, Hollinger J O, et al. Biodegradable nanogels prepared by atom transfer radical polymerization as potential drug delivery carriers: Synthesis, biodegradation, in vitro release, and bioconjugation[J]. J Am Chem Soc. 2007, 129(18):5939-5945.
    [34] Handwerger R G, Diamond S L. Biotinylated photocleavable polyethylenimine: Capture and triggered release of nucleic acids from solid supports[J]. Bioconjugate Chem. 2007, 18(3):717-723.
    [35] Xiong M P, Forrest M L, Karls A L, Kwon G S. Biotin-triggered release of poly(ethylene glycol)-avidin from biotinylated polyethylenimine enhances in vitro gene expression[J]. Bioconjugate Chem. 2007, 18(3):746-753.
    [36] Ke S, Wright J C, Kwon G S. Intermolecular interaction of avidin and PEGylated biotin[J]. Bioconjugate Chem. 2007, 18(6):2109-2114.
    [37] Kulkarni S, Schilli C, Muller A H E, Hoffman A S, Stayton P S. Reversible meso-scale smartpolymer-protein particles of controlled sizes[J]. Bioconjugate Chem. 2004, 15(4):747-753.
    [38] Wolfenden M L, Cloninger M J. Mannose/glucose-functionalized dendrimers to investigate the predictable tunability of multivalent interactions[J]. J Am Chem Soc. 2005, 127(35):12168-12169.
    [39] Ooya T, Eguchi M, Yui N. Supramolecular design for multivalent interaction: Maltose mobility along polyrotaxane enhanced binding with concanavalin A[J]. J Am Chem Soc. 2003, 125(43):13016-13017.
    [40] Hwang I, Baek K, Jung M, Kim Y, Park K M, Lee D W, et al. Noncovalent immobilization of proteins on a solid surface by cucurbit[7]uril-ferrocenemethylammonium pair, a potential replacement of biotin-avidin pair[J]. J Am Chem Soc. 2007, 129(14):4170-4171.
    [41] Velonia K, Thordarson P, Andres P R, Schubert U S, Rowan A E, Nolte R J M. Polymer-protein giant amphiphiles by metal-to-ligand coordination.[J]. polym prepr. 2003, 44:648-649.
    [42] Droumaguet B L, NIcolas J. Recent advances in the design of bioconjugates from controlled/living radical polymerization [J]. Polym Chem. 2010:DOI: 10.1039/b1039py00363k.
    [43] Nicolas J, Mantovani G, Haddleton D M. Living radical polymerization as a tool for the synthesis of polymer-protein/peptide bioconjugates[J]. Macromol Rapid Commun. 2007, 28(10):1083-1111.
    [44] Bontempo D, Maynard H D. Streptavidin as a macroinitiator for polymerization: In situ protein-polymer conjugate formation[J]. J Am Chem Soc. 2005, 127(18):6508-6509.
    [45] Le Droumaguet B, Velonia K. In situ ATRP-Mediated hierarchical formation of giant amphiphile bionanoreactors[J]. Angew Chem, Int Ed. 2008, 47(33):6263-6266.
    [46] Boyer C, Bulmus V, Liu J Q, Davis T P, Stenzel M H, Barner-Kowollik C. Well-defined protein-polymer conjugates via in situ RAFT polymerization[J]. J Am Chem Soc. 2007, 129(22):7145-7154.
    [47] Reynhout I C, Cornelissen J J L M, Nolte R J M. Synthesis of Polymer-Biohybrids: From Small to Giant Surfactants[J]. Acc Chem Res. 2009, 42(6):681-692.
    [48] Dirks A J, van Berkel S S, Amatdjais-Groenen H I V, Rutjes F P J T, Cornelissen J J L M, Nolte R J M. Synthesis and aggregation behavior of biohybrid amphiphiles composed of a tripeptidic head group and a polystyrene tail[J]. Soft Matter. 2009, 5(8):1692-1704.
    [49] Dirks A J, Nolte R J M, Cornelissen J J L M. Protein-Polymer Hybrid Amphiphiles[J]. Adv Mater. 2008, 20(20):3953-3957.
    [50] Le Droumaguet B, Mantovani G, Haddleton D M, Velonia K. Formation of giant amphiphiles by post-functionalization of hydrophilic protein-polymer conjugates[J]. J Mater Chem. 2007, 17(19):1916-1922.
    [51] Borner H G. Functional polymer-bioconjugates as molecular LEGO (R) bricks[J]. Macromol Chem Phys. 2007, 208(2):124-130.
    [52] Esser-Kahn A P, Francis M B. Protein-cross-linked polymeric materials through site-selective bioconjugation[J]. Angew Chem, Int Ed. 2008, 47(20):3751-3754.
    [53] Lackey C A, Murthy N, Press O W, Tirrell D A, Hoffman A S, Stayton P S. Hemolytic activity of pH-responsive polymer-streptavidin bioconjugates[J]. Bioconjugate Chem. 1999, 10(3):401-405.
    [54] Christman K L, Maynard H D. Protein micropatterns using a pH-responsive polymer and light[J]. Langmuir. 2005, 21(18):8389-8393.
    [55] Gil E S, Hudson S M. Stimuli-reponsive polymers and their bioconjugates[J]. Prog Polym Sci. 2004, 29(12):1173-1222.
    [56] Hamachi I, Shinkai S. Chemical modification of the structures and functions of proteins by the cofactor reconstitution method[J]. Eur J Org Chem. 1999, (3):539-549.
    [57] Ryabov A D, Goral V N, Gorton L, Csoregi E. Electrochemically and catalytically active reconstituted horseradish peroxidase with ferrocene-modified hemin and an artificial binding site[J]. Chem-Eur J. 1999, 5(3):961-967.
    [58] Matsuo T, Hayashi T, Hisaeda Y. Reductive activation of dioxygen by a myoglobin reconstituted with a flavohemin[J]. J Am Chem Soc. 2002, 124(38):11234-11235.
    [59] Blonder R, Katz E, Willner I, Wray V, Buckmann A F. Application of a nitrospiropyran-FAD-reconstituted glucose oxidase and charged electron mediators as optobioelectronic assemblies for the amperometric transduction of recorded optical signals: Control of the ''on''-''off'' direction of the photoswitch[J]. J Am Chem Soc. 1997, 119(49):11747-11757.
    [60] Kitagishi H, Oohora K, Yamaguchi H, Sato H, Matsuo T, Harada A, et al. Supramolecular hemoprotein linear assembly by successive interprotein heme-heme pocket interactions[J]. J AmChem Soc. 2007, 129(34):10326-10327.
    [61] Hayashi T, Hitomi Y, Ando T, Mizutani T, Hisaeda Y, Kitagawa S, et al. Peroxidase activity of myoglobin is enhanced by chemical mutation of heme-propionates[J]. J Am Chem Soc. 1999, 121(34):7747-7750.
    [62] Riklin A, Katz E, Willner I, Stocker A, Buckmann A F. Improving Enzyme-Electrode Contacts by Redox Modification of Cofactors[J]. Nature. 1995, 376(6542):672-675.
    [63] Hamachi I, Takashima H, Hu Y Z, Shinkai S, Oishi S. Cyclodextrin-appended myoglobin as a tool for construction of a donor-sensitizer-acceptor triad on a protein surface[J]. Chem Commun. 2000, (13):1127-1128.
    [64] Zimmermann H, Lindgren A, Schuhmann W, Gorton L. Anisotropic orientation of horseradish peroxidase by reconstitution on a thiol-modified gold electrode[J]. Chem-Eur J. 2000, 6(4):592-599.
    [65] Katz E, Buckmann A F, Willner I. Self-powered enzyme-based biosensors[J]. J Am Chem Soc. 2001, 123(43):10752-10753.
    [66] Reynhout I C, Cornelissen J J L M, Nolte R J M. Self-assembled architectures from biohybrid triblock copolymers[J]. J Am Chem Soc. 2007, 129(8):2327-2332.
    [67] Boerakker M J, Botterhuis N E, Bomans P H H, Frederik P M, Meijer E M, Nolte R J M, et al. Aggregation Behavior of giant amphiphiles prepared by cofactor reconstitution[J]. Chem-Eur J. 2006, 12(23):6071-6080.
    [68] Boerakker M J, Hannink J M, Bomans P H H, Frederik P M, Nolte R J M, Meijer E M, et al. Giant amphiphiles by cofactor reconstitution[J]. Angew Chem, Int Ed. 2002, 41(22):4239-4241.
    [69] Ciampolini M, Nardi N. Five-Coordinated High- Spin Complexes of Bivalent Cobalt, Nickel, and Copper with Tris(2 - dime thylaminoe thy1)amine[J]. Inorg Chem. 1966, 5:41-44.
    [70] Rao J Y, Zhang Y F, Zhang J Y, Liu S Y. Facile Preparation of Well-Defined AB(2) Y-Shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry[J]. Biomacromolecules. 2008, 9(10):2586-2593.
    [71] Xu J, Ye J, Liu S Y. Synthesis of well-defined cyclic poly(N-isopropylacrylamide) via click chemistry and its unique thermal phase transition behavior[J]. Macromolecules. 2007, 40(25):9103-9110.
    [72] Teale F W J. Teale's methods[J]. Biochim Biophys Acta. 1959, 35(4):543.
    [73] Asakura T. Hemoglobin porphyrin modification[J]. Methods Enzymol. 1978:447-455.
    [74] Hamachi I, Matsugi T, Wakigawa K, Shinkai S. Design and synthesis of a transition metal responsive semisynthetic myoglobin-bearing iminodiacetic acid moiety[J]. Inorg Chem. 1998, 37(7):1592-1597.
    [75] Hamachi I, Nakamura K, Fujita A, Kunitake T. Anisotropic Incorporation of Lipid-Anchored Myoglobin into a Phospholipid-Bilayer Membrane[J]. J Am Chem Soc. 1993, 115(12):4966-4970.
    [76] Rzaev Z M O, Dincer S, Piskin E. Functional copolymers of N-isopropylacrylamide for bioengineering applications[J]. Prog Polym Sci. 2007, 32(5):534-595.
    [77] Bontempo D, Li R C, Ly T, Brubaker C E, Maynard H D. One-step synthesis of low polydispersity, biotinylated poly(N-isopropylacrylamide) by ATRP[J]. Chem Commun. 2005:4702-4704.
    [78] Narain R, Gonzales M, Hoffman A S, Stayton P S, Krisnan K M. Synthesis of Monodisperse Biotinylated p(NIPAAm)-Coated Iron Oxide Magnetic Nanoparticles and their Bioconjugation to Streptavidin[J]. Langmuir. 2007, 23(11): 6299-6304.
    [79] Carboni B, Benalil A, Vaultier M. Aliphatic amino azides as key building blocks for efficient polyamine syntheses[J]. J. Org. Chem. 1993, 58:3736-3741.
    [80] Opsteen J A, Hest J C M V. Modular synthesis of block copolymers via cycloaddition of terminal azide and alkyne functionalized polymers[J]. Chem Commun. 2005:57-59.
    [81] Zhang Y F, Liu H, Dong H F, Li C H, Liu S Y. Micelles Possessing Mixed Cores and Thermoresponsive Shells Fabricated from Well-Defined Amphiphilic ABC Miktoarm Star Terpolymers[J]. J Polymer Sci Polymer Chem. 2009, 47:1636-1650.
    [1] Peer D, Karp J M, Hong S, FaroKHzad O C, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy[J]. Nature Nanotechnology. 2007, 2(12):751-760.
    [2] Torchilin V P. Multifunctional nanocarriers[J]. Adv Drug Delivery Rev. 2006,58(14):1532-1555.
    [3] Discher D E, Ortiz V, Srinivas G, Klein M L, Kim Y, David C A, et al. Emerging applications of polymersomes in delivery: From molecular dynamics to shrinkage of tumors[J]. Prog Polym Sci. 2007, 32(8-9):838-857.
    [4] Kabanov A V, Gendelman H E. Nanomedicine in the diagnosis and therapy of neuro degenerative disorders[J]. Prog Polym Sci. 2007, 32(8-9):1054-1082.
    [5] Rapoport N. Physical stimuli-responsive polymeric micelles for anti-cancer drug delivery[J]. Prog Polym Sci. 2007, 32(8-9):962-990.
    [6] Gabizon A, Goren D, Horowitz A T, Tzemach D, Lossos A, Siegal T. Long-circulating liposomes for drug delivery in cancer therapy: A review of biodistribution studies in tumor-bearing animals[J]. Adv Drug Delivery Rev. 1997, 24(2-3):337-344.
    [7] Needham D, Dewhirst M W. The development and testing of a new temperature-sensitive drug delivery system for the treatment of solid tumors[J]. Adv Drug Delivery Rev. 2001, 53(3):285-305.
    [8] Gregoriadis G. Engineering liposomes for drug delivery: Progress and problems[J]. Trends Biotechnol. 1995, 13(12):527-537.
    [9] Jeong B, Bae Y H, Lee D S, Kim S W. Biodegradable block copolymers as injectable drug-delivery systems[J]. Nature. 1997, 388(6645):860-862.
    [10] Kataoka K, Harada A, Nagasaki Y. Block copolymer micelles for drug delivery: design, characterization and biological significance[J]. Adv Drug Delivery Rev. 2001, 47(1):113-131.
    [11] Bae Y, Fukushima S, Harada A, Kataoka K. Design of environment-sensitive supramolecular assemblies for intracellular drug delivery: Polymeric micelles that are responsive to intracellular pH change[J]. Angew Chem, Int Ed. 2003, 42(38):4640-4643.
    [12] Du W J, Xu Z Q, Nystrom A M, Zhang K, Leonard J R, Wooley K L. F-19- and Fluorescently Labeled Micelles as Nanoscopic Assemblies for Chemotherapeutic Delivery[J]. Bioconjugate Chem. 2008, 19(12):2492-2498.
    [13] Xu P S, Li S Y, Li Q, Van Kirk E A, Ren J, Murdoch W J, et al. Virion-minnicking nanocapsules from pH-controlled hierarchical self-assembly for gene delivery[J]. Angew Chem, Int Ed. 2008, 47(7):1260-1264.
    [14] Tang Y Q, Liu S Y, Armes S P, Billingham N C. Solubilization and controlled release of ahydrophobic drug using novel micelle-forming ABC triblock copolymers[J]. Biomacromolecules. 2003, 4(6):1636-1645.
    [15] Guo X, Szoka F C. Chemical approaches to triggerable lipid vesicles for drug and gene delivery[J]. Acc Chem Res. 2003, 36(5):335-341.
    [16] Ge Z S, Xu J, Hu J M, Zhang Y F, Liu S Y. Synthesis and supramolecular self-assembly of stimuli-responsive water-soluble Janus-type heteroarm star copolymers[J]. Soft Matter. 2009, 5(20):3932-3939.
    [17] Brown M D, Schatzlein A, Brownlie A, Jack V, Wang W, Tetley L, et al. Preliminary characterization of novel amino acid based polymeric vesicles as gene and drug delivery agents[J]. Bioconjugate Chem. 2000, 11(6):880-891.
    [18] Tozaki H, Komoike J, Tada C, Maruyama T, Terabe A, Suzuki T, et al. Chitosan capsules for colon-specific drug delivery: Improvement of insulin absorption from the rat colon[J]. J Pharm Sci. 1997, 86(9):1016-1021.
    [19] Thombre A G, Cardinal J R, DeNoto A R, Herbig S M, Smith K L. Asymmetric membrane capsules for osmotic drug delivery - I. Development of a manufacturing process[J]. J Controlled Release. 1999, 57(1):55-64.
    [20] Zhang J Y, Jiang X, Zhang Y F, Li Y T, Liu S Y. Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability[J]. Macromolecules. 2007, 40(25):9125-9132.
    [21] Jiang X Z, Ge Z S, Xu J, Liu H, Liu S Y. Fabrication of multiresponsive shell cross-linked micelles possessing pH-controllable core swellability and thermo-tunable corona permeability[J]. Biomacromolecules. 2007, 8(10):3184-3192.
    [22] Thurmond K B, Kowalewski T, Wooley K L. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles[J]. J Am Chem Soc. 1996, 118(30):7239-7240.
    [23] Stein A, Melde B J, Schroden R C. Hybrid inorganic-organic mesoporous silicates - Nanoscopic reactors coming of age[J]. Adv Mater. 2000, 12(19):1403-1419.
    [24] Saha S, Leung K C F, Nguyen T D, Stoddart J F, Zink J I. Nanovalves[J]. Adv Funct Mater. 2007, 17(5):685-693.
    [25] Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery[J]. Angew Chem, Int Ed. 2007, 46(40):7548-7558.
    [26] Vallet-Regi M, Ramila A, del Real R P, Perez-Pariente J. A new property of MCM-41: Drug delivery system[J]. Chem Mater. 2001, 13(2):308-311.
    [27] Manzano M, Vallet-RegíM. New developments in ordered mesoporous materials for drug delivery[J]. J Mater Chem. 2010:DOI: 10.1039/b922651f.
    [28] Wang Y J, Price A D, Caruso F. Nanoporous colloids: building blocks for a new generation of structured materials[J]. J Mater Chem. 2009, 19(36):6451-6464.
    [29] Wang Y J, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation[J]. Chem Mater. 2005, 17(5):953-961.
    [30] Wang Y J, Caruso F. Enzyme encapsulation in nanoporous silica spherest[J]. Chem Commun. 2004, (13):1528-1529.
    [31] Giri S, Trewyn B G, Stellmaker M P, Lin V S Y. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles[J]. Angew Chem, Int Ed. 2005, 44(32):5038-5044.
    [32] Vivero-Escoto J L, Slowing I I, Wu C W, Lin V S Y. Photoinduced Intracellular Controlled Release Drug Delivery in Human Cells by Gold-Capped Mesoporous Silica Nanosphere[J]. J Am Chem Soc. 2009, 131(10):3462-3463.
    [33] Lai C Y, Trewyn B G, Jeftinija D M, Jeftinija K, Xu S, Jeftinija S, et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules[J]. J Am Chem Soc. 2003, 125(15):4451-4459.
    [34] Torney F, Trewyn B G, Lin V S Y, Wang K. Mesoporous silica nanoparticles deliver DNA and chemicals into plants[J]. Nature Nanotechnology. 2007, 2(5):295-300.
    [35] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, et al. Uniform Mesoporous Dye-Doped Silica Nanoparticles Decorated with Multiple Magnetite Nanocrystals for Simultaneous Enhanced Magnetic Resonance Imaging, Fluorescence Imaging, and Drug Delivery[J]. J Am Chem Soc. 2010, 132(2):552-557.
    [36] Liu R, Zhang Y, Zhao X, Agarwal A, Muller L J, Feng P Y. pH-Responsive Nanogated Ensemble Based on Gold-Capped Mesoporous Silica through an Acid-Labile Acetal Linker[J]. J Am Chem Soc. 2010, 132(24):1500-1501.
    [37] Trewyn B G, Slowing I I, Giri S, Chen H T, Lin V S Y. Synthesis and functionalization of amesoporous silica nanoparticle based on the sol-gel process and applications in controlled release[J]. Acc Chem Res. 2007, 40(9):846-853.
    [38] Aznar E, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Amoros P, et al. pH- and Photo-Switched Release of Guest Molecules from Mesoporous Silica Supports[J]. J Am Chem Soc. 2009, 131(19):6833-6843.
    [39] Nguyen T D, Leung K C F, Liong M, Liu Y, Stoddart J F, Zink J I. Versatile supramolecular nanovalves reconfigured for light activation[J]. Adv Funct Mater. 2007, 17(13):2101-2110.
    [40] Schlossbauer A, Kecht J, Bein T. Biotin-Avidin as a Protease-Responsive Cap System for Controlled Guest Release from Colloidal Mesoporous Silica[J]. Angew Chem, Int Ed. 2009, 48(17):3092-3095.
    [41] Climent E, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, Rurack K, et al. The Determination of Methylmercury in Real Samples Using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification[J]. Angew Chem, Int Ed. 2009, 48(45):8519-8522.
    [42] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, et al. Enzyme-responsive snap-top covered silica nanocontainers[J]. J Am Chem Soc. 2008, 130(8):2382-2383.
    [43] Mal N K, Fujiwara M, Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica[J]. Nature. 2003, 421(6921):350-353.
    [44] Radu D R, Lai C Y, Wiench J W, Pruski M, Lin V S Y. Gatekeeping layer effect: A poly(lactic acid)-coated mesoporous silica nanosphere-based fluorescence probe for detection of amino-containing neurotransmitters[J]. J Am Chem Soc. 2004, 126(6):1640-1641.
    [45] Lu J, Choi E, Tamanoi F, Zink J I. Light-activated nanoimpeller-controlled drug release in cancer cells[J]. Small. 2008, 4(4):421-426.
    [46] Angelos S, Yang Y W, Patel K, Stoddart J F, Zink J I. pH-responsive supramolecular nanovalves based on cucurbit[6]uril pseudorotaxanes[J]. Angew Chem, Int Ed. 2008, 47(12):2222-2226.
    [47] Climent E, Bernardos A, Martinez-Manez R, Maquieira A, Marcos M D, Pastor-Navarro N, et al. Controlled Delivery Systems Using Antibody-Capped Mesoporous Nanocontainers[J]. J Am Chem Soc. 2009, 131(39):14075-14080.
    [48] Park C, Kim H, Kim S, Kim C. Enzyme Responsive Nanocontainers with CyclodextrinGatekeepers and Synergistic Effects in Release of Guests[J]. J Am Chem Soc. 2009, 131(46):16614-16615.
    [49] Park C, Lee K, Kim C. Photoresponsive Cyclodextrin-Covered Nanocontainers and Their Sol-Gel Transition Induced by Molecular Recognition[J]. Angew Chem, Int Ed. 2009, 48(7):1275-1278.
    [50] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. Light-Operated Mechanized Nanoparticles[J]. J Am Chem Soc. 2009, 131(5):1686-1687.
    [51] Bernardos A, Aznar E, Marcos M D, Martinez-Manez R, Sancenon F, Soto J, et al. Enzyme-Responsive Controlled Release Using Mesoporous Silica Supports Capped with Lactose[J]. Angew Chem, Int Ed. 2009, 48(32):5884-5887.
    [52] Liu J S, Du X Z. pH- and competitor-driven nanovalves of cucurbit[7]uril pseudorotaxanes based on mesoporous silica supports for controlled release[J]. J Mater Chem. 2010:DOI: 10.1039/b915510d.
    [53] Liu R, Zhao X, Wu T, Feng P Y. Tunable Redox-Responsive Hybrid Nanogated Ensembles[J]. J Am Chem Soc. 2008, 130(44):14418-14419.
    [54] Liu R, Zhang Y, Feng P Y. Multiresponsive Supramolecular Nanogated Ensembles[J]. J Am Chem Soc. 2009, 131(42):15128-15129.
    [55] Hong C Y, Li X, Pan C Y. Fabrication of smart nanocontainers with a mesoporous core and a pH-responsive shell for controlled uptake and release[J]. J Mater Chem. 2009, 19(29):5155-5160.
    [56] Hong C Y, Li X, Pan C Y. Smart core-shell nanostructure with a mesoporous core and a stimuli-responsive nanoshell synthesized via surface reversible addition-fragmentation chain transfer polymerization[J]. Journal of Physical Chemistry C. 2008, 112(39):15320-15324.
    [57] Golovina V A, Blaustein M P. Spatially and functionally distinct Ca2+ stores in sarcoplasmic and endoplasmic reticulum[J]. Science. 1997, 275(5306):1643-1648.
    [58] Gottlieb R A, Dosanjh A. Mutant cystic fibrosis transmembrane conductance regulator inhibits acidification and apoptosis in C127 cells: Possible relevance to cystic fibrosis[J]. Proc Natl Acad Sci U S A. 1996, 93(8):3587-3591.
    [59] Yuli I, Oplatka A. Cytosolic acidification as an early transductory signal of human neutrophil [J]. Science. 1987, 235:340-342.
    [60] Gerweck L E, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: Potentialexploitation for the treatment of cancer[J]. Cancer Res. 1996, 56(6):1194-1198.
    [61] Ojugo A S E, McSheehy P M J, McIntyre D J O, McCoy C, Stubbs M, Leach M O, et al. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous F-19 and P-31 probes[J]. Nmr in Biomedicine. 1999, 12(8):495-504.
    [62] Pollak A, Blumenfeld H, Wax M, Baughn R L, Whitesides G M. Enzyme Immobilization by Condensation Copolymerization into Cross-Linked Polyacrylamide Gels[J]. J Am Chem Soc. 1980, 102:6324-6336.
    [63] Mitsukami Y, Donovan M S, Lowe A B, McCormick C L. Water-soluble polymers. 81. Direct synthesis of hydrophilic styrenic-based homopolymers and block copolymers in aqueous solution via RAFT[J]. Macromolecules. 2001, 34(7):2248-2256.
    [64] von Werne T, Patten T E. Atom transfer radical polymerization from nanoparticles: A tool for the preparation of well-defined hybrid nanostructures and for understanding the chemistry of controlled/"living" radical polymerizations from surfaces[J]. J Am Chem Soc. 2001, 123(31):7497-7505.
    [65] Li Y T, Lokitz B S, Armes S P, McCormick C L. Synthesis of reversible shell cross-linked micelles for controlled release of bioactive agents[J]. Macromolecules. 2006, 39(8):2726-2728.
    [66] Vosloo J J, Tonge M P, Fellows C M, D'Agosto F, Sanderson R D, Gilbert R G. Synthesis of comblike poly(butyl methacrylate) using reversible addition-fragmentation chain transfer and an activated ester[J]. Macromolecules. 2004, 37(7):2371-2382.
    [67] Erout M N, Troesch A, Pichot C, Cros P. Preparation of conjugates between oligonucleotides and N-vinylpyrrolidone/N-acryloxysuccinimide copolymers and applications in nucleic acid assays to improve sensitivity[J]. Bioconjugate Chem. 1996, 7(5):568-575.
    [68] Li Y T, Lokitz B S, McCormick C L. RAFT synthesis of a thermally responsive ABC triblock copolymer incorporating N-acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media[J]. Macromolecules. 2006, 39(1):81-89.
    [69] Rao J Y, Xu J, Luo S Z, Liu S Y. Cononsolvency-induced micellization of pyrene end-labeled diblock copolymers of N-isopropylacrylamide and oligo(ethylene glycol) methyl ether methacrylate[J]. Langmuir. 2007, 23(23):11857-11865.
    [70] Jochum F D, zur Borg L, Roth P J, Theato P. Thermo- and Light-Responsive PolymersContaining Photoswitchable Azobenzene End Groups[J]. Macromolecules. 2009, 42(20):7854-7862.
    [71] Perrier S, Takolpuckdee P. Macromolecular design via reversible addition-fragmentation chain transfer (RAFT)/Xanthates (MADIX) polymerization[J]. J Polym Sci, Part A: Polym Chem. 2005, 43(22):5347-5393.
    [72] Favier A, Charreyre M T. Experimental requirements for an efficient control of free-radical polymerizations via the reversible addition-fragmentation chain transfer (RAFT) process[J]. Macromol Rapid Commun. 2006, 27(9):653-692.
    [73] Relogio P, Charreyre M T, Farinha J P S, Martinho J M G, Pichot C. Well-defined polymer precursors synthesized by RAFT polymerization of N,N-dimethylacrylamide/N-acryloxysuccinimide: random and block copolymers[J]. Polymer. 2004, 45(26):8639-8649.
    [74] Guan J J, Hong Y, Ma Z W, Wagner W R. Protein-reactive, thermoresponsive copolymers with high flexibility and biodegradability[J]. Biomacromolecules. 2008, 9(4):1283-1292.
    [75] Daffy L M, de Silva A P, Gunaratne H Q N, Huber C, Lynch P L M, Werner T, et al. Arenedicarboximide building blocks for fluorescent photoinduced electron transfer pH sensors applicable with different media and communication wavelengths[J]. Chem-Eur J. 1998, 4(9):1810-1815.
    [76] Charier S, Ruel O, Baudin J B, Alcor D, Allemand J F, Meglio A, et al. Photophysics of a series of efficient fluorescent pH probes for dual-emission-wavelength measurements in aqueous solutions[J]. Chem-Eur J. 2006, 12(4):1097-1113.
    [77] de Silva A P, de Silva S S K, Goonesekera N C W, Gunaratne H Q N, Lynch P L M, Nesbitt K R, et al. Analog parallel processing of molecular sensory information[J]. J Am Chem Soc. 2007, 129(11):3050-3051.
    [78] Harbuzaru B V, Corma A, Rey F, Jorda J L, Ananias D, Carlos L D, et al. A Miniaturized Linear pH Sensor Based on a Highly Photoluminescent Self-Assembled Europium(III) Metal-Organic Framework[J]. Angew Chem, Int Ed. 2009, 48(35):6476-6479.
    [79] Uchiyama S, Makino Y. Digital fluorescent pH sensors[J]. Chem Commun. 2009, 2646-2648.
    [80] Modi S, Swetha M G, Goswami D, Gupta G D, Mayor S, Krishnan Y. A DNA nanomachinethat maps spatial and temporal pH changes inside living cells[J]. Nature Nanotechnology. 2009, 4(5):325-330.
    [81] de Silva A P, Rice T E. A small supramolecular system which emulates the unidirectional, path-selective photoinduced electron transfer (PET) of the bacterial photosynthetic reaction centre (PRC)[J]. Chem Commun. 1999, 163-164
    [82] Zhu Y F, Shi J L, Shen W H, Dong X P, Feng J W, Ruan M L, Li Y S. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core-shell structure[J]. Angew. Chem. Int. Ed. 2005, 44: 5083-5087.
    [83] Zhu C L, Song X Y, Zhou W H, Yang H H, Wen Y H, Wang X R. An efficient cell-targeting and intracellular controlled-release drug delivery system based on MSN-PEM-aptamer conjugates[J]. J. Mater. Chem. 2009, 19: 7765–7770.
    [84] Zhou Z X, Shen Y Q, Tang J B, Fan M H, Kirk E A V, Murdoch W J, Radosz M. Charge-reversal drug conjugate for targeted cancer cell nuclear drug delivery[J]. Adv. Funct. Mater. 2009, 19: 3580–3589.
    [85] Du J Z, Sun T M, Song W J, Wu J, Wang J. A Tumor-Acidity-Activated Charge-Conversional Nanogel as an Intelligent Vehicle for Promoted Tumoral-Cell Uptake and Drug Delivery[J]. Angew. Chem. Int. Ed. 2010, 49: 3621-3626.
    [86] Li S M, O’Halloran T V, Nguyen S T. Polymer-caged nanobins for synergistic cisplatin-doxorubicin combination chemotherapy[J]. J Am Chem Soc. 2010, DOI: 10.1021/ja107333g
    [87] Thierry B, Al-Ejeh F, Khatri A, Yuan Z, Russell P J, Ping S, Brown M P, Majewshi P. Multifunctional core–shell magnetic cisplatin nanocarriers[J]. Chem Commun. 2009, 7348-7350.
    [88] Wang Y J, Caruso F. Mesoporous silica spheres as supports for enzyme immobilization and encapsulation[J]. Chem. Mater. 2005, 17: 953-961.
    [1] Boening D W. Ecological effects, transport, and fate of mercury: a general review[J]. Chemosphere. 2000, 40(12):1335-1351.
    [2] Clarkson T W, Magos L, Myers G J. The toxicology of mercury - Current exposures and clinical manifestations[J]. N Engl J Med. 2003, 349(18):1731-1737.
    [3] Kim H N, Lee M H, Kim H J, Kim J S, Yoon J. A new trend in rhodamine-based chemosensors: application of spirolactam ring-opening to sensing ions[J]. Chem Soc Rev. 2008, 37(8):1465-1472.
    [4] Nolan E M, Lippard S J. Tools and tactics for the optical detection of mercuric ion[J]. Chem Rev. 2008, 108(9):3443-3480.
    [5] Guo X F, Qian X H, Jia L H. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution[J]. J Am Chem Soc. 2004, 126(8):2272-2273.
    [6] Yoon S, Miller E W, He Q, Do P H, Chang C J. A bright and specific fluorescent sensor for mercury in water, cells, and tissue[J]. Angew Chem, Int Ed. 2007, 46(35):6658-6661.
    [7] Ros-Lis J V, Marcos M D, Martinez-Manez R, Rurack K, Soto J. A regenerative chemodosimeter based on metal-induced dye formation for the highly selective and sensitive optical determination of Hg2+ ions[J]. Angew Chem, Int Ed. 2005, 44(28):4405-4407.
    [8] Wang J B, Qian X H. Two regioisomeric and exclusively selective Hg(II) sensor molecules composed of a naphthalimide fluorophore and an o-phenylenediamine derived triamide receptor[J]. Chem Commun. 2006, (1):109-111.
    [9] Liu B, Tian H. A selective fluorescent ratiometric chemodosimeter for mercury ion[J]. Chem Commun. 2005, (25):3156-3158.
    [10] Yang Y K, Yook K J, Tae J. A rhodamine-based fluorescent and colorimetric chemodosimeter for the rapid detection of Hg2+ ions in aqueous media[J]. J Am Chem Soc. 2005, 127(48):16760-16761.
    [11] Hennrich G, Sonnenschein H, Resch-Genger U. Redox switchable fluorescent probe selective for either Hg(II) or Cd(II) and Zn(II)[J]. J Am Chem Soc. 1999, 121(21):5073-5074.
    [12] Ko S K, Yang Y K, Tae J, Shin I. In vivo monitoring of mercury ions using a rhodamine-based molecular probe[J]. J Am Chem Soc. 2006, 128(43):14150-14155.
    [13] Yang Y K, Ko S K, Shin I, Tae J. Synthesis of a highly metal-selective rhodamine-based probe and its use for the in vivo monitoring of mercury[J]. Nature Protocols. 2007, 2(7):1740-1745.
    [14] Lee M H, Cho B K, Yoon J, Kim J S. Selectively chemodosimetric detection of Hg(II) in aqueous media[J]. Org Lett. 2007, 9(22):4515-4518.
    [15] Rurack K, Resch-Genger U, Bricks J L, Spieles M. Cation-triggered 'switching on' of the red/near infra-red (NIR) fluorescence of rigid fluorophore-spacer-receptor ionophores[J]. Chem Commun. 2000, (21):2103-2104.
    [16] Zhang G X, Zhang D Q, Yin S W, Yang X D, Shuai Z, Zhu D B. 1,3-Dithiole-2-thionederivatives featuring an anthracene unit: new selective chemodosimeters for Hg(II) ion[J]. Chem Commun. 2005, (16):2161-2163.
    [17] Shi W, Ma H M. Rhodamine B thiolactone: a simple chemosensor for Hg2+ in aqueous media[J]. Chem Commun. 2008, (16):1856-1858.
    [18] Wu D Y, Huang W, Duan C Y, Lin Z H, Meng Q J. Highly sensitive fluorescent probe for selective detection of Hg2+ in DMF aqueous media[J]. Inorg Chem. 2007, 46(5):1538-1540.
    [19] Prodi L, Bargossi C, Montalti M, Zaccheroni N, Su N, Bradshaw J S, et al. An effective fluorescent chemosensor for mercury ions[J]. J Am Chem Soc. 2000, 122(28):6769-6770.
    [20] Winkler J D, Bowen C M, Michelet V. Photodynamic fluorescent metal ion sensors with parts per billion sensitivity[J]. J Am Chem Soc. 1998, 120(13):3237-3242.
    [21] Rurack K, Kollmannsberger M, Resch-Genger U, Daub J. A selective and sensitive fluoroionophore for Hg-II, Ag-I, and Cu-II with virtually decoupled fluorophore and receptor units[J]. J Am Chem Soc. 2000, 122(5):968-969.
    [22] Song K C, Kim J S, Park S M, Chung K C, Ahn S, Chang S K. Fluorogenic Hg2+-selective chemodosimeter derived from 8-hydroxyquinoline[J]. Org Lett. 2006, 8(16):3413-3416.
    [23] Zheng H, Qian Z H, Xu L, Yuan F F, Lan L D, Xu J G. Switching the recognition preference of rhodamine B spirolactam by replacing one atom: Design of rhodamine B thiohydrazide for recognition of Hg(II) in aqueous solution[J]. Org Lett. 2006, 8(5):859-861.
    [24] Lee M H, Wu J S, Lee J W, Jung J H, Kim J S. Highly sensitive and selective chemosensor for Hg2+ based on the rhodamine fluorophore[J]. Org Lett. 2007, 9(13):2501-2504.
    [25] Shiraishi Y, Maehara H, Ishizumi K, Hirai T. Hg(II)-Selective excimer emission of a bisnaphthyl azadiene derivative[J]. Org Lett. 2007, 9(16):3125-3128.
    [26] Brummer O, La Clair J J, Janda K D. A colorimetric ligand for mercuric ion[J]. Org Lett. 1999, 1(3):415-418.
    [27] Zhang X L, Xiao Y, Qian X H. A Ratiometric Fluorescent Probe Based on FRET for Imaging Hg2+ Ions in Living Cells[J]. Angew Chem, Int Ed. 2008, 47(42):8025-8029.
    [28] Li C Y, Zhang X B, Qiao L, Zhao Y, He C M, Huan S Y, et al. Naphthalimide-Porphyrin Hybrid Based Ratiometric Bioimaging Probe for Hg2+: Well-Resolved Emission Spectra and Unique Specificity[J]. Anal Chem. 2009, 81(24):9993-10001.
    [29] Nolan E M, Lippard S J. A "Turn-On" fluorescent sensor for the selective detection ofmercuric ion in aqueous media[J]. J Am Chem Soc. 2003, 125(47):14270-14271.
    [30] Yoon S, Albers A E, Wong A P, Chang C J. Screening mercury levels in fish with a selective fluorescent chemosensor[J]. J Am Chem Soc. 2005, 127(46):16030-16031.
    [31] Caballero A, Martinez R, Lloveras V, Ratera I, Vidal-Gancedo J, Wurst K, et al. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines[J]. J Am Chem Soc. 2005, 127(45):15666-15667.
    [32] Coronado E, Galan-Mascaros J R, Marti-Gastaldo C, Palomares E, Durrant J R, Vilar R, et al. Reversible colorimetric probes for mercury sensing[J]. J Am Chem Soc. 2005, 127(35):12351-12356.
    [33] Nolan E M, Lippard S J. Turn-on and ratiometric mercury sensing in water with a red-emitting probe[J]. J Am Chem Soc. 2007, 129(18):5910-5918.
    [34] Descalzo A B, Martinez-Manez R, Radeglia R, Rurack K, Soto J. Coupling selectivity with sensitivity in an integrated chemosensor framework: Design of a Hg2+-responsive probe, operating above 500 nm[J]. J Am Chem Soc. 2003, 125(12):3418-3419.
    [35] Coskun A, Akkaya E U. Signal ratio amplification via modulation of resonance energy transfer: Proof of principle in an emission ratiometric Hg(II) sensor[J]. J Am Chem Soc. 2006, 128(45):14474-14475.
    [36] Wu D, Descalzo A B, Weik F, Emmerling F, Shen Z, You X Z, et al. A core-modified rubyrin with meso-aryl substituents and phenanthrene-fused pyrrole rings: A highly conjugated near-infrared dye and Hg2+ probe[J]. Angew Chem, Int Ed. 2008, 47(1):193-197.
    [37] Ho M L, Chen K Y, Lee G H, Chen Y C, Wang C C, Lee J F, et al. Mercury(II) Recognition and Fluorescence Imaging in Vitro through a 3D-Complexation Structure[J]. Inorg Chem. 2009, 48(21):10304-10311.
    [38] Shi W, Sun S N, Li X H, Ma H M. Imaging Different Interactions of Mercury and Silver with Live Cells by a Designed Fluorescence Probe Rhodamine B Selenolactone[J]. Inorg Chem. 2010, 49(3):1206-1210.
    [39] Voutsadaki S, Tsikalas G K, Klontzas E, Froudakis G E, Katerinopoulos H E. A "turn-on" coumarin-based fluorescent sensor with high selectivity for mercury ions in aqueous media[J]. Chem Commun. 2010, 46(19):3292-3294.
    [40] Wu J S, Hwang I C, Kim K S, Kim J S. Rhodamine-based Hg2+-selective chemodosimeter inaqueous solution: Fluorescent OFF-ON[J]. Org Lett. 2007, 9(5):907-910.
    [41] Freeman R, Finder T, Willner I. Multiplexed Analysis of Hg2+ and Ag+ Ions by Nucleic Acid Functionalized CdSe/ZnS Quantum Dots and Their Use for Logic Gate Operations[J]. Angew Chem, Int Ed. 2009, 48(42):7818-7821.
    [42] Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles[J]. Angew Chem, Int Ed. 2007, 46(22):4093-4096.
    [43] Miyake Y, Togashi H, Tashiro M, Yamaguchi H, Oda S, Kudo M, et al. Mercury(II)-mediated formation of thymine-Hg-II-thymine base pairs in DNA duplexes[J]. J Am Chem Soc. 2006, 128(7):2172-2173.
    [44] Zhu X J, Fu S T, Wong W K, Guo H P, Wong W Y. A near-infrared-fluorescent chemodosimeter for mercuric ion based on an expanded porphyrin[J]. Angew Chem, Int Ed. 2006, 45(19):3150-3154.
    [45] Lee J S, Mirkin C A. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles[J]. Anal Chem. 2008, 80(17):6805-6808.
    [46] Liu C W, Huang C C, Chang H T. Highly Selective DNA-Based Sensor for Lead(II) and Mercury(II) Ions[J]. Anal Chem. 2009, 81(6):2383-2387.
    [47] Guo W W, Yuan J P, Wang E K. Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion[J]. Chem Commun. 2009, (23):3395-3397.
    [48] Chen P, He C A. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions[J]. J Am Chem Soc. 2004, 126(3):728-729.
    [49] Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury(II) in aqueous solutions[J]. Angew Chem, Int Ed. 2004, 43(33):4300-4302.
    [50] Matsushita M, Meijler M M, Wirsching P, Lerner R A, Janda K D. A blue fluorescent anti body-cofactor sensor for mercury[J]. Org Lett. 2005, 7(22):4943-4946.
    [51] Dave N, Chan M Y, Huang P J J, Smith B D, Liu J W. Regenerable DNA-Functionalized Hydrogels for Ultrasensitive, Instrument-Free Mercury(II) Detection and Removal in Water[J]. J Am Chem Soc. 2010, 132(36):12668-12673.
    [52] Chan D S H, Lee H M, Che C M, Leung C H, Ma D L. A selective oligonucleotide-basedluminescent switch-on probe for the detection of nanomolar mercury(II) ion in aqueous solution[J]. Chem Commun. 2009, (48):7479-7481.
    [53] Thomas S W, Joly G D, Swager T M. Chemical sensors based on amplifying fluorescent conjugated polymers[J]. Chem Rev. 2007, 107(4):1339-1386.
    [54] Liu X F, Tang Y L, Wang L H, Zhang J, Song S P, Fan C H, et al. Optical detection of mercury(II) in aqueous solutions by using conjugated polymers and label-free oligonucleotides[J]. Adv Mater. 2007, 19(11):1471-1474.
    [55] Liu S J, Fang C, Zhao Q, Fan Q L, Huang W. A highly selective, colorimetric, and fluorometric multisignaling chemosensor for Hg2+ based on poly(p-phenyleneethynylene) containing benzo[2,1,3]thiadiazole[J]. Macromol Rapid Commun. 2008, 29(14):1212-1215.
    [56] Fan L J, Zhang Y, Jones W E. Design and synthesis of fluorescence "turn-on" chemosensors based on photoinduced electron transfer in conjugated polymers[J]. Macromolecules. 2005, 38(7):2844-2849.
    [57] Kim I B, Bunz U H F. Modulating the sensory response of a conjugated polymer by proteins: An agglutination assay for mercury ions in water[J]. J Am Chem Soc. 2006, 128(9):2818-2819.
    [58] Qin C J, Wu X F, Gao B X, Tong H, Wang L X. Amino Acid-Functionalized Polyfluorene as a Water-Soluble Hg2+ Chemosensor with High Solubility and High Photoluminescence Quantum Yield[J]. Macromolecules. 2009, 42(15):5427-5429.
    [59] Li C H, Liu S Y. Responsive nanogel-based dual fluorescent sensors for temperature and Hg2+ ions with enhanced detection sensitivity[J]. J Mater Chem. 2010, 20:10716-10723.
    [60] Huang C C, Yang Z, Lee K H, Chang H T. Synthesis of highly fluorescent gold nanoparticles for sensing Mercury(II)[J]. Angew Chem, Int Ed. 2007, 46(36):6824-6828.
    [61] Rex M, Hernandez F E, Campiglia A D. Pushing the limits of mercury sensors with gold nanorods[J]. Anal Chem. 2006, 78(2):445-451.
    [62] Darbha G K, Ray A, Ray P C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish[J]. Acs Nano. 2007, 1(3):208-214.
    [63] Lee S J, Lee J E, Seo J, Jeong I Y, Lee S S, Jung J H. Optical sensor based on nanomaterial for the selective detection of toxic metal ions[J]. Adv Funct Mater. 2007, 17(17):3441-3446.
    [64] Adhikari B, Banerjee A. Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclustersand Hg-II Sensing[J]. Chem Mater. 2010, 22(15):4364-4371.
    [65] Bera R K, Das A K, Raj C R. Enzyme-Cofactor-Assisted Photochemical Synthesis of Ag Nanostructures and Shape-Dependent Optical Sensing of Hg(II) Ions[J]. Chem Mater. 2010, 22(15):4505-4511.
    [66] Sasaki D Y, Padilla B E. Dithioamide metal ion receptors on fluorescent lipid bilayers for the selective optical detection of mercuric ion[J]. Chem Commun. 1998, (15):1581-1582.
    [67] Hu J M, Li C H, Liu S Y. Hg2+-Reactive Double Hydrophilic Block Copolymer Assemblies as Novel Multifunctional Fluorescent Probes with Improved Performance[J]. Langmuir. 2010, 26(2):724-729.
    [68] Zhao Y, Zhong Z Q. Detection of Hg2+ in aqueous solutions with a foldamer-based fluorescent sensor modulated by surfactant micelles[J]. Org Lett. 2006, 8(21):4715-4717.
    [69] Zhang X B, Guo C C, Li Z Z, Shen G L, Yu R Q. An optical fiber chemical sensor for mercury ions based on a porphyrin dimer[J]. Anal Chem. 2002, 74(4):821-825.
    [70] Ben Othman A, Lee J W, Wu J S, Kim J S, Abidi R, Thuery P, et al. Calix[4]arene-based, Hg2+-induced intramolecular fluorescence resonance energy transfer chemosensor[J]. J Org Chem. 2007, 72(20):7634-7640.
    [71] Nolan E M, Lippard S J. MS4, a seminaphthofluorescein-based chemosensor for the ratiometric detection of Hg(II)[J]. J Mater Chem. 2005, 15(27-28):2778-2783.
    [72] Yuan M J, Li Y L, Li J B, Li C H, Liu X F, Lv J, et al. A colorimetric and fluorometric dual-modal assay for mercury ion by a molecule[J]. Org Lett. 2007, 9(12):2313-2316.
    [73] Wegner S V, Okesli A, Chen P, He C A. Design of an emission ratiometric biosensor from MerR family proteins: A sensitive and selective sensor for Hg2+[J]. J Am Chem Soc. 2007, 129(12):3474-+.
    [74] Nguyen D M, Frazer A, Rodriguez L, Belfield K D. Selective Fluorescence Sensing of Zinc and Mercury Ions with Hydrophilic 1,2,3-Triazolyl Fluorene Probes[J]. Chem Mater. 2010, 22(11):3472-3481.
    [75] Xu M Y, Wu S Z, Zeng F, Yu C M. Cyclodextrin Supramolecular Complex as a Water-Soluble Ratiometric Sensor for Ferric Ion Sensing[J]. Langmuir. 2010, 26(6):4529-4534.
    [76] Guo Z Q, Zhu M M, Wu X M, Tian H. Near-Infrared Cell-Permeable Hg2+-Selective Ratiometric Fluorescent Chemodosimeters and Fast Indicator Paper for MeHg+ Based onTricarbocyanines[J]. Chem Eur J. 2010:DOI: 10.1002/chem.201001769.
    [77] Leng B, Zou L, Jiang J B, Tian H. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using chemodosimeter-functionalized gold nanoparticles[J]. Sens Actuator B-Chem. 2009, 140(1):162-169.
    [78] Ge Z S, Zhou Y M, Xu J, Liu H W, Chen D Y, Liu S Y. High-Efficiency Preparation of Macrocyclic Diblock Copolymers via Selective Click Reaction in Micellar Media[J]. J Am Chem Soc. 2009, 131(5):1628-1629.
    [79] Ge Z S, Xu J, Hu J M, Zhang Y F, Liu S Y. Synthesis and supramolecular self-assembly of stimuli-responsive water-soluble Janus-type heteroarm star copolymers[J]. Soft Matter. 2009, 5(20):3932-3939.
    [80] Li C H, Ge Z S, Fang J, Liu S Y. Synthesis and Self-Assembly of Coil-Rod Double Hydrophilic Diblock Copolymer with Dually Responsive Asymmetric Centipede-Shaped Polymer Brush as the Rod Segment[J]. Macromolecules. 2009, 42(8):2916-2924.
    [81] Rao J Y, Luo Z F, Ge Z S, Liu H, Liu S Y. "Schizophrenic" micellization associated with coil-to-helix transitions based on polypeptide hybrid double hydrophilic rod-coil diblock copolymer[J]. Biomacromolecules. 2007, 8(12):3871-3878.
    [82] Thurmond K B, Kowalewski T, Wooley K L. Water-soluble knedel-like structures: The preparation of shell-cross-linked small particles[J]. J Am Chem Soc. 1996, 118(30):7239-7240.
    [83] Guo A, Liu G J, Tao J. Star polymers and nanospheres from cross-linkable diblock copolymers[J]. Macromolecules. 1996, 29(7):2487-2493.
    [84] Li Y T, Lokitz B S, McCormick C L. RAFT synthesis of a thermally responsive ABC triblock copolymer incorporating N-acryloxysuccinimide for facile in situ formation of shell cross-linked micelles in aqueous media[J]. Macromolecules. 2006, 39(1):81-89.
    [85] Zhang J Y, Jiang X, Zhang Y F, Li Y T, Liu S Y. Facile fabrication of reversible core cross-linked micelles possessing thermosensitive swellability[J]. Macromolecules. 2007, 40(25):9125-9132.
    [86] Wei T B, Lin Q, Zhang Y M, Wei W. Microwave promoted efficient synthesis of N-aryl-N '-aroyl thioureas under solvent-free and phase transfer catalysis conditions[J]. Synth Commun. 2004, 34(1):181-186.
    [87] Pollak A, Blumenfeld H, Wax M, Baughn R L, Whitesides G M. Enzyme immobilization bycondensation copolymerization into crosslinked polyacrylamide gels[J]. J Am Chem Soc. 1980, 102(20):6324-6336.
    [88] Lai J T, Filla D, Shea R. Functional polymers from novel carboxyl-terminated trithiocarbonates as highly efficient RAFT agents[J]. Macromolecules. 2002, 35(18):6754-6756.
    [89] Srikun D, Miller E W, Dornaille D W, Chang C J. An ICT-Based approach to ratiometric fluorescence imaging of hydrogen peroxide produced in living cells[J]. J Am Chem Soc. 2008, 130(14):4596-+.
    [90] Uchiyama S, Kawai N, de Silva A P, Iwai K. Fluorescent polymeric AND logic gate with temperature and pH as inputs[J]. J Am Chem Soc. 2004, 126(10):3032-3033.
    [91] Zhu M Q, Zhu L Y, Han J J, Wu W W, Hurst J K, Li A D Q. Spiropyran-based photochromic polymer nanoparticles with optically switchable luminescence[J]. J Am Chem Soc. 2006, 128(13):4303-4309.
    [92] Uchiyama S, Matsumura Y, de Silva A P, Iwai K. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans[J]. Anal Chem. 2003, 75(21):5926-5935.
    [93] Lowell B B, Spiegelman B M. Towards a molecular understanding of adaptive thermogenesis[J]. Nature. 2000, 404(6778):652-660.
    [94] Gerweck L E, Seetharaman K. Cellular pH gradient in tumor versus normal tissue: Potential exploitation for the treatment of cancer[J]. Cancer Res. 1996, 56(6):1194-1198.
    [95] Ojugo A S E, McSheehy P M J, McIntyre D J O, McCoy C, Stubbs M, Leach M O, et al. Measurement of the extracellular pH of solid tumours in mice by magnetic resonance spectroscopy: a comparison of exogenous F-19 and P-31 probes[J]. Nmr in Biomedicine. 1999, 12(8):495-504.
    [96] Han J Y, Burgess K. Fluorescent Indicators for Intracellular pH[J]. Chem Rev. 2010, 110(5):2709-2728.
    [97] Monti D M, Brandt L, Ikomi-Kumm J, Olsson H. Microcalorimetric investigation of cell metabolism in tumour cells from patients with non-Hodgkin lymphoma (NHL)[J]. Scand J Haematol. 1986, 36:353-357.
    [98] Karnebogen M, Singer D, Kallerhoff M, Ringert R H. Microcalorimetric investigations on isolated tumorous and non-tumorous tissue samples [J]. Thermochim Acta. 1993, 229:147-155.
    [99] Urano Y, Asanuma D, Hama Y, Koyama Y, Barrett T, Kamiya M, et al. Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes[J]. Nature Medicine. 2009, 15(1):104-109.
    [100] Tang B, Yu F, Li P, Tong L L, Duan X, Xie T, et al. A Near-Infrared Neutral pH Fluorescent Probe for Monitoring Minor pH Changes: Imaging in Living HepG2 and HL-7702 Cells[J]. J Am Chem Soc. 2009, 131(8):3016-3023.
    [101] Wan X J, Wang D, Liu S Y. Fluorescent pH-Sensing Organic/Inorganic Hybrid Mesoporous Silica Nanoparticles with Tunable Redox-Responsive Release Capability[J]. Langmuir. 2010, 26(19):15574-15579.
    [102] Zhang J Y, Li Y T, Armes S P, Liu S Y. Probing the micellization kinetics of pyrene end-labeled diblock copolymer via a combination of stopped-flow light-scattering and fluorescence techniques[J]. J Phys Chem B. 2007, 111(42):12111-12118.
    [103] Galindo F, Burguete M I, Vigara L, Luis S V, Kabir N, Gavrilovic J, et al. Synthetic macrocyclic peptidomimetics as tunable pH probes for the fluorescence imaging of acidic organelles in live cells[J]. Angew Chem, Int Ed. 2005, 44(40):6504-6508.
    [104] Pringsheim E, Zimin D, Wolfbeis O S. Fluorescent beads coated with polyaniline: A novel nanomaterial for optical sensing of pH[J]. Adv Mater. 2001, 13(11):819-822.
    [105] Yan Q, Yuan J Y, Yuan W Z, Zhou M, Yin Y W, Pan C Y. Copolymer logical switches adjusted through core-shell micelles: from temperature response to fluorescence response[J]. Chem Commun. 2008, (46):6188-6190.
    [106] Charier S, Ruel O, Baudin J B, Alcor D, Allemand J F, Meglio A, et al. An efficient fluorescent probe for ratiometric pH measurements in aqueous solutions[J]. Angew Chem, Int Ed. 2004, 43(36):4785-4788.
    [107] Peng H S, Stolwijk J A, Sun L N, Wegener J, Wolfbeis O S. A Nanogel for Ratiometric Fluorescent Sensing of Intracellular pH Values[J]. Angew Chem, Int Ed. 2010, 49(25):4246-4249.
    [108] Pietsch C, Hoogenboom R, Schubert U S. Soluble Polymeric Dual Sensor for Temperature and pH Value[J]. Angew Chem, Int Ed. 2009, 48(31):5653-5656.
    [109] Albertazzi L, Storti B, Marchetti L, Beltram F. Delivery and Subcellular Targeting of Dendrimer-Based Fluorescent pH Sensors in Living Cells[J]. J Am Chem Soc. 2010, 132:18158-18167.
    [110] Yin J, Hu H B, Wu Y H, Liu S Y. thermo- and light-regulated fluorescence resonance energy transfer process within dually responsive microgels[J]. Polym Chem. 2011:DOI:10.1039/C1030PY00254B.
    [111] Yin J, Li C H, Wang D, Liu S Y. FRET-Derived Ratiometric Fluorescent K+ Sensors Fabricated from Thermoresponsive Poly(N-isopropylacrylamide) Microgels Labeled with Crown Ether Moieties[J]. J Phys Chem B. 2010, 114(38):12213-12220.
    [112] Sun H, Scharff-Poulsen A M, Gu H, Almdal K. Synthesis and characterization of ratiometric, pH sensing nanoparticles with covalently attached fluorescent dyes[J]. Chem Mater. 2006, 18(15):3381-3384.
    [113] Hornig S, Biskup C, Grafe A, Wotschadlo J, Liebert T, Mohr G J, et al. Biocompatible fluorescent nanoparticles for pH-sensoring[J]. Soft Matter. 2008, 4(6):1169-1172.
    [114] Modi S, Swetha M G, Goswami D, Gupta G D, Mayor S, Krishnan Y. A DNA nanomachine that maps spatial and temporal pH changes inside living cells[J]. Nature Nanotechnology. 2009, 4(5):325-330.
    [115] Alarcon C D H, Pennadam S, Alexander C. Stimuli responsive polymers for biomedical applications[J]. Chem Soc Rev. 2005, 34(3):276-285.
    [116] Gota C, Okabe K, Funatsu T, Harada Y, Uchiyama S. Hydrophilic Fluorescent Nanogel Thermometer for Intracellular Thermometry[J]. J Am Chem Soc. 2009, 131(8):2766-2767.
    [117] Shiraishi Y, Miyarnoto R, Hirai T. A hemicyanine-conjugated copolymer as a highly sensitive fluorescent thermometer[J]. Langmuir. 2008, 24(8):4273-4279.
    [118] Uchiyama S, Kawai N, de Silva A P, Iwai K. Fluorescent polymeric AND logic gate with temperature and pH as inputs[J]. J Am Chem Soc. 2004, 126(10):3032-3033.
    [119] Nagai A, Kokado K, Miyake J, Cyujo Y. Thermoresponsive Fluorescent Water-Soluble Copolymers Containing BODIPY Dye: Inhibition of H-Aggregation of the BODIPY Units in Their Copolymers by LCST[J]. J Polym Sci, Part A: Polym Chem. 2010, 48(3):627-634.
    [120] Liu T, Hu J M, Yin J, Zhang Y F, Li C H, Liu S Y. Enhancing Detection Sensitivity of Responsive Microgel-Based Cu(II) Chemosensors via Thermo-Induced Volume Phase Transitions[J]. Chem Mater. 2009, 21(14):3439-3446.
    [121] Yin J, Guan X F, Wang D, Liu S Y. Metal-Chelating and Dansyl-Labeled Poly(N-isopropylacrylamide) Microgels as Fluorescent Cu2+ Sensors with Thermo-EnhancedDetection Sensitivity[J]. Langmuir. 2009, 25(19):11367-11374.
    [122] Tang L, Jin J K, Qin A J, Yuan W Z, Mao Y, Mei J, et al. A fluorescent thermometer operating in aggregation-induced emission mechanism: probing thermal transitions of PNIPAM in water[J]. Chem Commun. 2009, (33):4974-4976.
    [123] Guo Z Q, Zhu W H, Xiong Y Y, Tian H. Multiple Logic Fluorescent Thermometer System Based on N-Isopropylmethacrylamide Copolymer Bearing Dicyanomethylene-4H-pyran Moiety[J]. Macromolecules. 2009, 42(5):1448-1453.
    [124] Shen Y, Kuang M, Shen Z, Nieberle J, Duan H W, Frey H. Gold nanoparticles coated with a thermosensitive hyperbranched polyelectrolyte: Towards smart temperature and pH nanosensors[J]. Angewandte Chemie-International Edition. 2008, 47(12):2227-2230.
    [125] Wu T, Zou G, Hu J M, Liu S Y. Fabrication of Photoswitchable and Thermotunable Multicolor Fluorescent Hybrid Silica Nanoparticles Coated with Dye-Labeled Poly(N-isopropylacrylamide) Brushes[J]. Chem Mater. 2009, 21(16):3788-3798.
    [126] Nagai A, Yoshii R, Otsuka T, Kokado K, Chujo Y. BODIPY-Based Chain Transfer Agent: Reversibly Thermoswitchable Luminescent Gold Nanoparticle Stabilized by BODIPY-Terminated Water-Soluble Polymer[J]. Langmuir. 2010, 26(19):15644-15649.
    [127] F?rster T. Modern Quantum Chemistry.Sinanoglu, O., Ed.; Academic Press: New York, 1965; partⅢ, p1993.
    [128] Scholes G D. Long-range resonance energy transfer in molecular systems[J]. Annu Rev Phys Chem. 2003, 54:57-87.
    [129] Beija M, Charreyre M T, Martinho J M G. Dye-labelled polymer chains at specific sites: Synthesis by living/controled polymerization[J]. Prog Polym Sci. 2010: DOI:10.1016/j.progpolymsci.2010.1006.1004.
    [130] Hu J M, Liu S Y. Responsive Polymers for Detection and Sensing Applications: Current Status and Future Developments[J]. Macromolecules. 2010, 43(20):8315-8330.
    [131] Kim H N, Guo Z Q, Zhu W H, Yoon J, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors[J]. Chem Soc Rev. 2011, 40:79-93.
    [132] Hong S W, Kim K H, Huh J, Ahn C H, Jo W H. Design and synthesis of a new pH sensitive polymeric sensor using fluorescence resonance energy transfer[J]. Chem Mater. 2005, 17(25):6213-6215.
    [133] Hong S W, Kim D Y, Lee J U, Jo W H. Synthesis of Polymeric Temperature Sensor Based on Photophysical Property of Fullerene and Thermal Sensitivity of Poly(N-isopropylacrylamide)[J]. Macromolecules. 2009, 42(7):2756-2761.
    [134] Shiraishi Y, Miyamoto R, Zhang X, Hirai T. Rhodamine-based fluorescent thermometer exhibiting selective emission enhancement at a specific temperature range[J]. Org Lett. 2007, 9(20):3921-3924.
    [135] Xiang Y, Tong A J. A new rhodamine-based chemosensor exhibiting selective Fe-III-amplified fluorescence[J]. Org Lett. 2006, 8(8):1549-1552.
    [136] Li C H, Zhang Y X, Hu J M, Cheng J J, Liu S Y. Reversible Three-State Switching of Multicolor Fluorescence Emission by Multiple Stimuli Modulated FRET Processes within Thermoresponsive Polymeric Micelles[J]. Angew Chem, Int Ed. 2010, 49(30):5120-5124.
    [137] Wu P, Malkoch M, Hunt J N, Vestberg R, Kaltgrad E, Finn M G, et al. Multivalent, bifunctional dendrimers prepared by click chemistry[J]. Chem Commun. 2005, (46):5775-5777.
    [138] Soh J H, Swamy K M K, Kim S K, Kim S, Lee S H, Yoon J. Rhodamine urea derivatives as fluorescent chemosensors for Hg2+[J]. Tetrahedron Lett. 2007, 48(34):5966-5969.
    [139] Onoda M, Uchiyama S, Santa T, Imai K. A photoinduced electron-transfer reagent for peroxyacetic acid, 4-ethylthioacetylamino-7-phenylsulfonyl-2,1,3-benzoxadiazole, based on the method for predicting the fluorescence quantum yields[J]. Anal Chem. 2002, 74(16):4089-4096.
    [140] Schild H G. Poly (N-Isopropylacrylamide) - Experiment, Theory and Application[J]. Prog Polym Sci. 1992, 17(2):163-249.
    [141] Lutz J F, Akdemir O, Hoth A. Point by point comparison of two thermosensitive polymers exhibiting a similar LCST: Is the age of poly(NIPAM) over?[J]. J Am Chem Soc. 2006, 128(40):13046-13047.
    [142] Lutz J F, Hoth A. Preparation of ideal PEG analogues with a tunable thermosensitivity by controlled radical copolymerization of 2-(2-methoxyethoxy)ethyl methacrylate and oligo(ethylene glycol) methacrylate[J]. Macromolecules. 2006, 39(2):893-896.
    [143] Han S, Hagiwara M, Ishizone T. Synthesis of thermally sensitive water-soluble polymethacrylates by living anionic polymerizations of oligo(ethylene glycol) methyl ether methacrylates[J]. Macromolecules. 2003, 36(22):8312-8319.
    [144] Sun G B, Guan Z B. Synthesis and Investigation of Core-Shell Dendritic Nanoparticles withTunable Thermosensitivity[J]. Macromolecules. 2010, 43(23):9668-9673.
    [145] Hong S W, Jo W H. A fluorescence resonance energy transfer probe for sensing pH in aqueous solution[J]. Polymer. 2008, 49(19):4180-4187.
    [146] Cho E S, Hong S W, Jo W H. A New pH Sensor Using the Fluorescence Quenching of Carbon Nanotubes[J]. Macromol Rapid Commun. 2008, 29(22):1798-1803.
    [147] Hong S W, Ahn C H, Huh J, Jo W H. Synthesis of a PEGylated polymeric pH sensor and its pH sensitivity by fluorescence resonance energy transfer[J]. Macromolecules. 2006, 39(22):7694-7700.
    [148] Lee J U, Cirpan A, Emrick T, Russell T P, Jo W H. Synthesis and photophysical property of well-defined donor-acceptor diblock copolymer based on regioregular poly(3-hexylthiophene) and fullerene[J]. J Mater Chem. 2009, 19(10):1483-1489.
    [149] Uchiyama S, Matsumura Y, de Silva A P, Iwai K. Fluorescent molecular thermometers based on polymers showing temperature-induced phase transitions and labeled with polarity-responsive benzofurazans[J]. Anal Chem. 2003, 75(21):5926-5935.
    [150] Uchiyama S, Matsumura Y, de Silva A P, Iwai K. Modulation of the sensitive temperature range of fluorescent molecular thermometers based on thermoresponsive polymers[J]. Anal Chem. 2004, 76(6):1793-1798.
    [151] Gota C, Uchiyama S, Yoshihara T, Tobita S, Ohwada T. Temperature-dependent fluorescence lifetime of a fluorescent polymeric thermometer, Poly(N-isopropylacrylamide), labeled by polarity and hydrogen bonding sensitive 4-sulfamoyl-7-aminobenzofurazan[J]. J Phys Chem B. 2008, 112(10):2829-2836.
    [152] Lee S Y, Lee S, Youn I C, Yi D K, Lim Y T, Chung B H, et al. A Near-Infrared Fluorescence-Based Optical Thermosensor[J]. Chem-Eur J. 2009, 15(25):6103-6106.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700