基于PNIPAM的响应性高分子材料的制备及性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高分子材料被广泛应用于航天、军工和民用等各个领域。活性自由基聚合以及点击反应等高分子合成技术的发展使所得到的高分子材料的性能逐渐提高。活性自由基聚合反应和点击反应不仅为合成各种特殊结构的聚合物,如接枝、星形和环形聚合物等,提供了有效的手段,也为各种无机或有机材料的改性提供了宽广的技术平台。本文在高分子合成和材料改性等方面进行了有意义的探索,具体研究内容和结果如下:
     1.利用单电子转移活性自由基聚合以及点击反应相结合,在高浓度下成功制备了全亲水性蝌蚪形嵌段共聚物,即线形聚(N-异丙基丙烯酰胺)-b-环状聚乙二醇(tail-PNIPAM-c-PEG)。首先通过单电子自由基聚合制备了在PEG和PNIPAM两嵌段之间带有叠氮基团的ABA三嵌段共聚物;然后利用双炔基小分子与叠氮基团在极高的浓度下发生聚合物分子内关环反应,制备了全亲水性蝌蚪形聚合物。研究了蝌蚪形共聚物和线形前体的温度响应性行为的差别,研究了浓度对聚合物温度响应行为的影响。结果表明,环状聚合物的临界聚集温度与其相同分子量的线形前体聚合物的临界聚集温度相比较高,溶液浓度越高,聚合物的临界聚集温度越低。
     2.改变PNIPAM以及PEG链段的长度,研究聚合物结构对合成双尾蝌蚪形聚合物的影响,详细探讨了聚合物结构的改变对其温度响应行为的影响。利用光散射对聚合物的宏观温度响应行为进行了表征,利用温度骤变的停-留光谱研究了聚合物的微观温度响应行为。研究结果均表明,增加PEG亲水链段的分子量或者降低PNIPAM链段的分子量,对聚合物的温度响应行为具有相同的影响,均使得溶液的散射光强变弱,相转变温度升高。双尾蝌蚪形聚合物的聚集行为强烈依赖于共聚物的链段长度比。
     3.利用原子转移自由基聚合、开环聚合以及点击反应相结合,成功合成了Y-形杂臂嵌段共聚物,聚(N-异丙基丙烯酰胺)-b-聚(赖氨酸)2 (PNIPAM-b-PLL2),研究了此共聚物在水溶液中的胶束化行为以及刺激响应行为。将共聚物胶束交联,得到结构稳定的壳交联胶束,通过改变温度以及交联度控制药物的释放行为。研究结果表明,随着交联程度的降低或者温度的升高,药物释放速度变快。
     4.利用单电子自由基聚合、原子转移自由基聚合以及点击反应相结合,成功制备了一系列H-形嵌段共聚物,聚甲基丙烯酸二甲胺基乙酯/聚(N-异丙基丙烯酰胺)-b-聚乙二醇-b-聚甲基丙烯酸二甲胺基乙酯/聚(N-异丙基丙烯酰胺) (PNIPAM/PDMAEMA)-b-PEG-b-(PNIPAM/PDMAEMA)。利用原位还原的方法制备表面接枝H-形嵌段共聚物的金纳米粒子。研究聚合物的结构、溶液的pH条件以及[DMAEMA]:[AuCl4-]对金纳米粒子的性能影响,研究此金纳米粒子的温度以及pH响应行为。研究结果表明,相同条件下,随着PDMAEMA链段长度的降低,所得的金纳米粒子尺寸增加;[DMAEMA]:[AuCl4-]摩尔比的增加,所得的金纳米粒子尺寸增加;溶液pH的增加,所得到的金纳米粒子尺寸变大。在酸性或者中性条件下,所得金纳米粒子的温度响应性行为较弱;碱性条件下,所得金纳米粒子的温度响应性行为较强。
     5.利用开环聚合以及原子转移自由基聚合相结合,制备了嵌段共聚物聚(N-异丙基丙烯酰胺)-b-聚赖氨酸(PNIPAM-b-PLL)。通过柠檬酸钠还原的方法制备了尺寸稳定的金纳米粒子,利用赖氨酸与金纳米粒子的作用,得到表面修饰嵌段聚合物的金纳米粒子。研究这类金纳米粒子的温度以及pH响应行为,研究结果表明,酸性以及中性条件下,所得到的金纳米粒子的温度响应性行为较弱;碱性条件下,金纳米粒子的温度响应性行为较强。聚赖氨酸接枝到金纳米粒子的表面后,其构象未发生变化。
Polymer materials have been applied extensively in many fields, including space technologies, military industry, domestic livings and so on. With the progress of polymer and material sciences, new requirements for polymer synthetic technology, such as controllability, high efficiency and high selectivity, are presented. According to those requirements, newly developed techniques, such as controlled free radical polymerization and“click chemistry”, have been poured with great passion by the scientists. These techniques provide the scientists with powerful methods to synthesize various special-structured polymers as well as various organic/inorganic materials. Smart application of these techniques in polymer synthesis and material modification is one of the most important topics in the field of chemistry. Based on the research of the precursors, this dissertation describes several interesting researches in the synthesis of topologically structured polymers and the modification of nanomaterials. The main results obtained in this thesis are as followed.
     1. Twin-tail tadpole-shaped copolymer tail-PNIPAM-c-PEG [PNIPAM: poly(N-propylacrylamide), PEG [poly(ethylene gylocl)] was synthesized by the combination of SET-LRP (single-electron-transfer living radical polymerization) and“click chemistry”. Firstly, we synthesized PNIPAM-b-PEG-b-PNIPAM with two azide side groups anchored at the junctions between PEG and PNIPAM blocks. Secondly, under high concentration, intrachain connection of the block junctions by dipropargyl oxalylate was done through click reaction. The thermal phase transition behaviors of twin-tail tadpole-shaped polymers and their linear precursors were investigated. We also studied the influence of polymer concentration on the thermal phase transition behaviors. It is shown that the lower critical solution temperature (LCST) values of cyclic polymers were higher than that of their linear precursors with the same block lengths. Polymers have lower LCST values under higher polymer concentration.
     2. We investigated the influence of varying block length of PEG chain and PNIPAM chains on the formation of twin-tail tadpole-shaped hydrophilic copolymers. The stability, structure and growth kinetics of the micelles formed from tail-(PNIPAM)2-c-PEG and its linear precursor with varying PEG and PNIPAM chains were studied in detail using stop-flow temperature jump technique and dynamic/static laser light. The study of temperature-jumped stop-flow was performed in the fast heating process to investigate the temperature-responsive behaviors. The results show that the thermal-induced re-organization of the micelles depends strongly on the topology and block length of those block copolymers.
     3. Combining with ATRP (Atom Transfer Radical Polymerization), ROP (ring-opening polymerization) and“click chemistry”, we successfully synthesized well-defined Y-shaped copolymer PNIPAM-b-PLL2. [PLL: poly(L-lysine)]. Temperature and pH-responsive behavior of the core-shell micelles were studied. Structural stable micelles were obtained through the shell cross-linking of the micelles. These shell-cross-linked micelles were used as drug nanocarriers and the release profile was dually controlled by the solution temperature and the cross-linking degree. Decreasing the cross-linking degree or increasing temperature could accelerate the drug release rate.
     4. H-shaped copolymer (PNIPAM/PDMAEMA)-b-PEG-b-(PNIPAM/PDMAEMA) [PDMAEMA: poly(N,N-dimeythylaminoethyl methacrylate)] has been successfully prepared through a combination of SET-LRP, ATRP and“Click chemistry”. These copolymers were employed to in suti prepare stable colloidal gold nanoparticles in aqueous solution without any external reducing agent. The formation of gold nanoparticles was affected by the length of PDMAEMA block, the feed ratio of the copolymer to HAuCl4 and the pH value. We also studied the temperature and pH responsive behaviors of the polymer-capped gold nanoparticles. The study results shows that with increasing PDMAEMA chains length, increasing [DMAEMA]:[AuCl4-] or increasing the solution pH values, the diameter of gold nanoparticles become bigger. Under acidic or neutral conditions, LCST of gold nanoparticles protected with polymers are higher, and their temperature-responsive behaviors is weaker, while under alkalic conditions, LCST of gold nanoparticles protected with polymers are lower, and temperature-responsive behavior of gold nanoparticles is stronger.
     5. Block copolymers PNIPAM-b-PLL were synthesized by the combination of ATRP and ROP. Gold nanoparticles were prepared through the common technique of citrate reduction and stabilized through the interaction of lysine residues of PLL with the gold surface. Gold nanoparticles protected with stimuli-sensitive copolymer PNIPAM-b-PLL were studied as a function of pH and temperature. Under acidic or neutral conditions, LCST of gold nanoparticles protected with polymers were higher. Gold nanoparticles didn’t affect the secondary structure of PLL chains.
引文
[1] Gil ES, Hudson SM. 2004. Stimuli-Reponsive Polymers and Their Bioconjugates [J]. Prog. Polym. Sci., 29: 1173-1222.
    [2] Tanaka T. 1978. Collapse of Gels and the Critical Endpoint [J]. Phys. Rev. Lett., 40: 820-823.
    [3] Matsuo ES, Tanaka T. 1992. Patterns in Shrinking Gels [J]. Nature, 358: 482-485.
    [4] Sehild HQ, Tirrell DA. 1991, Interaction of Poly(N-isopropylacrylamide) with Sodiumn-Alkyl Sulfates in Aqueous Solution [J]. Langmiur, 7: 1319-1324.
    [5] Li J, He WD, He N. 2009. Synthesis and Micellization of PSt-PNIPAM-PDMAEMA Hetero-Arm Star Polymer with Double Thermo-Responsibility [J]. J. Polym. Sci., part A: polym. Chem., 47: 786-798.
    [6]杨之礼等.纤维素醚基础与应用.华南理工大学出版社.1990.
    [7] Zhang LF, Liang Y, Meng LZ. 2010. Thermo-sensitive Amphiphilic Poly(N-vinylcaprolactam) Copolymers: Synthesis and Solution Properties. [J]. Polym. Adv. Technol., 21: 720-725.
    [8] Wu C, Zhou SQ. 1995. Light-Scattering Study of the Phase Transition of Poly(N-isopropylacrylamide) in Water: I. Single Chain [J]. Macromolecules, 27: 8381-8387.
    [9] Schild HG, Tirrell DA. 1990. Microcalorimetric Detection of Lower Critical Solution Temperatures in Aqueous [J]. J. Phys. Chem. B., 94: 4352-4356.
    [10] Winnik FM. 1990. Miscible Blends and Block Copolymers. Crystallization, Melting, and Interaction [J]. Macromolecules, 23: 233-242.
    [11] Inomata H, Goto S, Saito S. 1990. Phase Transition of N-substituted Acrylamide Gels [J]. Macromolecules, 23: 4887-4888.
    [12] Shibayama M, Tanaka T. 1993. Volume Phase Transition and Related Phenomena of Polymer Gels [J] Adv. Polym. Sci., 109: 1-62.
    [13] Kim S, Healy KE. 2003. Synthesis and Characterization of Injectable Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Proteolytically Degradable Cross-Links [J]. Biomacromolecules, 4: 1214-1223.
    [14] Feil H, Bae YH, Feijien J, Kim SW.1993. Effect of Comonomer Hydrophilicity and Ionization on the Lower Critical Solution Temperature of N-isopropylacrylamide Copolymers [J]. Macromolecules, 26: 2496-2500.
    [15] Feil H, Bae YH, Feijen J, Kim SW. 1992. Mutual Influence of pH and Temperature on the Swelling of Ionizable and Thermosensitive Hydrogels [J]. Macromolecules, 25: 5526-5527.
    [16] Nakayama M, Okano T. 2005. Polymer Terminal Group Effects on Properties of Thermoresponsive Polymeric Micelles with Controlled Outer-Shell Chain Lengths [J]. Biomacromolecules, 6: 2320-2327.
    [17] Bae YH, Okano T, Kim SW. 1991.“On-off”Thermocontrol of Solute Transport. I. Temperature Dependence of Swelling of N-isopropylacrylamide Networks Modified with Hydrophobic Components in Water [J]. Pharm. Res., 8: 531-537.
    [18] Yoshida, R, Sakai, K, Okano, T, Sakurai, Y. 1994. Modulating the Phase Transition Temperature and Thermosensitivity in N-isopropylacrylamide Copolymer Gels [J]. J. Biomater. Sci. Polym. Ed., 6: 585-598.
    [19] Chen G., Hoffman AS. 1995. Graft Copolymers that Exhibit Temperature-Induced Phase Transition Over a Wide Range of pH [J]. Nature, 373: 49-52.
    [20] Neradovic D, Hinrichs WLJ, Kettenes-van de Bosch JJ, Hennik, WE. 1999.Poly(N-isopropylacrylamide) with Hydrolysable Lactic Acid Ester Side Groups.A New Type of Thermo-Sensitive Polymer [J]. Macromol. Rapid Commun., 20: 577-581.
    [21] Kohori F, Sakai K, Aoyagi T, Yokoyama M, Sakurai Y, Okano T. 1998. Preparation and Characterization of Thermally Responsive Block Copolymer Micelles Comprisingpoly(N-isopropylacrylamide-b-DL-lactide) [J]. J. Control. Release., 55: 87-98.
    [22] Shilli CM, Zhang MF, Rizzardo E, Thang SH, Chong YK, Edwards K, Karlsson G., Müller HE. 2004. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-Poly(acrylic acid) [J]. Macromolecules, 37: 7861-7866.
    [23] Brazel CS, Peppas NA. 1995. Synthesis and Characterization of Thermo- and Chemomechanically Responsive Poly(N-isopropylacrylamide-co-methacrylic acid) [J]. Macromolecules, 28: 8016-8020.
    [24] Yin XC, Hoffman AS, Stayton, PS. 2006. Poly(N-isopropylacrylamide-co- propylacrylic acid) Copolymers that Respond Sharply to Temperature and pH [J]. Biomacromolecules, 7: 1381-1385.
    [25] Zhou S, Chu B. 1998. Synthesis and Volume Transition of Poly(methacrylic acid-co-N-isopropylacrylamide) Microgel Particles in Water [J]. J. Phys. Chem. B., 102: 1364-1371.
    [26] Zhang J, Chu LY, Li YK, Lee YM. 2007. Dual Thermo- and pH-Sensitive Poly(N-isopropylacrylamide-co-acrylic acid) Hydrogels with Rapid Response Behaviors [J]. Polymer, 48: 1718-1728.
    [27] Katime I, Quintana JR, Valderruten NE, Cesteros LC. 2006. Synthesis and Properties of pH- and Temperature-Sensitive Poly[(N-isopropylacrylamide)-co- (2-methylenebutane-1,4-dioic acid)] Hydrogels [J]. Macromol. Chem. Phys., 207: 2121-2127.
    [28] Kulkarmi S, Schilli C, Brin B, Müller, AHE, Hoffman AS, Stayton PS. 2006. Controlling the Aggregation of Conjugates of Steptavidin with Smart Block Copolymers Prepared Via the RAFT Copolymerization Technique [J]. Biomacromolecules, 7: 2736-2741.
    [29] Sumaru K, Kameda M, Kanamori T, Shinbo T. 2004. Characteristic Phase Transition of Aqueous Solution of Poly(N-isopropylacrylamide) Functionalized with Spirobenzopyran [J]. Macromolecules, 337: 4949-4955.
    [30] Kuramoto N, Shishido Y. 1998. Property of Thermo-Sensitive and Redox-Active Poly(N-cyclopropylacrylamide-co-vinylferrocene) and Poly(N-isopropylacryl-amide -co-vinylferrocene) [J]. Polymer, 39: 669-675.
    [31] Salgado-Rodriguez, R, Licea-Claverie, A, Arndr KF. 2004. Random Copolymers ofN-isopropylacrylamide and Methacrylic Acid Monomers with Hydrophobic Spacers: pH-tunable Temperature Sensitive Materials [J]. J. Eur. Polym., 40: 1931-1946.
    [32] Aoki T, Ebara M, Sakai K, Okano T. 2000. Novel Bifunctional Polymer with Reactivity and Temperature Sensitivity [J]. J Biomater. Sci., Polym. Ed., 1: 101-110.
    [33] Aoki T, Muramatsu M, Torii T, Sanui K, Ogata N. 2001. Thermo-Sensitive Phase Transition of an Optically Active Polymer in Aqueous Milieu [J]. Macromolecules, 34: 3118-3119.
    [34] Gan LH, Roshan DeenG., Loh XJ, Gan YY. 2001. New Stimuli-Responsive Copolymers of N-acryloyl-N’-alkyl Piperazine and Methyl Methacrylate and Their Hydrogels [J]. Polymer, 42: 65-69.
    [35] Ebara M, Aoyagi T, Sakai K, Sakai K, Okano T. 2000. Introducing Reactive Carboxyl Side Chains Retains Phase Transition Temperature Sensitivity in N-isopropylacrylamide Copolymer Gels [J]. Macromolecules, 33: 8312-8316.
    [36] Philippova OE; Hourdet D, Audebert R, Khokhlov, AR. 1997. pH-Responsive Gels of Hydrophobically Modified Poly(acrylic acid) [J]. Macromolecules, 30: 8278-8285.
    [37] Pinkrah VT, Snowden M J, Mitchell JC, Seidel J, Chowdhry BZ, Fern G.R. 2003. Physicochemical Properties of Poly(N-isopropylacrylamide-co-4-vinylpyridine) Cationic Polyelectrolyte Colloidal Microgels [J]. Langmuir, 19: 585
    [38] Cho SH, Jhon MS, Yuk SH. 1999. Temperature-Sensitive Swelling Behavior of Polymer Gel Composed of Poly (N, N-dimethylaminoethyl methacrylate) and Its Copolymers [J]. J.Eur. Polym., 35: 1841-1845.
    [39] Shin H, Hitoshi O, Yasunari M. 2005. Thermo- and pH-sensitive Gel Membranes Based on Poly-(acryloyi-L-proline methyl ester)-graft-poly(acrylic acid) for Selective Permeation of Metalions [J]. Radiat. Phys. Chem., 72: 595-600.
    [40] Sousa RG, Prior-Cabanillas A, Quijada-Garrido I, Barrales-Rienda JM. 2005. Dependence of Copolymer Composition, Swelling History, and Drug Concentration on the Loading of Diltiazem Hydrochloride into Poly[(N-isopropylacrylamide)-co-(methacrylicacid)] Hydrogels and its Release Behaviour from Hydrogel slabs [J]. J. Control. Release., 102: 595-606.
    [41] Tonge SR, Tighe BJ. 2001. Responsive Hydrophobically Associating Polymers: a Review of Tructure and Properties [J]. Adv. Drug. Deliv. Rev. 53: 109-112.
    [42] Murthy N, Robichaud JR, Tirrell DA, Stayton PS, Hofman AS. 1999. The Design and Synthesis of Polymers Foreukaryotic Membrane Disruption [J].J. Control. Release., 61: 37-143.
    [43] Kang SI, Bae YH.2003. A Sulfonamide Based Glucose-Responsive Hydrogel withCovalently Mobilized Glucose Oxidase and Catalase [J]. J Control Release., 86: 115-121.
    [44] Dai S, Ravi P, Tan CH, Tam KC. 2004. Self-Assembly Behavior of a Stimuli-Responsive Water-Soluble [60] Fullerene-Containing Polymer [J]. Langmuir, 20: 8569-8575.
    [45] Muoz-Bonilla A, Fernández-Garcia M, Haddleton DM. 2007. Synthesis and Aqueous Solution Properties of Stimuli-Responsive Triblock Copolymers [J]. Soft. Matter., 3: 725-731.
    [46] Vamvakaki M, Palioura D, Spyros A, Armes SP, Anastasiadis SH. 2006. Dynamic Light Scattering vs 1H NMR Investigation of pH-Responsive Diblock Copolymers in Water [J]. Macromolecules, 39: 5106-5112.
    [47] Li X, Zuo J, Guo Y, Yuan, X. 2004. Preparation and Characterization of Narrowly Distributed Anogels with Temperature-Responsive Core and pH-Responsive Shell [J]. Macromolecules, 7 :10042-10046.
    [48] Hhlund PO, Galaev IY, Kazakov SA, Lozinsky VI, Mattiasson B. 2002. "Protein-Like" Copolymers: Effect of Polymer Architecture on the Performance in Bioseparation Process [J]. Macromol. Chem. Phys., 203: 33-42.
    [49] Armalkar RN, Kulkarni MG., Mashelkar RA. 1996. Pendent Chain Linked Delivery Systems: I Facile Hydrolysis Through Anchimeric Effect [J]. J. Control. Release., 42 : 185-193.
    [50] Miyata T, Asami N, Uragami T. 1999. A Reversibly Antigenresponsive Hydrogel. [J]. Nature, 399: 766-776. [51 Nagarsekar, A, Crissman J, Crissman M, Ferrari F, Cappello J, Ghandehari H. 2003. Genetic Engineering of Stimuli-Sensitive Silkelastin-Like Protein Block Copolymers [J]. Biomacromolecules, 4: 602-607.
    [52] Yi C, Xu Z. 2005. Synthesis and Characterization of Thermosensitive Composite Microsphere Latex [J]. J. Appl. Polym. Sci., 96: 824-828.
    [53] Yang B, Yang W. 2003. Thermo-Sensitive Switching Membranes Regulated by Pore-Covering Polymer Brushes [J]. J. Membrane. Sci., 218: 247-255.
    [54] Riess G. 2003. Micellization of Block Copolymers [J]. Prog. Polym. Sci., 28: 1107-1170.
    [55] Szwar M. 1956. Living Polymers. Nature (London), 178: 168-169.
    [56] Kim MS, Hyun H, Seo KS, Cho YH, Lee JW, Lee CR, Khang G, Lee HB. 2006. Preparation and Characterization of MPEG-PCL Diblock Copolymers with Thermo-Responsive Sol-Gel-Sol Phase Transition [J]. J. Polym. Sci., Part A: Polym. Chem, 44: 5413-5423.
    [57] Chen CF, Lin CT, Chu IM. 2010. Study of Novel Biodegradable Thermo-Sensitive Hydrogels of Methoxy-Poly(ethylene glycol)-block-Polyester Diblock Copolymers [J].Polym. Int., 59: 1428-1435.
    [58] Triftaridou AI, Checot F, Ilipoulos I. 2010. Poly(N,N-dimethylacrylamide)-block- Poly(L-lysine) Hybrid Block Copolymers: Synthesis and Aqueous Solution Characterization [J]. Macro. Chem. Phys., 211: 768-777.
    [59] Kim MS, Seo, SK, Khang G, Cho SH, Lee HB. 2004. Preparation of Methoxy Poly(ehtylene glycol)/Polyester Diblock Copolymers and Examination of the Gel-to-Sol Transition [J]. J. Polym. Sci., part A: Polym. Chem., 42: 5784-5793.
    [60] Bellas V. Iatrou H, Hadjichristidis N. 2000. Controlled Anionic Polymerization of Hexamethylcyclotrisiloxane. Model Linear and Miktoarm Star Co- and Terpolymers of Dimethylsiloxane with Styrene and Isoprene [J]. Macromolecules, 33: 6993-6997.
    [61] Schaefgen JR, Flory PJ. 1948. Synthesis of Multichain Polymers and Investigation of Their Viscosities [J]. J. Am. Chem. Soc., 70:.2709-2718.
    [62] Alward DB, Kinning DJ, Thomas EL, Fetters L J. 1986. Effect of Arm Number and Arm Molecular Weight on the Solid-State Morphology of Poly(styrene-isoprene) Star Block Copolymers [J]. Macromolecules, 19: 215-224.
    [63] Kanaoka S,Sawamoto M,Higashimura T. 1991. Star-Shaped Polymers by Living Cationic Polymerization. 1. Synthesis of Star-Shaped Polymers of Alkyl and Vinyl Ethers [J]. Macromlecules, 24: 2309-2313.
    [64] Semlyen JA. Cyclic Polymers, 2nd ed.; Kluwer Academic: Dordrecht. The Netherlands, 2000.
    [65] McLeish T. 2002. Polymers without Beginning or End [J]. Science, 297: 2005-2006.
    [66] Alberiy KA, Tillman E, Carlotti S, King K, Bradforth SE, Hogen-Esch TE, Parker D, Feast WJ. 2002. Characterization and Fluorescence of Macrocyclic Polystyrene by Anionic End to End Coupling. Role of Coupling Reagents [J]. Macromolecules, 35: 3856-3865.
    [67] atrou H, Hadjichristidis N, Meier G, Frielinghaus H, Monkenbusch M. 2002. Synthesis and Characterization of Model Cyclic Block Copolymers of Styrene and Butadiene. Comparison of the Aggregation Phenomena in Selective Solvents with Linear Diblock and Triblock Analogues [J]. Macromolecules, 35: 5426-5437.
    [68] Dodgson K, Semlyen JA. 1977. Studies of Cyclic and Linear Poly(dimethyl siloxanes): Limiting Viscosity Number-Molecular Weight Relationships [J].Polymer, 18: 1265-1268.
    [69] Geiser D, Hocker H. 1980. Synthesis and Investigation of Macrocyclic Polystyrene [J]. Macromolecules, 13: 653-656.
    [70] Roovers J, Toporowski PM. 1983. Synthesis of High Molecular Weight Ring Polystyrene [J]. Macromolecules 16: 843-849.
    [71] Clarson SJ, Semlyen JA. 1986. Cyclic Polysiloxanes: 1.Preparation and Characterization of Poly(phenylsiloxane) [J]. Polymer, 27: 1633-1636.
    [72] Roovers J. 1988. Viscoelastic Properties of Polybutadiene Rings [J]. Macromolecules 21: 1517-1521.
    [73] Kubo M, Hayashi T, Kobayashi H, Tsuboi K, Itoh T. 1997. Synthesis ofα-Carboxyl, co-Amino Heterodifunctional Polystyrene and Its lntramolecular Cyclization [J]. Macromolecules, 30: 2805-2807.
    [74] Lepoittevin B, Perrot X, Masure M, Hemery P. 2001. New Route to Synthesis of Cyclic Polystyrenes Using Controlled Free Radical Polymerization [J]. Macromolecules, 34: 425-429.
    [75] Kubo M, Nishigawa T, Uno T, Itoh T, Sato H. 2003. Cyclic Polyelectrolyte: Synthesis of Cyclic Poly(acrylic acid) and Cyclic Potassium Polyacrylate [J]. Macromolecules, 36: 9264-9266.
    [76] Jia Z, Fu Q, Huang J. 2006. Synthesis of Amphiphilic Macrocyclic Graft Copolymer Consisting of a Polyethylene oxide) Ring and Multi-Polystyrene Lateral Chains [J]. Macromolecules, 39: 5190-5193.
    [77] Tezuka Y, Mori K, Oike H. 2002. Efficient Synthesis of Cyclic Poly(oxyethylene) by Electrostatic Self-Assembly and Covalent Fixation with Telechelic Precursor Having Cyclic Ammonium Salt Groups [J]. Macromolecules, 35: 5707-5711.
    [78] Laurent BA, Grayson SM. 2006. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization [J]. J. Am. Chem. Soc., 128: 4238-4239.
    [79] Beinat S, Schappacher M, Deffieux A. 1996. Linear and Semicyclic Amphiphilic Diblock Copolymers. 1.Synthesis and Structural Characterization of Cyclic Diblock Copolymers of Poly(hydroxyethyl vinyl ether) and Linear Polystyrene and Their Linear Homologues [J]. Macromolecules, 29: 6737-6743.
    [80] Kubo M, Hayashi T, Kobayashi H, Itoh T. 1998. Syntheses of Tadpole- and Eight-Shaped Polystyrenes Using Cyclic Polystyrene as a Building Block [J]. Macromolecules, 31: 1053-1057.
    [81] Oike, H.; Washizuka, M.; Tezuka, Y. 2001. Designing an“A-Ring-with-Branches”Polymer Topology by Electrostatic Self-Assembly and Covalent Fixation with Interiorly Functionalized Telechelics Having Cyclic Ammonium Groups [J]. Macromol. Rapid Commun., 22: 1128-1134.
    [82] He T, Li DJ, Sheng X, Zhao B. 2004. Synthesis of ABC 3-Miktoarm Star Terpolymers from a Trifunctional Initiator by Combining Ring-Opening Polymerization, Atom TransferRadical Polymerization, and Nitroide-Mediated Radical Polymerization. [J]. Macromolecules, 37: 3128-3135.
    [83] Hadjichristidis N, Iatrou H. 1993. Morphology and Miscibility of Miktoarm Styrene-Diene Copolymers and Terpolymers. [J]. Macromolecules, 26: 5812-5815.
    [84] Iatrou H, Hadjichristidis N. 1992. Synthesis of a Model 3-Miktoarm of Star Terpolymer. [J]. Macromolecules, 37: 857-871.
    [85] Hadjichristidis N.1999. Synthesis of Miktoarm Star Polymers. [J]. J. Polym. Sci., Part A: Polym. Chem., 37: 857-871.
    [86] Reutenauer S, Hurtrez G, Dumas P. 2001. A New Route to Model (A2B) and Regular Graft Copolymers. [J]. Macromolecules,34: 755-760
    [87] Sawamoto M, Higashimura T. 1990. [J]. Polym. Prep. Jpn., 39: 1627.
    [88] Rao JY, Zhang YF, Zhang JY, Liu SY. 2008. Facile Preparation of Well-Defined AB2 Y-shaped Miktoarm Star Polypeptide Copolymer via the Combination of Ring-Opening Polymerization and Click Chemistry [J]. Bimacromolecules, 10: 2586-2593.
    [89] Se"bastien P, Allgaier JR. 2001. Synthesis and Structural Analysis of an H-shaped Polybutadiene [J]. Macromolecules, 34:5408-5415.
    [90] Han DH, Pan CY. 2006. Simple Route for Synthesis of H-Shaped Copolymers [J]. J. Polym. Sci., Part A: Polym. Chem., 44: 2794-2801.
    [91] Paraskeva S, Hadjichristidis N. 2000. Synthesis of an Exact Styrene with Two Branches.: Graft Copolymer of Isoprene [J]. J. Polym. Sci., Part A: Polym. Chem., 38: 931-935.
    [92] Tunca U, Ozyurek Z, Erdogan T, Hizal G. 2004. Novel Miktofunctional for the Preparation of an ABC-Type Miktoarm Star Polymer via a Combination of Controlled Polymerization Techniques [J]. J. Polym. Sci., Part A: Polym. Chem., 42: 4228-4236.
    [93] Francis R, Lepoittevin B, Taton D, Gnanou Y. 2002. Toward an Easy Access to Asymmetric Stars and Miktoarm Stars by Atom Transfer Radical Polymerization [J]. Macromolecules, 35: 9001-9008.
    [94] Feng XS, Pan CY. 2002. Block and Star Copolymers by Mechanism Transformation. 7. Synthesis of Polytetrahydrofuran/Poly(1,3-dioxepane)/Polystyrene ABC Miktoarm Star Copolymers by Combination of CROP and ATRP [J]. Macromolecules, 35: 2084-2089.
    [95] Guo YM, Pan CY, Wang J. 2001. Block and Star Block Copolymers by Mechanism Transformation. VI. Synthesis and Characterization of A4B4 Miktoarm Star Copolymers Consisting of Polystyrene and Polytetrahydrofuran Prepared by Cationic Ring-Opening Polymerization and Atom Transfer Radical Polymerization [J]. J. Polym. Sci., Part A: Polym. Chem., 39: 2134-2142.
    [96] Johnson RM, Fraser CL. 2004. Iron Tris(bipyridine)-Centered Star Block Copolymers: Chelation of Triblock Macroligands Generated by ROP and ATRP [J]. Macromolecules, 37: 2718-2727.
    [97] Han DH, Pan CY. 2006. Simple Route for Synthesis of H-Shaped Copolymers [J]. J. Polym. Sci., Part A: Polym. Chem., 44: 2794-2801.
    [98] Hayat MA. Colloidal Gold, Principles, Methods and Applications, Academic Press: New York, 1989.
    [99] Schmid G. 1992. Large Clusters and Colloids. Metals in the Embryonic State [J]. Chem. Rev., 92: 1709-1727.
    [100] Schmid G, Chi LF. 1998. Metal Clusters and Colloids, [J]. Adv. Mater., 10: 515-526.
    [101] Matijevic E. 1996. Controlled Colloid Formation, [J]. Curr. Opin. Colloid. Interface. Sci., 1: 176-180.
    [102] Colby A, Foss JR, Gabor L. Hornyak CRM. 1922. Optical Properties of Composite Membranes Containing Arrays of Nanoscopic Gold Cylinders [J]. J. Phys. Chem., 96: 7497-7499.
    [103] Hornyak GL, Patrissi CJ, Martin CR. 1997. Finite Sized Oblate and Ortho-Prolate Metal Nanoparticles [J]. J. Phys. Chem. B., 101: 1548-1555.
    [104] Huang S, Minami K, Sakaue H. 2002. Optical Spectroscopic Studies of the Dispersibility of Gold Nanoparticle Solutions [J]. J. Appl. Phys., 92: 7486-7490.
    [105] Zhong ZY, Patskovskyy S, Bouvrette P, Luong JHT, Gedanken A. 2004. The Surface of Au Colloids and Their Interactions with Functional Amino Acids [J]. J. Phys. Chem. B., 108: 4046-4052.
    [106] Lazarides AA, Schatz GC. 2000. DNA-Linked Metal Nanosphere Materials: Structure Basis for the Optical Properties [J]. J. Phys. Chem. B., 104: 460-467.
    [107] Daniel MC., Astruc D. 2004. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology, Chem. Rev., 104: 293-346.
    [108] Hutchings GJ, Catal J. 1985. Vapor Phase Hydrochlorination of Acetylene: Correlation of Catalytic Activity of Supported Metal Chloride Catalysts [J]. J. Catal. 96: 292-295.
    [109] Ueda A, Oshima T, Haruta M. 1997. Reduction of Nitrogen Monoxide with Propene in the Presence of Oxygen and Moisture over Gold Supported on Metal Oxides [J]. J. Appl. Catal. B : Environmental, 12: 81-93.
    [110] Andreeva D, Tabakova T, Idakiev V. 1998. Au/Alpha-Fe2O3 Catalyst for Water-Gas Shift Reaction Prepared by Deposition-Precipitation [J]. J. Appl. Catal. A: General., 169: 9-14.
    [111] Yuan Y, Asakura K, Wan H.1996. Supported Gold Catalysts Derived from Gold Complexes and As-Precipitated Metal Hydroxides, Highly Active for Low-Temperature CO Oxidation [J]. J. Chem. Lett., 9: 755-756.
    [112]甘玉琴,邹翠娥,杨平等. 2005. Au纳米粒子大小对Au/TiO2薄膜光催化活性的影响[J].石油化工34: 578-581.
    [113] Hong R, Han G, Fernandez JM, Kim BJ, Forbes NS. Rotello VM. 2006. Glutathione-Mediated Delivery and Release Using Monolayer Protected Nanoparticle Carriers. [J]. J. Am. Chem. Soc., 128: 1078-1079.
    [114] Yam VMM, Cheng ECC. 2008. Highlights on the Recent Advances in Gold Chemistry - a Photophysical Perspective. [J]. Chem. Soc. Rev., 37: 1806-1813.
    [115] Varnavski O, Ramakrishna G, Kim J, Lee D. Goodson T. 2010. Critical Size for the Observation of Quantum Confinement in Optically Excited Gold Clusters. [J]. J. Am. Chem. Soc., 132: 16-17.
    [116] Ruan CM, Wang W. Gu BH. 2007. Single-Molecule Detection of Thionine on Aggregated Gold Nanoparticles by Surface Enhanced Raman Scattering. [J]. J. Raman. Spectrosc., 38: 568-573.
    [117] Ruan CM, Wang W, Gu BH. 2006. Detection of Alkaline Phosphatase Using Surface-Enhanced Raman Spectroscopy [J]. Anal. Chem. 78: 3379-3384.
    [118] Taton TA, Mirkin CA, Letsinger RL. 2000. Scanometric DNA Array Detection with Nanoparticle Probes. [J]. Science, 289: 1757-1760.
    [119] Perrier S, Takolpuckdee P. 2005. Macromolecular Design via Reversible Addition-Fragmentation Chain Transfer (RAFT)/Xanthates (MADIX) Polymerization [J]. J. Polym. Sci.. Part A: Polym. Chem., 43: 5347-5393.
    [120] Barner L, Davis TP, Stenzel MH. 2007. Complex Macromolecular Architectures by Reversible Addition Fragmentation Chain Transfer Chemistry: Theory and Practice [J]. Macromol. Rapid Commun, 28: 539-559.
    [121] Hadjichristidis N, Iatrou, H, Pitsikalis M. 2006. Macromolecular Architectures by Living and Controlled/Living Polymerizations [J]. Prog. Polym. Sci., 31: 1068-1132.
    [122] Hadjichristidis N, Pitsikalis HM. 2005. Linear and Non-linear Triblock Terpolymers. Synthesis, Self-Assembly in Selective Solvents and in Bulk [J]. Prog. Polym. Sci., 30: 725-782.
    [123] Li, ZB, Hillmyer MA. Lodge TP. 2006. Laterally Nanostructured Vesicles, Polygonal Bilayer Sheets, and Segmented Wormlike Micelles [J]. Nano. Lett., 6: 1245-1249.
    [124] Matyjaszewski K, Xia, JH. 2001. Atom Transfer Radical Polymerization [J]. Chem. Rev.,101: 2921-2990.
    [125] Tsarevsky NV, Matyjaszewski K. 2007. From Process Design to "Green" Atom Transfer Radical Polymerization:Preparation of Well-Defined Environmentally Friendly Polymeric Materials [J]. Chem. Rev., 107: 2270-2299.
    [126] Wang JS, Matyjaszewski K. 1995. Controlled "Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) Redox Process [J]. Macromolecules, 28: 7901-7910.
    [127] Ando T, Kato M, Kamigaite M, Sawamoto M. 1996. Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions [J]. Macromolecules, 29: 1070-1072.
    [128] Kato M, Kamigaito M, Sawamoto M, Higashimura T. 1995. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine)- ruthenium(II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living Radical Polymerization [J]. Macromolecules, 28: 1721-1723.
    [129] Patten TE, Xia JH, Abernathy T, Matyjaszewski K. 1996. Polymers with Very Low Polydispersities from Atom Transfer Radical Polymerization [J]. Science, 272: 866-868.
    [130] Qiu XP, Tanaka F, Winnik FM. 2007. Cyclic Poly(N-isopropylacrylamide)s Temperature-Induced Phase Transition of Well-Defined in Aqueous Solution [J]. Macromolecules, 40: 7069-7071.
    [131] He T, Zheng G.H, Pan CY. 2003. Monomer Insertion into Cyclic Initiator by a Radical Mechanism [J]. Macromolecules, 36: 5960-5966.
    [132] Roovers J, Toporowski PM. 1988. Synthesis and Characterization of Ring Polybutadienes [J]. J. Polym. Sci. Part B: Polym. Phys., 26: 1251-1259.
    [133] Kulkarmi S, Schilli C, Brin B, Müller AHE, Hoffman AS, Stayton PS. 2006. Controlling the Aggregation of Conjugates of Steptavidin with Smart Block Copolymers Prepared via the RAFT Copolymerization Technique. [J]. Biomacromolecules, 7: 2736-2741.
    [134] Wang JS, Matyjaszewski K. 1995. Controlled/"Living" Radical Polymerization. Atom Transfer Radical Polymerization in the Presence of Transition-Metal Complexes [J]. J. Am. Chem. Soc.,117: 5614-5615.
    [135] Wang JS, Matyjaszewski K. 1995. "Living"/Controlled Radical Polymerization. Transition-Metal-Catalyzed Atom Transfer Radical Polymerization in the Presence of a Conventional Radical Initiator [J]. Macromolecules, 28: 7572-7573.
    [136] Wang JS, Matyjaszewski K. 1995. Controlled "Living" Radical Polymerization. Halogen Atom Transfer Radical Polymerization Promoted by a Cu(I)/Cu(II) RedoxProcess [J]. Macromolecules, 28: 7901-7910.
    [137] Kato M, Kamigaito M, Sawamoto M, Higashimura, T. 1995. Polymerization of Methyl Methacrylate with the Carbon Tetrachloride/Dichlorotris-(triphenylphosphine) ruthenium (II)/Methylaluminum Bis(2,6-di-tert-butylphenoxide) Initiating System: Possibility of Living adical Polymerization [J]. Macromolecules, 28: 1721-1723.
    [138] Ando T, Kato M, Kamigaite M, Sawamoto M. 1996. Living Radical Polymerization of Methyl Methacrylate with Ruthenium Complex: Formation of Polymers with Controlled Molecular Weights and Very Narrow Distributions [J]. Macromolecules, 29: 1070-1072.
    [139] Teodorescu M, Matyjaszewski K. 1999. Atom Transfer Radical Polymerization of (meth)acrylamides [J]. Macromolecules, 32: 4826-4831.
    [140] Rademacher J, Baum R, Pallack M. 2000. Atom Transfer Radical Polymerization of N,N-dimethylacrylamide [J]. Macromolecules, 33: 284-288.
    [141] Gao HF, Matyjaszewski K. 2008. Synthesis of Low-Polydispersity Miktoarm Star Copolymers Via a Simple "Arm-First" Method: Macromonomers as Arm Precursors [J]. Macromolecules, 41: 4250-4257.
    [142] Xu J, Ge ZS, Zhu ZY, Liu SY. 2006. Synthesis and Micellization Properties of Double Hydrophilic A(2)BA(2) and A(4)BA(4) Non-Linear Block Copolymers [J]. Macromolecules, 39: 8178-8185.
    [143] Kolb hc, Finn MG, Sharpless KB. 2001. Click Chemistry: Diverse Chemical Function From a Few Good Reactions [J]. Angew. Chem., Int. Ed., 40: 2004-2021.
    [144] Huisgen R. 1984. In 1, 3-bipolar Cycloaddition Chemistry (ed. Padwa A). New York, Willey, 1: 1-176.
    [145] Rostovtsev V, Green L, Fokin V, Sharpless K. 2002. A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective "Ligation" of Azides and Terminal Alkynes [J]. Angew. Chem. Int. Ed., 41: 2596-2599.
    [146] Ossipov DA, Hilborn J. 2006. Poly(vinyl alcohol) Based Hydrogels Formed by "Click Chemistry" [J]. Macromolecules, 39: 1709-1718.
    [147] Shi GY, Tang XZ, Pan CY. 2008. Tadpole-Shaped Amphiphilic Copolymers Prepared via RAFT Polymerization and Click reaction [J]. J. Polym. Sci., Part A: Polym. Chem., 46: 2390-2401.
    [148] Xu J, Liu SY. 2009. Synthesis of Well-Defined 7-Arm and 21-Arm Poly(N-isopropylacrylamide) Star Polymers withβ-Cyclodextrin Cores via Click Chemistry and Their Thermal Phase Transition Behavior in Aqueous Solution [J]. J, Polym, Sci,, Part A: Polym, Chem,, 47: 404-419.
    [149] Xu J, Ye J, Liu SY. 2007. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior [J]. Macromolecules, 40: 9103-9110.
    [150] Nicolay V, Brent S, Matyjaszewski K. 2005. Step-Growth "Click" Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 38:3558-3561.
    [151] Woodward RB, Schramm CH. 1947. Synthesis of Protein Analogs [J]. J. Am. Chem. Soc., 69: 1551-1550.
    [152] Leuchs H. 1906. Ueber Die Glycin-Carbonsaaure [J]. Ber. Dtsch. Chem. GES., 39: 857-859.
    [153] Mossel E, Formaggio F, Crisma M, Toniolo C, Sonke T, Roos EC, Broxterman QB, Kamphuis J. 1998. C-Methyl Phenylglycine-Based Semi-Synthetic Ampicillin and Cephalexin Analogues [J]. Lett. Pept .Sci., 5: 43-48.
    [154] Poche DS, Daly WH, Russo PS. 1995. Synthesis and Some Solution Propertites of Poly(γ?stearylα-L?-glutamate) [J]. Macromolecules, 28: 6745-6753.
    [155] Daly HW, Poche D. 1988. The Preparation of N-carboxyanhydrides of ?α-Amino Acids Using Bis(trichloromethyl) Carbonate [J]. Tetrahedron. Lett., 29, 5859-5862.
    [156] Vayaboury W, Giani O, Collet H, Commeyras A, Schue F. 2004. Synthesis of N-ε?protected-L-lysine andγ-benzyl-L-glutamate N-carboxyanhydries (NCA) by Carbamoylation and Nitrosation [J]. Amino. Acids., 27: 161-167.
    [157] Taillades J, Collet H, Garrel L, Beuzelin I, Boiteau L, Choukroun H, Commeyras A. 1999. N-carbamoyl Amino Acid Solid-Gas Nitrosation by NO/NOx: A new Route to Oligopeptides viaα-Amino Acid N-carboxyanhydride. Prebiotic Implications [J]. Mol. Evol., 48: 638-645.
    [158] Koga K, Sudo A, Nishida H, Endo T. 2009. Convenient and Useful Synthesis of N-carboxyanhydride Monomers Through Selective Cyclization of Urethane Derivatives ofα-Amino Acids [J]. J. Polym. Sci., Part A: Polym. Chem., 47: 3839-3844.
    [159] Kamei Y, Sudo A, Nishida H, Kikukawa K, Endo T. 2008. Synthesis of Polypeptides from Activated Urethane Derivatives ofα-Amino Acids [J]. J. Polym. Sci., Part A: Polym. Chem., 46: 2525-2535.
    [160] Lu H, Cheng JJ, 2007. Hexamethyldisilazane-Mediated Controlled Polymerization ofα-Amino Acid N-Carboxyanhydrides [J]. J. Am. Chem. Soc., 129: 14114-14115.
    [1] Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou, H. 2001. Polymers with Complex Architecture by Living Anionic Polymerization [J]. Chem. Rev, 101: 3747-3792.
    [2] Deffieux A. 1996. The Polymeric Materials Encyclopedia; Salamone, J. C, Ed.; CRC Press Publ.: Boca Raton, FL, 4: p3887.
    [3] Roovers J, Toporowski PM. 1988. Synthesi and Characterization of Ring Polybutadienes [J].J. Polym. Sci., Part B: Polym. Phys., 2: 1251-1255.
    [4] McKenna GB, Hostetter BJ, Hadjichristidis N, Fetters LJ, Plazek DJ. 1989. A Study of Linear Viscoelastic Properties of Cyclic Polystyrenes Using Creep and Recovery Measurement [J]. Macromolecules, 22: 1834-1852.
    [5] Deffieux A, Schappacher M, Rique-Lurbet L. 1994. New Routes to Macrocyclic Polymers of Controlled Dimensions [J]. Polymer, 21: 4562-4568.
    [6] Schappacher M, Deffieux A. 1991. Synthesis of Macrocyclic Poly(2-chloroethyl vinyl ether)s [J]. Macromol. Chem. Rapid Commun., 12: 447-453.
    [7] Gan YD, Dong DH., Carlotti S, Hogen-Esch TE. 2000. Enhanced Fluorescence of Macrocyclic Polystyrene [J]. J. Am. Chem .Soc., 122: 2130-2131.
    [8] Hogen-Esch TE. 2006. Synthesis and Characterization of Macrocyclic Vinyl Aromatic Polymers [J]. J. Polym. Sci. Part A: Polym. Chem., 44: 2139-2155.
    [9] Chen R, Zhang X, Hogen-Esch TE. 2003. Synthesis and Thermal Peoperties of Macrocyclic Poly(9,9-dimethyl-2-vinylfluorene) Containing Single 1,4-Benzylidene or 9,10-Anthracenylidene Linking Units [J]. Macromolecules, 36: 7477-7483.
    [10] Boydston A.J, Xia Y, Kornfield JA, Gorodetskaya IA, Grubbs RH. 2008. Cyclic Ruthenium-Alkylidene Catalysts for Ring-Expansion Metathesis Polymerization [J]. J. Am. Chem. Soc., 130: 12775–12782.
    [11] Rajaram S, Choi TL, Rolandi M, Fre′chet JMJ. 2007. Synthesis of Dendronized Diblock Copolymers via Ring-Opening Metathesis Polymerization and Their Visualization Using Atomic Force Microscopy [J]. J. Am. Chem. Soc., 129: 9619–9621.
    [12] Boydston AJ, Holcombe TW, Unruh DA, Fre′chet JMJ, Grubbs RH. 2008. Formation of Trioctylamine from Octylamine on Au(111) [J]. J. Am. Chem. Soc., 131: 5388–5389.
    [13] Kolb HC, Finn MG, Sharpless KB. 2001. Click Chemistry: Diverse Chemical Function from a Few Good Reactions [J]. Angew. Chem. Int. Ed., 40: 2004-2021.
    [14] Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K. 2005. Highly Efficient“Click”Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP [J]. Macromolecules, 38: 7540-7545.
    [15] Joralemon MJ, O’Reilly RK, Matson JB, Nugent AK, Hawker CJ, Wooley KL. 2005. Dendrimers Clicked Together Divergently [J]. Macromolecules, 38: 5436-5443.
    [16] Tsarevsky NV, Sumerlin BS, Matyjaszewski K. 2005. Step-Growth“Click”Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 38: 3558-3561.
    [17] Binder WH, Sachsenhofer R. 2007.“Click”Chemistry in Polymer and Materials Science [J].Macromol. Rapid Commun., 28: 15-54.
    [18] Cramail S, Schappacher M, Deffieux, A. 2000. Controlled Synthesis and Solution Behavior of Macrocyclic Poly[(styrene)-b-(ethylene oxide)] Copolymers [J]. Macromol. Chem. Phys., 201: 2328-2335.
    [19] Altintas O, Yankul B, Hizal G, Tunca U. 2007. One-Pot Preparation of 3-Miktoarm Star Terpolymers via Click [3+2] Reaction [J]. J. Polym. Sci., Part A: Polym. Chem., 45: 3588-3598.
    [20] Opsteen JA, Van Hest JCM. 2007. Modular Synthesis of ABC Type Block Copolymers by“Click”Chemistry. [J]. J. Polym. Sci., Part A: Polym. Chem., 45: 2913-2924.
    [21] Kricheldorf HR, Al-Masri M, Schwarz G. 2002. Macrocycles. 20. Cyclic Poly(ehylene glycol) Phthalates via Ring-Exchange Substitution [J]. Macromolecules, 35: 8936-8942.
    [22] Laurent BA, Grayson SM. 2006. An Efficient Route to Well-Defined Macrocyclic Polymers via“Click”Cyclization [J]. J. Am. Chem. Soc., 128: 4238-4239.
    [23] Oike H, Washizuka M, Tezuka Y. 2001. Alk-1-ene Polymerization in the Presence of a Monocyclopentadienyl Zirconium(IV) Acetamidinate Catalyst: Microstructural and Mechanistic Insights [J]. Macromol. Rapid Commun., 22: 1128-1134.
    [24] Virtanen J, Baron C, Tenhu H. 2000. Grafting of Poly(N-isopropylacrylamide) with Poly(ethylene oxide) under Various Reaction Conditions [J]. Macromolecules, 33: 336-341.
    [25] Xia Y, Burke N, Stover H. 2006. End Group Effect on the Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 39: 2275-2283.
    [26] Qiu XP, Tanaka F, Winnik FM. 2007. Temperature–Induced Phase Transition of Well-Defined Cyclic Poly(N-isopropylacrylamide)s in Aqueous Solutio [J]. Macromolecules, 40: 7069-7071.
    [27] Ciampolini M, Nardi N. 1966. Five-Coordinated High-Spin Complexes of Bivalent Cobalt, Nickel, and Copper with Tris(2-dimethylaminoethyl)amine [J]. Inorg. Chem., 5: 41-44.
    [28] Cho KY, Kim CH, Lee JW, Park JK. 1999. Synthesis and Characterization of Poly(ethylene glycol)-grafted-Poly(L-lactide) [J]. Macromol. Rapid Commun., 20: 598–601.
    [29] Tsarevsky NV, Bencherif SA, Matyjaszewski K. 2007. Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions [J]. Macromolecules, 40: 4439–4445.
    [30] Percec V, Popov AV, Castillo ER, Monteiro M, Barboiu B, Weichold O, Asandei AD, Mitchell CM. 2002. Aqueous Room Temperature Metal-Catalyzed Radical Polymerization of Vinyl Chloride [J]. J. Am. Chem. Soc., 124: 4940-4941.
    [31] Percec V, Popov AV, Castillo ER, Weichold O. 2003. Living Radical Polymerization of Vinyl Initiated with Iodoform and Catalyzed by Nascent Cu0/Tris(2-aminoethyl)amine or Polyethyleneimine in Water at 25 oC Proceeds by a New Competing Pathways Mechanism [J]. J. Polym. Sci., Part A: Polym. Chem., 41: 3283-3299.
    [32] Percec V, Guliashvili T, Ladislaw JS, Wistrand A, Stjerndahl A, Sienkowska MJ, Monteiro MJ, Sahoo S. 2006. Ultrafast Synthesis of Ultrahigh Molar Mass Polymers by Metal-Catalyzed Living Radical Polymerization of Acrylates, Methacrylates, and Vinyl Chloride Mediated by SET at 25 oC [J]. J. Am. Chem. Soc., 128: 14156-14165.
    [33] Monteiro MJ, Guliashvili T, Percec V. 2007. Kinetic Simulation of Single Electron Transfer-Living Radical Polymerization of Methyl Acrylate at 25 oC [J]. J. Polym. Sci., Part A: Polym. Chem., 45: 1835-1847.
    [34] Lligadas G, Percec V. 2008. Fromtal Polymerization with Monofunctional and Difunctional Inoic Liquid Monomers [J]. J. Polym. Sci., Part A: Polym. Chem., 46: 2745-2754.
    [35] Rosen BM, Percec V. 2008. Implication of Monomers and Initiator Structure on the Dissociative Electron-Transfer Step of SEI-LRP [J]. J. Polym. Sci., Part A: Polym. Chem., 46: 5663-5697.
    [36] Lligadas G, Rosen BM, Monteiro MJ, Percec V. 2008. Solvent Choice Differentiates SET-LRP and Cu-Mediated Radical Polymerization with Non-First-Order Kinetics [J]. Macromolecules, 41: 8360–8364.
    [37] Lligadas G, Rosen BM, Bell CA, Monteiro MJ, Percec V. 2008. Effect of Cu(0) Particles Size on the Kinetics of SET-LRP in DMSO and Cu-Mediated Radical Polymerization in MeCN at 25 oC [J]. Macromolecules, 41: 8365–8371.
    [38] Nguyen NH, Rosen BM, Lligadas G, Percec V. 2009. Surface-Dependent Kinetics of Cu(0)-Wire-Catalyzed Single-Electron Transfer Living Radical Polymerization of Methyl Acrylate in DMSO at 25 oC [J]. Macromolecules, 42: 2379-2386.
    [39] Rosen BM, Percec, V. 2007. A Density Functional Theory Computational Study of the Role of Ligand on the Stability of CuI and CuII Species Associated with ATRP and SET-LRP [J]. J. Polym. Sci., Part A: Polym. Chem., 45: 4950–4964.
    [40] Masci G, Giacomelli L, Crescenzi V. 2004. Atom Transfer Radical Polymerization of N-Isopropylacrylamide [J]. Macromol. Rapid Commun., 25: 559–564.
    [41] Feng C, Shen ZJ, Li YJ, Gu L, Zhang YQ, Lu GL, Huang XY. 2009. PNIPAM-b-(PEA-g-PDMAEMA) Double-Hydrophilic Graft Copolymer: Synthesis and its Application for Preparation of Gold Nanoparticles in Aqueous Media [J]. J. Polym. Sci., Part A: Polym. Chem., 47: 1811-1824.
    
    [42] Kubo M, Nishigawa T, Uno T, Itoh T, Sato H. 2003. Cyclic Polyelectrolyte: Synthesis of Cyclic Poly(acrylic acid) and Cyclic Potassium Polyacrylate [J]. Macromolecules, 36: 9264-9266.
    [43] Kramers HA. 1946. The Behavior of Macromolecules in Inhomogeneous Flow [J]. J. Chem .Phys., 14: 415-424.
    [44] Higgins JS, Dodgson K, Semlyen JA. 1979. Studies of Cyclic and Linear Poly(dimethyl siloxanes): 3. Neutron Scattering Measurements of the Dimensions of Ring and Chain Polymers [J]. Polymer, 20: 553-558.
    [45] Xu J, Ye J, Liu SY. 2007. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry anf Its Unique Thermal Phase Transition Behavior [J]. Macromolecular, 40: 9103-9110.
    [46] Shi GY, Tang XZ, Pan CY. 2008. Tadpole-Shaped Amphiphilic Copolymers Prepared via RAFT Polymerization and Click Reaction [J]. J. Polym. Sci., Part A: Polym. Chem., 46: 2390-2401.
    [47] Rique-Lurbet L, Schappacher M, Deffieux A. 1994. A New Strategy for the Synthesis of Cyclic Polystyrenes: Principle and Application [J]. Macromolecules, 27: 6318-6324.
    [48] Bielawski CW, Benitez D, Grubbs RH. 2003. Synthesis of Cyclic Polybutadiene via Ring-Opening Metathesis Polymerization: The Importance of Removing Trace Linear Contaminants [J]. J. Am. Chem. Soc., 125: 8424-8425.
    [49] Takano A, Kushida Y, Aoki K, Masuoka K, Hayashida K, Cho D, Kawaguchi D, Matsushita Y. 2007. HPLC Characterization of Cylization Reaction Product Obtained by End-to-End Ring Closure Reaction of a Telechelic Polystyrene [J]. Macromolecules, 40: 679-681.
    [50] Arotcarena M, Heise B, Ishaya S, Laschewsky A. 2002. Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity [J]. J. Am. Chem. Soc., 124: 3787-3793.
    [51] Virtanen J, Acrotcarena M, Heise B, Ishaya S, Laschewsky A, Tenhu H. 2002. Dissolution and Aggregation of a Poly(NIPA-block-sulfobetaine) Copolymer in Water and Saline Aqueous Solutions [J]. Langmuir, 18: 5360-5365.
    [52] Roovers J, Toporowski PM. 1983. Syntheis of High Molecular Weight Ring Polystyrenes [J]. Macromolecules, 16, 843-849.
    [53] Qiu X, Wu C. 1997. Study of Core-Shell Nanoparticle Formed through the“Coil-to-Globule”Transition of Poly(N-isopropylacrylamide) Grafted with Poly(ethylene oxide)[J]. Macromolecules, 30: 7921-7926.
    [1] Wu P, Feldman AK, Nugent AK, Hawker CJ, Scheel A, Voit B, Pyun J, Frechet JMJ,Sharpless KB, Fokin VV. 2004. Efficiency and Fidelity in a Click-Chemistry to Triazole Dendrimers by the Copper(I)-Ctalyzed Ligation of Azides and Al [J]. Angew. Chem. Int. Ed., 43: 3928-3932.
    [2] Joralemon MJ, O’Reilly RK, Matson JB, Nugent AK, Hawker CJ, Wooley KL. 2005. Dendromers Clicked Together Divergently [J]. Macromolecules, 38: 5436-5443.
    [3] Riva R, Schmeits S, Jerome C, Jerome R, Lecomte P. 2007. Combination of Ring-Opening Polymerization and“Click Chemistry”: Toward Funtionalization and Grafting of Poly(ε-Caprolactone) [J]. Macromolecules, 40: 796-803.
    [4] Li H, Riva R, Jerome R, Lecomte P. 2007. Combination of Ring-Opening Polymerization and“Click Chemistry for the Synthesis of an Amphiphilic Tadpole-Shaped Poly(ε-Caprolactone) Grafted by PEO [J]. Macromolecules, 40: 824-831.
    [5] Gao H, Matyjaszewski K. 2006. Synthesis of Star Polymers by a Combination of ATRP and the“Click”Copuling Method [J]. Macromolecules, 39: 4960-4965.
    [6] Whittaker MR, Urbani CN, Monteiro MJ. 2006. Synthesis of 3-Miktoarm Stars and Ist Generation Mikto Dendritic Copolymers by“Living”Radical Polymerization and“Click”Chemistry [J]. J. Am. Chem. Soc., 128: 11360-11361.
    [7] Altintas O, Hizal G, Tunca U. 2006. ABC-Type Hetero-Arm Star Terpolymers Through“Click”Chemistry [J]. J. Polym. Sci., Part A: Polym. Chem., 44: 5699-5707.
    [8] Li LY, He WD, Li J, Han SC, Sun XL, Zhang BY. [J]. J. Polym. Sci., Part A: Polym. Chem., 47: 7066-7077
    [9] Qiu XP, Tanaka F, Winnik FM. 2007. Synthesis of Twin-Tail Tadpole-Shaped Hydrophilic Copolymers and Their Thermo-Responsive Behavior [J]. Macromolecules, 40: 7069-7071.
    [10] Laurent BA, Grayson SM. 2006. An Efficient Route to Well-Defined Macrocyclic Polymers via“Click”Cyclization [J]. J. Am. Chem. Soc., 128: 4238-4239.
    [11] Xu J, Ye J, Liu SY. 2007. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior [J]. Macromolecules, 40: 9103-9110.
    [12] Hadjichristidis N, Pitsikalis M, Pispas S, Iatrou H. 2001. Polymers with Complex Architecture by Living Anionic Polymerization [J]. Chem. Rev., 101: 3747-3792.
    [13] Deffieux A. 1996. The Polymeric Materials Encyclopedia; Salamone, J. C, Ed.; CRC Press Publ.: Boca Raton, FL, 4: p3887.
    [14] Roovers J, Toporowski PM. [J]. J. Polym. Sci., Part A: Polym. Chem., 2: 1251-1255.
    [15] McKenna GB, Hostetter BJ, Hadjichristidis N, Fetters LJ, Plazek DJ. 1989. A Study of the Linear Viscoelastic Properties of Cyclic Polystyrenes Using Creep and RecoveryMeasurements [J]. Macromolecules, 22: 1834-1852.
    [16] Deffieux A, Schappacher M, Rique-Lurbet L. 1994. New Route to Macrocyclic Polymers of Controlled Dimensions [J]. Polymer, 21: 4562-4568.
    [17] Zimm BH, Stockmayer WH. 1949. [J]. J. Chem. Phys., 17: 1301-1314.
    [18] Semlyen JA. 2000. Cyclic Polymers, 2nd ed.; Kluwer Academic Publishers: Boston.
    [19] Schappacher M, Deffieux A. 1991. Synthesis of Macrocyclic Poly(2-Chloroethyl Vinyl Ether)s [J]. Makromol. Chem. Rapid Commun., 12: 447-453.
    [20] Bensafi A, Maschke U, Benmouna M. 2000. Cyclic Polymers in Good Solvents [J]. Polym. Int., 49: 175–183.
    [21] Roland CM, Ngai KL, Santangelo PG, Qiu XH, Ediger MD, Plazek DJ. 2001. Temperature Dependence of Segmental and Terminal Relaxation in Atactic Polypropylene Melts [J]. Macromolecules, 34: 6159–6160.
    [22] Kolb HC, Finn MG, Sharpless KB. 2001. Click Chemistry: Diverse Chemical Function from a Few Good Reactions [J]. Angew. Chem. Int. Ed., 40: 2004-2021.
    [23] Sumerlin BS, Tsarevsky NV, Louche G, Lee RY, Matyjaszewski K. 2005. Highly Efficient“Click”Functionalization of Poly(3-azidopropyl methacrylate) Prepared by ATRP [J]. Macromolecules, 38: 7540-7545.
    [24] Joralemon MJ, O’Reilly RK, Matson JB, Nugent AK, Hawker CJ, Wooley KL. 2005. Dendrimers Clicked Together Divergently [J]. Macromolecules, 38: 5436-5443.
    [25] Tsarevsky NV, Sumerlin BS, Matyjaszewski K. 2005. Step-Growth“Click”Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 38: 3558-3561.
    [26] Binder WH, Sachsenhofer R. 2007.“Click”Chemistry in Polymer and Materials Science [J]. Macromol. Rapid Commun., 28: 15-54.
    [27] Cramail S, Schappacher M, Deffieux A. 2000. Controlled Synthesis and Solution Behavior of Macrocylic Poly[(styrene-b-(ethylene oxide)] Copolymers [J]. Macromol. Chem. Phys., 201: 2328-2335.
    [28] Altintas O, Yankul B, Hizal G, Tunca U. 2007. One-Pot Ppreparation of 3-Miktoarm Star Terpolymers via Click [3+2] Reaction [J]. J. Polym. Sci., Part A: Polym. Chem., 45: 3588-3598.
    [29] Opsteen JA, Van Hest JCM. 2007. Modular Synthesis of ABC Type Block Copolymers by“Click”Chemistry [J]. J. Polym. Sci., Part A: Polym. Chem., 45: 2913-2924.
    [30]Kricheldorf HR, Al-Masri M, Schwarz G. 2002. Macrocycles. 20. Cylic Poly(ethylene glycol) Phthalates via Ring-Exchange Substitution [J]. Macromolecules, 35: 8936-8942.
    [31] Ciampolini M, Nardi N. 1966. Five-Coordinated High-Spin Complexes of Bivalent Cobalt, Nickel, and Copper with Tris(2-dimethylaminoethyl)amine [J]. Inorg. Chem., 5: 41-44.
    [32] Bednar B, Edwards K, Almgren M, Tormod S, Tuzar Z. 1988. Rates of Association and Dissociation of Blick Copolymer Micelles: Light-Scattering Stopped-Flow Measurements [J]. Makromol. Chem., Rapid Commun., 9: 785-790.
    [33] Johnson KA. 2003. Kinetic Analysis of Macromolecules: APractical Approach; Oxford University Press: New York.
    [34] Zhang YF, Wu T, Liu SY. 2007. Micellization Kinetics of a Novel Muti-Responsive Double Hydrophilic Diblock Copolymer Studied by Stopped-Flow pH and Temperature Jump [J]. Macromol. Chem. Phys., 208: 2492–2501.
    [35] Xia Y, Burke N, Stover H. 2006. End Group Effect on the Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 39: 2275-2283.
    [36] Virtanen J, Baron C, Tenhu H. 2000. Grafting of Poly(N-isopropylacrylamide) with Poly(ethylene oxide) under Various Reaction Conditions [J]. Macromolecules, 33: 336-341.
    [37] Qiu X, Wu C. 1997. Study of the Core-Shell Nanoparticle Formed through the“Coil-to-Globule”Transition of Poly(N-isopropylacrylamide) Grafted with Poly(ethylene oxide) [J]. Macromolecules, 30: 7921-7926.
    [38] Zhou Z, Peiffer DG, Chu B. 1994. Light Scattering Studies of Block Lonomer Aggregation Characterization Characteristics in Nonpolar Solvent [J]. Macromolecules, 27: 1428-1433.
    [39] Tu YF, Wan XH, Zhang D, Zhou QF, Wu C. 2000. Self-Assembled Nanostructure of a Novel Coil-Rod Diblock Copolymer in Dilute Solution [J]. J. Am. Chem. Soc., 122: 10201-10205.
    [1] Rosler A, Vandermeulen GWM, Klok HA. 2001. Advanced Drug Delivery Devices via Self-Assembly of Amphiphilic Block Copolymers [J]. Adv. Drug. Delivery. Rev. 53: 5–108.
    [2] Chang Y, Powell ES, Allcock HR. 2005. Environmently Responsive Micelles from Polystyrene-Poly[bis(poyassium carboxylatophenoxy)phosphazenel Block Copolymers [J]. J.Polym. Sci., Part A: Polym.Chem. 43: 2912–2920.
    [3] Huang CJ, Chang FC. 2008. Polypeptide Diblock Copolymers: Synthesis and Properties of Poly(N-isopropylacrylamide)-b-Polylysine [J]. Macromolecules, 41: 7041–7052.
    [4] Wang D, Wu T, Wan X, Wang X, Liu SY. 2007. Purely Salt-Responsive Micelle Formation and Inversion Based on a Novel Schizophrenic Sulfobetaine Block Copolymer: Structure and Kinetics of Micellization [J]. Langmuir, 23: 11866–11874.
    [5] Gohy JF. 2005. Block Copolymer Micelles [J]. Adv. Polym. Sci., 190: 65–136.
    [6] Riess G. 2003. Micellization of Block Copolymers [J]. Prog. Polym. Sci., 28: 1107–1170.
    [7] Rodriguez-Hernandez J, Lecommandoux S. 2005. Reversible Inside-Out Micellization of pH-responsive and Water-Soluble Vesicles Based on Polypeptide Diblock Copolymers [J]. J. Am. Chem. Soc., 127: 2026–2027.
    [8] Butun V, Liu SY, Weaver JVM, Bories-Azeau X, Cai Y, Armes SP. 2006. A Brief Review of“Schizophrenic”Block Copolymers [J]. React. Funct. Polym., 66: 157–165.
    [9] Liu SY, Armes SP. 2003. Synthesis and Aqueous Solution Behavior of a pH-responsive Schizophrenic Diblock Copolymer [J]. Langmuir, 19: 4432–4438.
    [10] Schilli CM, Zhang MF, Rizzardo E, Thang SH, Chong YK, Edwards K, Karlsson G, Muller AHE. 2004. A New Double-Responsive Block Copolymer Synthesized via RAFT Polymerization: Poly(N-isopropylacrylamide)-block-Poly(acrylic acid) [J]. Macromolecules, 37: 7861–7866.
    [11] Gan LH, Ravi P, Mao BW, Tam KC. 2003. Controlled/Living Polymerization of 2-(diethylamino) Ethyl Methacrylate and Its Block Copolymer with Tert-Butyl Methacrylate by Atom Transfer Radical Polymerization [J]. J. Polym. Sci., Part A:Polym. Chem., 41: 2688–2695.
    [12] Colfen H. 2001. Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifier [J]. Macromol. Rapid Commun., 22: 219–252.
    [13] Hamley IW. 1998. The Physics of Block Copolymers; Oxford UniversityPress: Oxford.
    [14] Jabbarzadeh A, Atkinson JD, Tanner RI. 2003. Effect of Molecular Shape on Rheological Properties in Molecular Dynamics Simulation of Star, H, Comb, and Linear Polymer Melts [J]. Macromolecules, 36: 5020–5031.
    [15] Tezuka Y, Oike H. 2001. Topological Polymer Chemistry: Systematic Classification of Nonlinear Polymer Topologies [J]. J. Am. Chem. Soc., 123: 11570–11576.
    [16] Ge ZS, Cai YL, Yin J, Zhu ZY, Rao JY, Liu SY. 2007. Synthesis and“Schizophrenic”Micellization of Double Hydrophilic AB(4) Miktoarm Star and AB Diblock Copolymer: Structure and Kinetics of Micellization [J]. Langmuir, 23: 1114–1122.
    [17] Gu LN, Shen Z, Feng C, Li YG, Lu GL, Huang XY. 2008. Synthesis of Double Hydrophilic Graft Copolymer Containing Poly(ethylene glycol) and Poly(methacrylic acid) Side Chains via Successive ATRP [J]. J.Polym. Sci., Part A: Polym. Chem., 46: 4056–4069.
    [18] Li ZB, Kesselman E, Talmon Y, Hillmyer MA, Lodge TP. 2004. Multicompartment Micelles from ABC Miktoarm Stars in Water [J]. Science, 306:–101.
    [19] Ambade AV, Savariar EN, Thayumanavan S. 2005. Dendrimeric Micelles for Controlled Drug Release and Targeted Delivery [J]. Mol. Pharm., 2: 264–272.
    [20] Elbert DL, Herbert CB, Hubbell JA. 1999. Thin Polymer Layers Formed by Polyelectrolyte Multilayer Techniques on Biological Surface [J]. Langmuir, 15: 5355–5362.
    [21] Saito R, Ishizu K, Fukutomi T. 1990. Cross-Linking of the Inner Poly(methyl methacrylate) Core of Poly(alpha-methylstyrene-b-methyl methacrylate) Micelles in Selective Solvents. 1. Effect of Solvent Selevtivity [J]. Polymer, 31: 679–683.
    [22] Ishizu K, Onen A. 1989. Core-Shell Type Polymer Microspheres Prepared by Domain Fixing of Block Copolymer Films [J]. J. Polym. Sci., Part A: Polym. Chem., 27: 3721–3731.
    [23] Wilson DJ, Riess G. 1988. Photochemical Stabilization of Block Copolymer Micelles [J]. J. Eur. Polym., 24: 617–621.
    [24] Guo A, Liu G, Tao J. 1996. Star Polymers and Nanospheres from Cross-Linkable Diblock Copolymers [J]. Macromolecules, 29: 2487–2493.
    [25] Thurmond Ii KB, Huang H, Clark Jr CG, Kowalewski T, Wooley KL. 1999. Shell Cross-Linked Polymer Micelles: Stabilized Assemblies with Great Versatility and Potential [J]. Colloids Surf., B, 16: 45–54.
    [26] Wooley KL. 2000. Shell Crosslinked Polymer Assemblies: Nanoscale Constructure inspired from Biological Systems [J]. J. Polym. Sci., Part A: Polym. Chem., 38: 1397–1407.
    [27] Liu F, Liu G. 2001. Poly(solketal methacrylate)-b-Poly(allyl methacrylate): Synthesis and Micelle Formation [J]. Macromolecules, 34: 1302–1307.
    [28] Read ES, Armes SP. 2007. Recent Advances in Shell Cross-Linked Micelles [J]. Chem. Commun., 29: 3021–3035.
    [29] Thurmond KB, Kowalewski T, Wooley KL. 1996. Water-Soluble Knedel-Like Structures: The Preparation of Shell-Cross-Linked Small Particles [J]. J. Am. Chem. Soc., 118: 7239–7240.
    [30] Thurmond KB, Kowalewski T, Wooley KL. 1997. Shell Cross-Linked Knedels;A Synthetic Study of the Factors Affecting the Dimensions and Properties of Amphiphilic Core-Shell Nanospheres [J]. J. Am. Chem. Soc., 119: 6656–6665.
    [31] Murthy KS, Ma Q, Clark CG, Remsen E, Wooley KL. 2001. Fundamental Design Aspects ofAmphiphilic Shell-Crosslinked Nanoparticles for Controlled Release Applications [J]. Chem. Commun., 8: 773–774.
    [32] Buxton GA, Clarke N. 2007. Drug Diffusion from Polymer Core-Shell Nanoparticles [J]. Soft Matter, 3: 1513–1517.
    [33] Chang C, Wei H, Feng J, Wang ZC, Wu XJ, Wu DQ, Cheng SX, Zhang XZ, Zhuo RX. 2009. Temperature and pH Double Responsive Hybrid Cross-Linked Micelles Based on Poly(NIPAM-co-MPMA)-b-Poly(DEA): RAFT Synthesis and“Schizophrenic”Micellization [J]. Macromolecules, 42: 4838–4844.
    [34] Ciampolini M, Nardi N. 1966. Five-Coordinated High-Spin Complexes of Bivalent Cobalt, Nickel, and Copper with Tris(2-dimethylaminoethyl)amine [J]. Inorg. Chem., 5: 41–44.
    [35] Xia Y, Burke NAD, Stover HDH. 2006. End Group Effect on the Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 39: 2275–2283.
    [36] Daly HW, Poche D. 1988. The Preparation of N-Carboxyanhydrides of Alpha-Amino-Acids Using Bis(trichloromethyl)carbonate [J]. Tetrahedron Lett., 29: 5859–5862.
    [37] Whittaker MR, Urbani CN, Monteiro MJ. 2006. Synthesis of 3-Miktoarm Stars and 1st Generation Mikto Dendritic Copolymers by“Living”Radical Polymerization and“Click”Chemistry [J]. J. Am. Chem. Soc., 128: 11360–11361.
    [38] David DD, Sreenivas P, Philipp H, Andrew KM, Sharpless KB, Valery VF, Finn MG. 2004. Click Chemistry in Materials Synthesis. 1. Adhesive Polymers from Copper-Catalyzed Azide-Alkyne Cycloaddition [J]. J. Polym. Sci., Part A: Polym. Chem., 42: 4392-4403.
    [39] Tsarevsky NV, Bencherif SA, Matyjaszewski K. 2007. Graft Copolymers by a Combination of ATRP and Two Different Consecutive Click Reactions [J]. Macromolecules, 40: 4439–4445.
    [40] Kricheldorf HR. 1987. Amino Acid N-Carboxyanhydrides and Related eterocycles; Springer-Verlag: Berlin, 1-213.
    [41] Deming TJ. 1997. Polyprptide Materials: New Synthetic Methods and Applications [J]. Adv. Mater., 9: 299–311.
    [42] Chen GJ, Tao L, Mantovani G, Ladmiral V, Burt DP, Macpherson JV, Haddleton DM. 2007. Synthesis of Azide/Alkyne-Terminal Polymers and Application for Surface Functionalisation Through a [3+2] Huisgen Cycloaddition Process,“Click Chemistry”[J]. Soft Matter, 3: 732-739.
    [43] Greene TW, Wuts PGM. 1999. Protective Groups in Organic Synthesis; Wiley-Interscience: New York.
    [44] Hiskey RG, Adams JB. 1965. Sulfur-Containing Polypeptides. I. Use of the N-Benzhydryloxycarbonyl Group and the Benzhydryl Ester [J]. J. Am. Chem. Soc., 87: 3969–3973.
    [45] Aboderin AA, Delpierre GR, Fruton JS. 1965. Benzhydryl Esters of Amino Acids in Peptide Synthesis [J]. J. Am. Chem. Soc., 87: 5469–5472.
    [46] Arotcarena M, Heise B, Ishaya S, Laschewsky A. 2002. Switching the Inside and the Outside of Aggregates of Water-Soluble Block Copolymers with Double Thermoresponsivity [J]. J. Am. Chem. Soc., 124: 3787–3793.
    [47] Virtanen J, Arotcarena M, Heise B, Ishaya S, Laschewsky A, Tenhu H. 2002. Dissolution and Aggregation of a Poly(NIPA-block-sulfobetaine) Copolymer in Water and Saline Aqueous Solution [J]. Langmuir, 18: 5360–5365.
    [48] Qiu XP, Tanaka F, Winnik FM. 2007. Temperature-Induced Phase Transition of Well-Defined Cyclic Poly(N-isopropylacrylamide)s in Aqueous Solution [J]. Macromolecules, 40: 7069–7071.
    [49] Zhu PW, Napper DH. 1999. Aggregation of Block Copolymer Microgels of Poly(N-isopropylacrylamide) and Poly(ethylene glycol) [J]. Macromolecules, 32: 2068–2070.
    [50] Zhu PW, Napper DH. 2000. Effect of Heating Rate on Nanoparticle Formation of Poly(N-isopropylacrylamide)-Poly(ethylene glycol) Block Copolymer Microgels [J]. Langmuir, 16: 8543–8545.
    [51] Stepanek P. 1972. In Dynamic Light Scattering; Brown, W., Ed.; Oxford University Press: London, 1972.
    [52] Li Y, Lokitz BS, Armes SP, McCormick CL. 2006. Synthesis of Reversible Shell Cross-Linked Micelles for Controlled Release of Bioactive Agents [J]. Macromolecules, 39: 2726–2728.
    [53] Wei H, Cheng C, Chang C, Chen WQ, Cheng SX, Zhang XZ, Zhou RX. 2008. Synthesis and Applications of Shell Cross-Linked Thermoresponsive Hybrid Micelles Based on Poly(N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate)-b-Poly(methyl methacrylate) [J]. Langmuir, 24: 4564–4570.
    [54] Zhu JL, Zhang XZ, Cheng H, Li YY. 2007. Synthesis and Characterization of Well-Defined, Amphiphilic Poly(N-isopropylacrylamide)-b-[2-hydroxyethyl methacrylate-Poly(carprolactone)] Graft Copolymers by RAFT Polymerization and Macromonomer Method [J]. J. Polym. Sci., Part A:Polym. Chem., 45: 5354–5364.
    [55] Shi J, Liu L, Liu X, Sun X, Cao S. 2008. Inorganic-Organic Hybrid Alginate Beads withLCST Near Human Body Temperature for Sustained Dual-Sensitive Drug Delivery [J]. Polym. Adv. Technol., 19: 1467–1473.
    [56] Yang M, Ding Y, Zhang L, Qian X. 2007. Novel Thermosensitive Polymeric Micelles for Docetaxel Delivery [J]. J. Biomed. Mater. Res. A, 4: 847–857.
    [1] Daniel MC, Astruc D. 2004. Gold Nanoparticles: Assembly, Supranolecular Chemistry, Quantum-Size-Related Properties, and Applications Toward Biology, Catalysis, and Nanotechnology [J]. Chem. Rev., 104: 293–346.
    [2] Burda C, Chen X, Narayanan R, El-Sayed MA. 2005. Chemistry and Properties of Nanocrystals of Different Shapes [J]. Chem. Rev., 105: 1025–1102.
    [3] Yam VWW, Cheng ECC. 2008. Highlights on the Rescent Advances in Gold Chmistry-a Photophysical Perspective [J]. Chem. Soc. Rev., 37: 1806–1813.
    [4] Corma A, Garcia H. 2008. Supported Gold Nanoparticles as Catalysts for Organic Reactions [J]. Chem. Soc. Rev., 37: 2096–2126.
    [5] Templeton AC, Wuelfing WP, Murray RW. 2000. A. Monolayer-Protected Cluster Molecules [J]. Accounts. Chem. Res., 33: 27–36.
    [6] Rucareanu S, Gandubert VJ, Lennox RB. 2006. 4-(N,N-Dimethylamino)pyridine-Protected Au Nanoparticles: Versatile Precursor for Water- and Organic-Soluble Gold Nanoparticles [J]. Chem. Mater., 18: 4674–4680.
    [7] Ofir Y, Samanta B, Rotello VM. 2008. Polymer and Biopolymer Mediated Self-Assembly of Gold Nanoparticles [J]. Chem. Soc. Rev., 37: 1814–1825.
    [8] Hussain I, Graham S, Wang Z, Tan B, Sherrington DC, Rannard SP, Cooper AI, Brust M. 2005. Size-Controlled Synthesis of Near-Monodisperse Gold Nanoparticles in the 1-4 nmRange Polymeric Stabilizers [J]. J. Am. Chem. Soc., 127: 16398–16399.
    [9] Liu Z, Jiang M. 2007. Reversible Aggregation of Gold Nanoparticles Driven by Inclusion Complexation [J]. J. Mater. Chem., 17: 4249–4254.
    [10] Cooper E, Leggett GJ. 1998. Static Secondary Ion Mass Spectrometry Studies of Self-Assembled Monolayers: Influence of Adsorbate Chain Length and Terminal Functional Group on Rates of Photooxidation of Alkanethiols on Gold [J]. Langmuir, 14: 4795–4801.
    [11] Castner DG, Hinds K, Grainger DW. 1996. X-Ray Photoelectron Spectroscopy Sulfur 2p Study of Organic Thiol and Disulfide Binding Interactions with Gold Surfaces [J]. Langmuir, 12: 5083–5086.
    [12] Bronstein LM, Sidorov SN, Gourkova AY, Valetsky PM, Hartmann J, Breulmann M, Colfen H, Antonietti M. 1998. Interaction of Metal Compounds with”Double-Hydrophilic”Block Copolymers in Aqueous Medium and Metal Colloid Formation [J]. Inorg. Chim. Acta., 280: 348–354.
    [13] Sakai T, Alexandridis P. 2004. Single-Step Synthesis and Stabilization of Metal Nanoparticles in Aqueous Pluronic Block Copolymers Solutions at Ambient Temperature [J]. Langmuir, 20: 8426–8430.
    [14] Chen H, Wang Y, Wang Y, Dong S, Wang E. 2006. One-Step Preparation and Characterization of PDDA-Protected Gold Nanoparticles [J]. Polymer, 47: 763–766.
    [15] Sardar R, Bjorge NS, Shumaker-Parry JS. 2008. pH-Controlled Assemblies of Polymeric Amine-Stabilized Gold Nanoparticles [J]. Macromolecules, 41: 4347–4352.
    [16] Chang S, Singamaneni S, Kharlampieva E, Young SL, Tsukruk VV. 2009. Responsive Hybrid Nanotubes Composed of Block Copolymer and Gold Nanoparticles [J]. Macromolecules, 42: 5781–5785.
    [17] Jewrajka SK, Chatterjee U. 2006. Block Copolymer Mediated Synthesis of Amphiphilic Gold Nanoparticles in Water and an Aqueous Tetrahydrofuran Medium: An Approach for the Preparation of Polymer-Gold Nanocomposites [J]. J. Polym. Sci., Part A: Polym. Chem., 44, 1841–1854.
    [18] Yuan JJ, Schmid A, Armes SP. 2006. Facile Synthesis of Highly Biocompatible Poly(2-methacryloyloxy)ethyl phosphorylcholine)-Coated Gold Nanoparticles in Aqueous Solution [J]. Langmuir, 22: 11022–11027.
    [19] Ishii T, Otsuka H, Kataoka K, Nagasaki Y. 2004. Preparation of Functionally PEGylated Gold Nanoparticles with Narrow Distribution through Autoreduction of Auric Cation byα-Biotinyl-PEG-block-[Polu(2-N,N-dimethylamino)ethyl methacrylate)] [J]. Langmuir, 20: 561–564.
    [20] Li YT, Smith AE, Lokitz BS, McCormick CL. 2007. In Situ Formation of Gold-“Decorated”Vesicles from a RAFT-Synthesized, Thermally Responsive Block Copolymer [J]. Macromolecules, 40: 8524–8526.
    [21] Hayakawa K, Yoshimura T, Esumi K. 2003. Preparation of Gold-Dentrimer Nanocomposites by Laser Irradiation and Their Catalytic Reduction of 4-Nitrophenol [J]. Langmuir, 19: 5517–5521.
    [22] Gido SP, Lee C, Pochan DJ, Pispas S, Mays JW, Hadjichristidis N. 1996. Synthesis, Characterization, and Morphology of Model Graft Copolymers with Trifunctional Branch Points [J]. Macromolecules 1996, 29, 7022–7028. [23 McLeish TCB, Allgaier J, Bick DK, Bishko G, Biswas P, Blackwell R, Blottiere B, Clarke N, Gibbs B, Groves DJ, Hakiki A, Heenan RK, Johnson JM, Kant R, Read DJ, Young RN. 1999. Dynamics of Entangled H-Polymers: Theory, Rheology, and Neutron-Scattering [J]. Macromolecules 1999, 32, 6734–6758.
    [24] Straube E, Read DJ, McLeish TCB, Groves DJ, Blackwell RJ, Wiedenmann A. 2002. Accelerated Curing of Aryl-Ethynyl End-Capped Polyimide Oligomers and Model Compounds: A Kinetic Study Probing Substituent Effects [J]. Macromolecules 2002, 35, 6650–6664.
    [25] Jabbarzadenh A, Atkinson JD, Tanner RI. 2003. Effect of Molecular Shape on Rheological Properties in Molecular Dynamics Simulation of Star, H, Comb, and Linear Polymer Melts [J]. Macromolecules, 36: 5020–5031.
    [26] Roovers J. 1984. Melt Rheology of H-Shaped Polystyrenes [J]. Macromolecules, 17: 1196–1200.
    [27] Hadjichristidis N, Pitsikalis M, Iatrou H. 2005. Synthesis of Block Copolymers [J]. Adv. Polym. Sci., 189: 1–124.
    [28] Ciampolini M, Nardi N. 1966. Five-Coordinated High-Spin Complexes of Bivalent Cobalt, Nickel, and Copper with Tris(2-dimethylaminoethyl)amine [J]. Inorg. Chem., 5: 41–44.
    [29] Li J, He WD, He N, Han SC, Sun XL, Li LY, Zhang BY. 2009. Synthesis of PEG-PNIPAM-Plys Hetero-Arm Star Polymer and Its Variation of Thermo-Responsibility after the Formation of Polyelectrolyte Complex Micelles with PAA [J]. J. Polym. Sci., Part A: Polym. Chem., 47: 1450–1462.
    [30] Li LY, He WD, Li J, Han SC, Sun XL, Zhang BY. 2009. Synthesis of Twin-Tail Tadpole-Shaped Hydrophilic Copolymers and Their Thermo-Responsive Behavior [J]. J. Polym. Sci., Part A: Polym. Chem., 47, 7066–7077.
    [31] Esumi K Suzuki A, Yamahira A, Torigoe K. 2000. Role of Poly(amidoamine) Dendrimersfor Preparing Nanoparticles of Gold, Platinum, and Silver [J]. Langmuir, 16: 2604–2608.
    [32] Garcia ME, Baker LA, Crooks RM. 1999. Preparation and Characterization of Dendrimer-Gold Colloid Nanocomposites [J]. Anal. Chem., 71: 256–258.
    [33] Smith AE, Xu XW, Abell TU, Kirkland SE, Hensarling RM, McCormick CL. 2009. Tuning Nanostructure Morphology and Gold Nanoparticle“Locking”of Muti-Responsive Amphiphilic Diblock Copolymers [J]. Macromolecules, 42: 2958–2964.
    [34] Miyamoto D, Oishi M, Kojima K, Yoshimoto K, Nagasaki Y. 2008. Completely Dispersible PEGylated Gold Nanoparticles under Physiological Conditions: Modification of Gold Nanoparticles with Precisely Controlled PEG-b-polyamine [J]. Langmuir, 24: 5010–5017.
    [35] Nuopponen M, Tenhu H. 2007. Gold Nanoparticles Protected with pH and Temperature-Sensitive Diblock Copolymers [J]. Langmuir, 23: 5352–5357.
    [1] Hayat MA, Ed. 1989. Colloid Gold: Principles, Methods, and Applications Academic Press: San Diego, Vol. 1.
    [2] Kreibig U, Vollmer M. 1995. Optical Properties of Metal Clusters Springer: Berlin.
    [3] Shipway AN, Katz E, Willner I. 2000. Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications [J]. Chem Phys Chem, 1: 18-52.
    [4] Adams DM, Brus L, Chidsey CED, Creager S, Creutz C, Kagan CR, Kamat PV, Lieberman M, Lindsay S, Marcus RA, Metzger RM, Michel-Beyerle ME, Miller J R, Newton MD, Rolison DR, Sankey O, Schanze KS, Yardley J, Zhu X. 2003. Chain Transfer on the Nanoscale: Current Status [J]. J Phys Chem B, 107: 6668-6697.
    [5] Daniel M, Astruc D. 2004. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Ctalysis, and Nanotechnology [J]. Chem Rev, 104: 293-346.
    [6] Corti CW, Holliday RJ. 2004. Commercial Aspects of Gold Applications: From Materials Science to Chemical Science [J]. Gold Bull, 37: 20-26.
    [7] Feldheim DL, Keating CD. 1998. Self-Assembly of Single Electron Transistors and Related Devices [J]. Chem Soc Rev, 27: 1-12.
    [8] Maier SA, Brongersma ML, Kik PG, Requicha AAG, Atwater HA. 2001. Plasmonics- A Route to Nanoscale Optical Devices [J]. Adv Mater, 13: 1501-1505.
    [9] Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. 1994. Synthesis of Thiol-Dericatized Gold Nanoparticles in a 2-Phase Liquid-Liquid System [J]. J. Chem. Soc., Chem. Commun., 7: 801-802.
    [10] Templeton AC, Wuelfing WP, Murray RW. 2000. Monolayer Protected Cluster Molecules [J]. Acc. Chem. Res., 33: 27-36.
    [11] Zhou Y, Itoh H, Uemura T, Naka K, Chujo Y. 2002. Synthesis of Novel Stable Nanometer-Sized Metal (M=Pd, Au, Pt) Colloids Protected by aπ-Conjugated Polymer [J]. Langmuir, 18: 277-283.
    [12] Mossmer S, Spatz JP, Moller M, Aberle T, Schmidt J, Burchard W. 2000. Solution Behavior of Poly(stryrene)-block-Poly(2-vinylpyridine) Micelles Containing Gold Nanoparticles [J]. Macromolecules, 33: 4791-4798.
    [13] Miyazaki A, Nakano Y. 2000. Morphology of Platinum Nanoparticles Protected by Poly(N-isopropylacrylamide) [J]. Langmuir, 16: 7109-7111.
    [14] Dela Fuente J, Barrientos AG, Rojas TC, Rojo J, Canada J, Fernandez A, Penades S. 2001. Gold Glyconanoparticles as Water-Soluble Polyvalent Models To Study Carbohydrate Interactions [J]. Angew. Chem. Int. Ed., 40: 2257-2261.
    [15] Cao YW, Jin R, Mirkin CA. 2001. DNA-Modified Core?Shell Ag/Au Nanoparticles [J]. J. Am. Chem. Soc., 123: 7961-7962.
    [16] Bartz M, Kuther J, Nelles G, Weber N, Seshadriet R, Tremel W. 1999. Monothiols Derived From Glycol as Agent for Stabilizing Gold Colloids in Water: Synthesis, Self-Assembly and Use as Crystallization Templates [J]. J. Mater. Chem. 1999, 9, 1121-1127.
    [17] Liu J, Ong W, Roman E, Lynn MJ, Kaifer AE. 2000. Cyclodextrin-Modified Gold Nanospheres [J]. Langmuir, 16: 3000-3002.
    [18] Thomas KG, Kamat PV. 2000. Making Gold Nanoparticles Glow: Enhanced Emission from a Surface-Bound Fluroprobe [J]. J. Am. Chem. Soc., 122: 2655-2656.
    [19] Nuopponen M.; Tenhu H. 2007. Gold Nanoparticles Protected with pH and Temperature-Sensitive Diblock Copolymers [J]. Langmuir., 23: 5352-5357.
    [20] Li LY.; He WD.; Li WT; Zhang KR.; Pan TT.; Ding ZL. Zhang BY. 2010. Preparation of pH and Thermo-Sensitive Gold Nanoparticles from H-Shaped Copolymer (PNIPAM/PDMA)-b-PEG-b-(PNIPAM/PDMA) [J]. J. Polym. Sci., Part A: Polym. Chem., 48: 2018-5029.
    [21] Hostetler MJ, Murray RW. 1997. Colloids and Self-Assembled Monolayers [J]. Curr. Opin. Colloid Interface Sci., 2: 42-50.
    [22] Hostetler MJ, Green SJ, Stokes JJ, Murray RW. 1996. Monolayers in Three Dimensions: Synthesis and Electrochemistry ofω-Functionalized [J]. J. Am. Chem. Soc., 118: 4212-4213.
    [23] Davidson B, Fasman GD. 1967. The Conformational Transitions of Uncharged Poly-L-Lysine.α?Ηelix Random Coil-βStructure [J]. Biochemistry, 6: 1616-1629.
    [24] Greenfieldi N, Fasman GD. 1969. Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation [J]. Biochemistry, 8: 4108-4116
    [25] Li LY, He WD, Li J, Zhang BY, Pan TT, Sun XL, Ding ZL. 2010. Shell-Cross-Linked Micelles from PNIPAM-b-(PLL)2 Y-Shaped Miktoarm Star Copolymer as Drug Carriers [J]. Biomacromolecules, 11: 1182-1890.
    [26] Grabar KC, Freeman RG, Hommer MB, Natan MJ. 1995. Preparation and Characterization of Au Colloid Monolayers [J]. Anal. Chem., 67: 735-743.
    [27] Xu L, Guo Y, Xie R, Zhuang J, Yang W, Li T. 2002. Three-Dimensional Assembly of Au Nanoparticles Using Dipeptides [J]. Nanotechnology, 13: 725-728.
    [28] Chou PY, Fasman GD. 1974. Prediction of Protein Conformation [J]. Biochemistry, 13: 222–245.
    [29] Greenfield NJ, Fasman GD. 1969. Computed Circular Dichroism Spectra for the Evaluation of Protein Conformation [J]. Biochemistry, 8: 4108–4116.
    [30] Johnson WC, Tinoco I. 1972. Circular Dichroism of Polypeptide Solutions in the Vacuum Ultraviolet [J]. J. Am. Chem. Soc., 94: 4389–4390.
    [31] Hostetler MJ, Wingate JE, Zhong C, Harris JE, Vachet RW, Clark MR, Londono JD, Green SJ, Stokes JJ, Wignall GD, Glish GL, Porter MD, Evans ND, Murray RW. 1998. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size [J]. Langmuir, 14: 17-30.
    [32] Wuelfing WP, Gross SM, Miles DT, Murray RW. 1998. Nanometer Gold Clusters Protected by Surface-Bound Monolayers of Thiolated Poly(ethylene glycol) Polymer Electrolyte [J]. J. Am. Chem. Soc., 120: 12696-12697.
    [33] Nuopponen M, Tenhu H. 2007. Gold Nanoparticles Protected with pH and Temperature-Sensitive Diblock Copolymers [J]. Langmuir, 23: 5352-5357.
    [34] Smirnovas V, Winter R, Funck T, Dzwolak W. 2005. Thermodynamic Properties Underlying theα-Helix-to-β-Sheet Transition, Aggregation, and Amyloidogenesis of Polylysine as Probed by Calorimetry, Densimetry, and Ultrasound Velocimetry [J]. J. Phys. Chem. B, 109: 19043-19045.
    [35] Dzwolak W, Muraki T, Kato M, Taniguchi Y. 2004. Chain-Length Dependence of -helix toβ-sheet Transition in Polylysine: Model of Protein Aggregation Studied by Temperature-Tuned FTIR Spectroscopy [J]. Biopolymers, 73: 463-469.
    [36] Li T, Park HG, Lee HS, Choi SH. 2004. [J]. Nanotechnology, 15, S660.
    [37] Xia Y, Burke N, Stover H. 2006. End Group Effect on the Thermal Response of Narrow-Disperse Poly(N-isopropylacrylamide) Prepared by Atom Transfer Radical Polymerization [J]. Macromolecules, 39: 2275-2283.
    [38] Wang W, Wan W, Zhou HH, Niu SQ, Li ADQ. 2003. Alternating DNA andπ-ConjugatedSequences. Thermophilic Foldable Polymers [J]. J. Am. Chem. Soc., 125: 5248-5249.
    [39] Wang W, Han JJ, Wang LQ, Li LS, Shaw WJ, Li ADQ, 2003. Dynamicπ?πStacked Molecular Assemblies Emit from Green to Red Colors [J]. Nano. Lett., 3: 455-458.
    [40] Wang W, Li LS, Helms G, Zhou HH, Li ADQ. 2003. To Fold or to Assemble? [J]. J. Am. Chem. Soc., 125: 1120-1121.
    [41] Kreibig U, Vollmer M. E. 1995. Optical Properties of Metal Clusters; Springer Series in Material Science 25; Springer-Verlag: Berlin.
    [42] Liz-Marzan LM. 2006. Tailoring Surface Plasmons through the Morphology and Assembly of Metal Nanoparticles [J]. Langmuir, 22: 32-41.
    [43] Templeton AC, Pietron JJ, Murray RW, Mulvaney P. 2000. Solvent Refractive Index and Core Charge Influences on the Surface Plasmon Absorbance of Alkanethiolate Monolayer-Protected Gold Clusters [J]. J. Phys. Chem. B, 104: 564-570.
    [44] Ghosh SK, Nath S, Kundu S, Esumi K, Pal T. 2004. Solvent and Ligand Effects on the Localized Surface Plasmon Resonance (LSPR) of Gold Colloids [J]. J. Phys. Chem. B, 108: 13963-13971.
    [45] Heath JR.; Knobler CM.; Leff DV. 1997. Pressure/Temperature Phase Diagrams and Superlattices of Organically Functionalized Metal Nanocrystal Monolayers: The Influence of Particle Size, Size Distribution, and Surface Passivant [J]. J. Phys. Chem. B., 101: 189-197.
    [46] Collier CP.; Saykally RJ.; Shiang JJ.; Henrichs SE.; Heath JR. 1997. Reversible Tuning of Silver Quantum Dot Monolayers Through the Metal-Insulator Transition [J]. Science., 277: 1978-1981.
    [47] Yusa SI.; Fukuda K.; Yamamoto T.; Iwasaki Y.; Watanabe A.; Akiyoshi K.; Morishima Y. 2007. Salt Effect on the Heat-Induced Association Behavior of Gold Nanoparticles Coated with Poly(N-isopropylacrylamide) Prepared via Reversible Addition-Fragmentation Chain Transfer (RAFT) Radical Polymerization [J]. Langmuir., 23: 12842-12848.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700