利用“RAFT”聚合和“Click”反应合成“8”形聚合物
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚合物的性能与其结构密切相关。近年来,各种非线性结构聚合物,如星形、环形、树枝状聚合物等的合成受到广泛关注。其中,环形聚合物由于没有端基,其分子链上的单元具有等效性;和其它拓扑结构的聚合物相比,在某些方面具有特殊的性质,包括玻璃化转变温度、自组装行为和表面性质等,因此一直受到高分子领域研究人员的关注。本论文对“8”形聚合物的合成进行了研究,先通过可逆加成-断裂链转移自由基(RAFT)聚合反应合成了一系列含氮叠端基的四臂星形聚合物,再利用N,N-二(2-炔丙氧羰基乙基)-2-羟乙胺(BPHA)作为偶联剂经“Click”反应用合成了一系列“8”形聚合物。本论文的主要研究工作有以下几个方面:
     (1)采用两步反应合成一种新型含叠氮端基的四官能度三硫代酯类链转移剂3-(S-(2-乙酸2-叠氮乙酯基)三硫代碳酸酯)丙酸季戊四醇四酯(PeAATP),并用RAFT聚合反应合成四臂星形聚合物(S-[DMA]_4、S-[NIPAM]_4及S-[PDMA-b- PNIPAM]_4)。用凝胶色谱(GPC)测定了所得聚合物的数均分子量(Mn)以及分子量分布(PDI)。结果表明,链转移剂PeAATP对聚合反应有较好的调控性,所得到的四臂星形聚合物分子量可控、分子量分布较窄,为“活性”聚合反应。
     (2)在CuBr/PMDETA催化剂存在条件下,通过N,N-二(2-炔丙氧羰基乙基)-2-羟乙胺(BPHA)与超稀浓度的四臂星形聚合物溶液的“Click”反应,合成“8”形聚合物。用FT-IR、1H NMR、GPC和MALDI-TOF MS对所合成的聚合物进行了表征。FT-IR谱图中2100 cm~(-1)处叠氮基吸收峰消失证明聚合物中叠氮基已经全部反应;1H NMR谱图上在δ= 8.42 ppm处出现新吸收峰表明三咪唑环生成;GPC测试表明成环后聚合物分子量降低,MALDI-TOF MS结果表明反应前后聚合物分子量几乎不变,证明“Click”反应是分子内成环而非分子间缩合。DLS结果表明,“8”形PDMA-b-PNIPAM的临界胶束温度(CMT)比其四臂前驱体低,而形成胶束后胶束的流体力学直径(Dh)也比其四臂前驱体的小。
Cyclic topological polymers including single and multiple cyclic polymers have attracted a growing interest for the past decades as a result of their unique properties comparing with their branched and linear counterparts. Double cyclic polymers, including 8-shaped, theta-shaped and manacle-shaped polymers are an important class of cyclic topological polymers. Among there three double cyclic polymer topologies, the 8-shaped polymer has been investigated the most. But most of the synthetic strategies reported are based on anionic, cationic, or ring-expansion polymerization. The monomers used are limited and rigorous experiment conditions are needed. In this thesis, a series of well defined 8-shaped polymers, including poly(N,N-dimethyl- acrylamide) (PDMA), poly(N-isopropylacrylamide) (PNIPAM) and poly(N,N-di- methylacrylamide)-b-poly(N-isopropylacrylamide) (PDMA-b-PNIPAM) with controll molecular weight and narrow polydispersity were synthesized by the combination of RAFT polymerization and“Click”chemistry.
     Firstly, four-arm star polymers with azido groups were prepared by RAFT polymerization using pentaerythritoltetrakis(3-(S-(2-azidoethylacetate)trithiocarbonyl) propanoate) (PeAATP) as the chain transfer agent. It can be concluded from the GPC results that the polymerization is preceded with good control. Then the intramolecular Click ring closure of the four-arm star polymers was conducted under highly dilute conditions, using N,N-bis(2-propargyloxycarbonyl ethyl)-2-hydroxylethyl amine (BPHA) as linker and CuBr/PMDETA as the catalyst, respectively, affording well-defined 8-shaped polymers. FTIR, 1H NMR, GPC, and MS analysis confirmed the complete consumption of azido group in four-arm star polymers and that the coupling reaction proceeded via the intramolecular manner. The self-assembly behavior of 8-shaped PDMA-b-PNIPAM was investigated by DLS. Comparing with their four-arm star precursor, the 8-shaped polymers possesse lower CMT and smaller hydrodynamic diameter (Dh). The difference in self-assembly behaviors between 8-shaped and four-arm star PDMA-b-PNIPAM should be due to the absence of chain ends and stringent restrictions on backbone conformation in the former.
引文
[1] Freifelder D, Kleinschmidt A K, Sinsheimer R L. Electron Microscopy of Single-Stranded DNA: Circularity of DNA of Bacteriophage phiX174[J]. Science, 1964, 146(3641):254-255.
    [2] Merrifield R B. Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide[J]. Journal of the American Chemical Society, 1963, 85(14):2149-2154.
    [3] McLeish T. CHEMISTRY: Polymers Without Beginning or End[J]. Science, 2002, 297(5589):2005-2006.
    [4] Mayadunne R T A, Jeffery J, Rizzardo E. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers[J]. Macromolecules, 2003, 36(5):1505-1513.
    [5] He T, Li D, Zhao B. Synthesis of ABC 3-Miktoarm Star Terpolymers from a Trifunctional Initiator by Combining Ring-Opening Polymerization, Atom Transfer Radical Polymerization, and Nitroxide-Mediated Radical Polymerization[J]. Macromolecules, 2004, 37(9):3128-3135.
    [6] Abdollahi H, Mahdavi V. Tautomerization Equilibria in Aqueous Micellar Solutions: A Spectrophotometric and Factor-Analytical Study[J]. Langmuir, 2007, 23(5):2362-2368.
    [7] Karayiannis N C, Mavrantzas V G. Hierarchical Modeling of the Dynamics of Polymers with a Nonlinear Molecular Architecture: Calculation of Branch Point Friction and Chain Reptation Time of H-Shaped Polyethylene Melts from Long Molecular Dynamics Simulations[J]. Macromolecules, 2005, 38(20):8583-8596.
    [8] Matyjaszewski K. Synthesis of Molecular Brushes by“Grafting onto”Method: Combinationof ATRP and Click Reactions[J]. Journal of the American Chemical Society, 2007, 129(20):6633-6639.
    [9] Tang B Z. Hyperbranched Polytriazoles: Click Polymerization, Regioisomeric Structure, Light Emission, and Fluorescent Patterning[J]. Macromolecules, 2008, 41(11):3808-3822.
    [10] Kong L Z, Pan C Y. Synthesis and Characterization of Hyperbranched Polymers from the Polymerization of Glycidyl Methacrylate and Styrene Using TiCl as a Catalyst[J]. Macromolecular Chemistry and Physics, 2007, 208(24):2686-2697.
    [11] Malkoch M, Schleicher K, Fokin V V. Structurally Diverse Dendritic Libraries: A Highly Efficient Functionalization Approach Using Click Chemistry[J]. Macromolecules, 2005, 38(9):3663-3678.
    [12] Angot S, Taton D, Gnanou Y. Amphiphilic Stars and Dendrimer-Like Architectures Based on Poly(Ethylene Oxide) and Polystyrene[J]. Macromolecules, 2000, 33(15):5418-5426.
    [13] Johnson J A, Lewis D R, Koberstein J T, et al. Synthesis of Degradable Model Networks via ATRP and Click Chemistry[J]. Journal of the American Chemical Society, 2006, 128(20):6564-6565.
    [14] Bielawski C W, Benitez D, Grubbs R H. An "Endless" Route to Cyclic Polymers[J]. Science, 2002, 297(5589):2041-2044.
    [15] Alberty K A, Tillman E, Feast W J. Characterization and Fluorescence of Macrocyclic Polystyrene by Anionic End to End Coupling. Role of Coupling Reagents. Macromolecules, 2002, 35(10):3856-3865.
    [16] Iatrou H, Hadjichristidis N, Meier G. Synthesis and Characterization of Model Cyclic Block Copolymers of Styrene and Butadiene. Comparison of the Aggregation Phenomena in Selective Solvents with Linear Diblock and Triblock Analogues[J]. Macromolecules, 2002, 35(14):5426-5437.
    [17] Tezuka Y, Oike H. Topological Polymer Chemistry: Systematic Classification of Nonlinear Polymer Topologies[J]. Journal of the American Chemical Society, 2001, 123(47):11570-11576.
    [18] Edwards C J C, Stepto R F T, Semlyen J A. Studies of Cyclic and Linear Poly(dimethyl siloxanes) Diffusion Behaviour in a Poor Solvent[J]. Polymer, 1982, 23(6):865-868.
    [19] Geiser D, H?cker H. Synthesis and Investigation of Macrocyclic Polystyrene[J]. Macromolecules, 1980, 13(3):653-656.
    [20] Clarson S J, Semlyen J A. Cyclic polysiloxanes: Preparation and Characterization of Poly(phenylmethylsiloxane) [J]. Polymer, 1986, 27(10):1633-1636.
    [21] Roovers J. Viscoelastic Properties of Polybutadiene Rings[J]. Macromolecules, 1988, 21(5):1517-1521.
    [22] Casassa E F. Some Statistical Properties of Flexible Ring Polymers[J]. Journal of Polymer Science Part A: General Papers, 1965, 3(2):605-614.
    [23] Yasuyuki T. Topological Polymer Chemistry by Electrostatic Self-Assembly[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2003, 41(19):2905-2917.
    [24] Madani A E, Favier J C, Sigwalt P. Synthesis of Ring-Shaped Polyisoprene[J]. PolymerInternational, 1992, 27(4):353-357.
    [25] Schappacher M, Deffieux A.α-Acetal-ω-bis(hydroxymethyl) Heterodifunctional Polystyrene: Synthesis, Characterization, and Investigation of Intramolecular End-to-End Ring Closure[J]. Macromolecules, 2001, 34(17):5827-5832.
    [26] Laurent B A, Grayson S M. An Efficient Route to Well-Defined Macrocyclic Polymers via“Click”Cyclization[J]. Journal of the American Chemical Society, 2006, 128(13):4238-4239.
    [27] Xu J, Ye J, Liu S. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior[J]. Macromolecules, 2007, 40(25):9103-9110.
    [28] Qiu X P, Tanaka F, Winnik F M. Temperature-Induced Phase Transition of Well-Defined Cyclic Poly(N-isopropylacrylamide)s in Aqueous Solution[J]. Macromolecules, 2007, 40(20):7069-7071.
    [29] Eugene D M, Grayson S M. Efficient Preparation of Cyclic Poly(methyl acrylate)-block-poly(styrene) by Combination of Atom Transfer Radical Polymerization and Click Cyclization[J]. Macromolecules, 2008, 41(14):5082-5084.
    [30] Beinat S, Schappacher M, Deffieux A. Linear and Semicyclic Amphiphilic Diblock Copolymers. 1. Synthesis and Structural Characterization of Cyclic Diblock Copolymers of Poly(hydroxyethyl vinyl ether) and Linear Polystyrene and Their Linear Homologues[J]. Macromolecules, 1996, 29(21):6737-6743.
    [31] Kubo M. Hayashi T, Itoh T. Syntheses of Tadpole- and Eight-Shaped Polystyrenes Using Cyclic Polystyrene as a Building Block[J]. Macromolecules, 1998, 31(4):1053-1057.
    [32] Oike H, Uchibori A, Tezuka Y. Designing Loop and Branch Polymer Topology with Cationic Star Telechelics through Effective Selection of Mono- and Difunctional Counteranions[J]. Macromolecules, 2004, 37(20):7595-7601.
    [33] Adachi K, Irie H, Tezuka Y. Electrostatic Self-Assembly and Covalent Fixation with Cationic and Anionic Telechelic Precursors for New Loop and Branch Polymer Topologies[J]. Macromolecules, 2005, 38(24):10210-10219.
    [34] Shi G Y, Tang X Z, Pan C Y. Tadpole-Shaped Amphiphilic Copolymers Prepared via RAFT Polymerization and Click Reaction[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(7):2390-2401.
    [35] Dong Y Q, Tong Y Y, Li Z C. Preparation of Tadpole-Shaped Amphiphilic Cyclic PS-b-linear PEO via ATRP and Click Chemistry[J]. Macromolecules, 2009, 42(8):2940-2948.
    [36] Tezuka Y, Tsuchitani A, Oike H. Synthesis ofθ-Shaped Poly(THF) by Electrostatic Self-Assembly and Covalent Fixation with Three-Armed Star Telechelics Having Cyclic Ammonium Salt Groups[J]. Macromolecules, 2002, 36(1):65-70.
    [37] Tezuka Y, Tsuchitani A, Oike H. Synthesis of Polymeric Topological Isomers through Electrostatic Self-Assembly and Covalent Fixation with Star Telechelic Precursors[J]. Macromolecular Rapid Communications, 2004, 25(17):1531-1535.
    [38] Tezuka Y, Ohashi F. Synthesis of Polymeric Topological Isomers through Double Metathesis Condensation with H-Shaped Telechelic Precursors[J]. Macromolecular RapidCommunications, 2005, 26(8):608-612.
    [39] Tezuka Y. Synthesis of Polymeric Topological Isomers Havingθ- and Manacle-Constructions with Olefinic Groups at Designated Positions[J]. Macromolecules, 2007, 40(22):7910-7918.
    [40] Tezuka Y, Tsuchitani A, Oike H. Synthesis ofθ-Shaped Poly(THF) by Electrostatic Self-Assembly and Covalent Fixation with Three-Armed Star Telechelics Having Cyclic Ammonium Salt Groups[J]. Macromolecules, 2003, 36(1):65-70.
    [41] Oike H, Imaizumi H, Tezuka, Y. Designing Unusual Polymer Topologies by Electrostatic Self-Assembly and Covalent Fixation[J]. Journal of the American Chemical Society, 2000, 122(40):9592-9599.
    [42] Antonietti M, F?lsch K J. Synthesis and Characterization of Eight-Shaped polystyrene[J]. Die Makromolekulare Chemie, Rapid Communications, 1988, 9(6):423-430.
    [43] Schappacher M, Deffieux A. Controlled Synthesis of Bicyclic "Eight-Shaped" Poly(chloroethyl vinyl ether)s[J]. Macromolecules, 1995, 28(8):2629-2636.
    [44] Tezuka Y, Komiya R, Washizuka M. Designing 8-Shaped Polymer Topology by Metathesis Condensation with Cyclic Poly(THF) Precursors Having Allyl Groups[J]. Macromolecules, 2003, 36(1):12-17.
    [45] Shi G Y, Pan C Y. Synthesis of Well-Defined Figure-of-Eight-Shaped Polymers by a Combination of ATRP and Click Chemistry[J]. Macromolecular Rapid Communications, 2008, 29(20):1672-1678.
    [46] Tezuka Y, Mori K, Oike H. Efficient Synthesis of Cyclic Poly(oxyethylene) by Electrostatic Self-Assembly and Covalent Fixation with Telechelic Precursor Having Cyclic Ammonium Salt Groups[J]. Macromolecules, 2002, 35(14):5707-5711.
    [47] Li H, Jér?me R, Lecomte P. Synthesis of Eight- and Star-Shaped Poly(ε-caprolactone)s and Their Amphiphilic Derivatives[J]. Chemistry - A European Journal, 2008, 14(1):358-368.
    [48] Hoskins J N, Grayson S M. Synthesis and Degradation Behavior of Cyclic Poly(ε-caprolactone)[J]. Macromolecules, 2009, 42(17):6406-6413.
    [49] Misaka H, Kakuchi R, Kakuchi T. Synthesis of Well-Defined Macrocyclic Poly(δ-valerolactone) by "Click Cyclization"[J]. Macromolecules, 2009, 42(14):5091-5096.
    [50] Shi G Y, Yang L P, Pan C Y. Synthesis and Characterization of Well-Defined Polystyrene and Poly(ε-caprolactone) Hetero Eight-Shaped Copolymers[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(19):6496-6508.
    [1] Zhang X, Xia J, Matyjaszewski K. End-Functional Poly(tert-butyl acrylate) Star Polymers by Controlled Radical Polymerization[J]. Macromolecules, 2000, 33(7):2340-2345.
    [2] Gao H, Matyjaszewski K. Structural Control in ATRP Synthesis of Star Polymers Using the Arm-First Method[J]. Macromolecules, 2006, 39(9):3154-3160.
    [3] Gao H, Matyjaszewski K. Arm-First Method As a Simple and General Method for Synthesis of Miktoarm Star Copolymers[J]. Journal of the American Chemical Society, 2007, 129(38):11828-11834.
    [4] Gao H, Matyjaszewski K. Synthesis of Low-Polydispersity Miktoarm Star Copolymers via a Simple "Arm-First" Method[J]. Macromolecules, 2008, 41(12):4250-4257.
    [5] Knischka R, Lutz P J, Frey H. Functional Poly(ethylene oxide) Multiarm Star Polymers: Core-First Synthesis Using Hyperbranched Polyglycerol Initiators[J]. Macromolecules, 1999, 33(2):315-320.
    [6] Robello D R, Andre A, McCovick T A. Synthesis and Characterization of Star Polymers Made from Simple, Multifunctional Initiators[J]. Macromolecules, 2002, 35(25):9334-9344.
    [7] Beil J B, Zimmerman S C. Synthesis of Nanosized "Cored" Star Polymers[J]. Macromolecules, 2004, 37(3):778-787.
    [8] Xia J, Zhang X, Matyjaszewski K. Synthesis of Star-Shaped Polystyrene by Atom Transfer Radical Polymerization Using an "Arm First" Approach[J]. Macromolecules, 1999, 32(13):4482-4484.
    [9] Mayadunne R T A, Jeffery J, Rizzardo E. Living Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization): Approaches to Star Polymers[J]. Macromolecules, 2003, 36(5):1505-1513.
    [10] Perrier S, Takolpuckdee P, Brown S. Progress in RAFT/MADIX Polymerization: Synthesis, Use, and Recovery of Chain Transfer Agents In Controlled/Living Radical Polymerization[M]. Washington, D C: American Chemical Society, 2006:438-454
    [11] Bernard J, Barner-Kowollik C. Poly(vinyl ester) Star Polymers via Xanthate-Mediated Living Radical Polymerization: From Poly(vinyl alcohol) to Glycopolymer Stars[J]. Macromolecules, 2005, 38(13):5475-5484.
    [12] Boschmann D, Vana P. Z-RAFT Star Polymerizations of Acrylates:? Star Coupling via Intermolecular Chain Transfer to Polymer[J]. Macromolecules, 2007, 40(8):2683-2693.
    [13] Boschmann D, M?nz M, Vana P. Mechanism of Z-RAFT Star Polymerization In Controlled/Living Radical Polymerization: Progress in RAFT, DT, NMP & OMRP[M]. Washington DC: American Chemical Society, 2009:217-232.
    [1] Schappacher M, Deffieux A. Controlled Synthesis of Bicyclic "Eight-Shaped" Poly(chloroethyl vinyl ether)s[J]. Macromolecules, 1995, 28(8):2629-2636.
    [2] Kubo M, Hayashi T, Itoh T. Syntheses of Tadpole- and Eight-Shaped Polystyrenes Using Cyclic Polystyrene as a Building Block[J]. Macromolecules, 1998, 31(4):1053-1057.
    [3] Whittaker M R, Goh Y K, Monteiro M J. Synthesis of Monocyclic and Linear Polystyrene Using the Reversible Coupling/Cleavage of Thiol/Disulfide Groups[J]. Macromolecules, 2006, 39(26):9028-9034.
    [4] Jia Z, Fu Q, Huang J. Synthesis of Amphiphilic Macrocyclic Graft Copolymer Consisting of a Poly(ethylene oxide) Ring and Multi-Polystyrene Lateral Chains[J]. Macromolecules, 2006, 39(16):5190-5193.
    [5] Tezuka Y, Mori K, Oike H. Efficient Synthesis of Cyclic Poly(oxyethylene) by Electrostatic Self-Assembly and Covalent Fixation with Telechelic Precursor Having Cyclic Ammonium Salt Groups[J]. Macromolecules, 2002, 35(14):5707-5711.
    [6] Qiu X P, Tanaka F, Winnik F M. Temperature-Induced Phase Transition of Well-Defined Cyclic Poly(N-isopropylacrylamide)s in Aqueous Solution[J]. Macromolecules, 2007, 40(20):7069-7071.
    [7] Xu J, Ye J, Liu S. Synthesis of Well-Defined Cyclic Poly(N-isopropylacrylamide) via Click Chemistry and Its Unique Thermal Phase Transition Behavior[J]. Macromolecules, 2007, 40(25):9103-9110.
    [8] Shi G Y, Tang X Z, Pan C Y. Tadpole-shaped amphiphilic copolymers prepared via RAFT polymerization and click reaction[J]. Journal of Polymer Science Part A: Polymer Chemistry, 2008, 46(7):2390-2401.
    [9] Shi G-Y, Pan C-Y. Synthesis of Well-Defined Figure-of-Eight-Shaped Polymers by a Combination of ATRP and Click Chemistry[J]. Macromolecular Rapid Communications, 2008, 29 (20):1672-1678.
    [10] Laurent B A, Grayson S M. An Efficient Route to Well-Defined Macrocyclic Polymers via "Click" Cyclization[J]. Journal of the American Chemical Society, 2006, 128(13): 4238-4239.
    [11] Tsarevsky N V, Sumerlin B S, Matyjaszewski K. Step-Growth“Click”Coupling of Telechelic Polymers Prepared by Atom Transfer Radical Polymerization[J]. Macromolecules, 2005, 38(9):3558-3561.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700