蝶蛹金小蜂寄生对菜粉蝶蛹细胞免疫与生理代谢的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蝶蛹金小蜂Pteromalus puparum是菜粉蝶Pieris rapae蛹期优势内寄生蜂,该蜂仅以毒液抑制寄主免疫。本论文就蝶蛹金小蜂寄生对寄主细胞免疫与生理代谢的影响进行了研究。结果概述如下:
     1.蝶蛹金小蜂寄生对菜粉蝶蛹血细胞的影响
     光学显微镜观察结果表明,受蝶蛹金小蜂寄生影响最大的是寄主颗粒血细胞与浆血细胞。寄生后这两种血细胞变圆,粘附与延展行为受到抑制,而其它类型血细胞形态上未受影响。然而透射电镜观察结果表明,除囊血细胞外,蝶蛹金小蜂寄生对菜粉蝶蛹各类型血细胞均造成不同程度的损伤。
     2.蝶蛹金小蜂毒液对菜粉蝶蛹血细胞包囊与吞噬反应的影响
     采用尼龙毛法分离纯化了菜粉蝶蛹颗粒血细胞与浆血细胞。研究了毒液对菜粉蝶蛹包囊反应关键步骤及颗粒血细胞与浆血细胞吞噬反应的影响。结果表明血细胞数量、毒液浓度均显著影响包囊指数。菜粉蝶蛹体外包囊反应试验中,包囊反应的第一步为颗粒血细胞粘附在异物上,毒液的存在虽会减少粘附在异物上的颗粒血细胞数量,但不会完全阻止包囊反应第一步的发生。但毒液的存在能使包囊反应第二步浆血细胞的募集阶段无法进行,导致包囊反应第三步即颗粒血细胞粘附在包囊最外层的浆血细胞上,形成包囊的外围无法实现,最终导致无法形成完整的包囊。菜粉蝶蛹血淋巴浆质对包囊指数无显著影响。
     菜粉蝶蛹颗粒血细胞是主要具有吞噬能力的血细胞,浆血细胞多少也能吞噬大肠杆菌,毒液能显著抑制颗粒血细胞与浆血细胞吞噬能力,并且这种抑制能力与毒液的剂量正相关。
     3.蝶蛹金小蜂寄生对菜粉蝶蛹血淋巴和脂肪体糖代谢的影响
     研究了蝶蛹金小蜂寄生24 h,36 h,48 h,60 h和72 h后菜粉蝶蛹血淋巴与脂肪体糖代谢功能。结果表明,经蝶蛹金小蜂寄生的菜粉蝶蛹血淋巴与脂肪体中丙酮酸含量显著降低,乳酸含量显著升高,乳酸脱氢酶活性显著降低,表明进入三羧酸循环的丙酮酸量减少。苹果酸脱氢酶与琥珀酸脱氢酶是线粒体中参与三羧酸循环的关键酶。在被蝶蛹金小蜂寄生的初始阶段,菜粉蝶蛹血淋巴与脂肪体苹果酸脱氢酶活性升高,随着寄生时间的延长,这两种酶活性被显著抑制,说明寄生导致菜粉蝶蛹血淋巴与脂肪体呼吸率降低,菜粉蝶蛹设法从无氧糖酵解获得能量以抵御毒液所带来的压力。
     4.蝶蛹金小蜂寄生对菜粉蝶蛹抗氧化酶活性与抗氧化剂水平的影响
     寄主昆虫在防御寄生蜂等入侵异物时产生氧胁迫,释放对细胞有毒的活性氧(ROS)。测定了蝶蛹金小蜂寄生24 h,36 h,48 h,60 h和72 h后菜粉蝶蛹血淋巴及脂肪体与氧胁迫相关的抗氧化酶活性与抗氧化剂水平。蝶蛹金小蜂寄生导致菜粉蝶蛹脂肪体超氧化物歧化酶与血淋巴过氧化氢酶活性及血淋巴与脂肪体谷胱甘肽-S-转移酶活性显著下降,说明由于寄生而注入的毒液及菜粉蝶蛹随之产生的大量ROS钝化了上述抗氧化酶活性;而菜粉蝶蛹血淋巴与脂肪体谷胱甘肽还原酶活性与还原型谷胱甘肽水平在整个试验中与对照基本无显著差异,表明寄生并未诱导谷胱甘肽还原酶与还原型谷胱甘肽产生对抗防卫。
     5.蝶蛹金小蜂寄生对菜粉蝶蛹质膜上磷酸酶与转氨酶活性的影响
     测定了蝶蛹金小蜂寄生24 h,36 h,48 h,60 h和72 h后菜粉蝶蛹血淋巴与脂肪体结合在质膜上磷酸酶与转氨酶活性。经蝶蛹金小蜂寄后生菜粉蝶蛹血淋巴与脂肪体结合在质膜上的Na~+/K~+/ATPase,Ca~(2+)/Mg~(2+)/ATPase以及总ATPase活性显著降低,丙氨酸转氨酶与天冬氨酸转氨酶活性显著高于对照。这说明经蝶蛹金小蜂寄后生菜粉蝶蛹血细胞与脂肪体细胞质膜流动性降低,并且上述组织可能已产生大范围损伤。
Pteromalus puparum is a key important pupal-specific endoparasitoid of Pieris rapae,which has evolved a unique means to suppress the host's immune system, as no otherparasitoid-associated virulence factors other than venom is found in the femalereproductive organ. The effects of parasitization by P. puparum on host cellular immuneresponses and physiological metabolism were studied. The results were summarized asfollows:
     1. Hemocytes characterization of P. rapae parasitized by P.puparum
     The hemocytes morphology of P. rupae responed to parasitization by P. puparumwas investigated using light microscope and transmission electron microscope. Underlight microscope, the main influence of parasitization was observed on granulocytes andplasmatocytes. Light microscope showed that most of the granulocytes andplasmatocytes turned rounded, and their adhesion and spreading behavior was inhibited,while other types of hemocytes remained unaffected. Under transmission electronmicroscope, parasitization had a differential effect on host hemocytes. Prohemocytes,granulocytes, plasmatocytes and oenocytoids were all damaged to various extents.However, no changing was observed in coagulocytes.
     2. The effeets of venom on the encapsulation and phagoeytie reactionsin P. rapae
     Using monolayers of plasmatocytes and granulocytes prepared from P. rapae pupaehaemolymph by lylon wool cell fractionation method, we investigated the venom on thekey process of capsule formation and phagocytic reactions of plasmatocytes andgranulocytes in vitro in P. rapae. The results showed that both hemocyte number andvenom concentration affected the encapsulation index. In this study, Although venom reduced the number of granulocytes attached to sephadex A-50 beads, it could notinhibited the first step process that granulocytes attached to beads. However, venominhibited the attachment of multiple layers of plasmatocytes, which led to thetermination of capsule formation could not occured. In the present study wedemonstrated that in vitro, both granular cells and plasmatocytes are involved inphagocytic reaction. However, granulocytes were the main phagocytic hemocytes.Venom inhibited both plasmatocytes and granulocytes phagocytic ability, and thisinhibition showed a positive correlation with venom concentration.
     3 The effects of parasitization by P. puparum on the carbohydratemetabolism in hemolymph and fat body of P. rapae
     Effects of parasitization on the carbohydrate metabolism of hemolymph and fat bodyof P. rapae pupae on hours 24, 36, 48, 60 and 72 were investigated. The results showedthat pyruvate level and lactate dehydrogenase activity decreased with elevated lactatelevels, indicating reduced mobilization of pyruvate into the Krebs cycle. Enzymes ofKrebs cycle, namely succinate dehydrogenase and malate dehydrogenase, weresignificantly lowered, suggesting a decrease in respiration rate at the tissue level. Theseresults suggest that parasitization affect the carbohydrate metabolism in P. rapae andconsequently alter their metabolic functions to meet the required energy demands underthe parasitized stress conditions.
     4 The effects of parasitization by P. puparum on the activity ofantioxidant enzymes and levels of antioxidant in P. rapae
     Parasitization causes oxidative stress by the release of reactive oxygen species (ROS)that are toxic to the cells. The antioxidant enzymes associated with oxidative stressduring the process of parasitization in hemolymph and fat body of P. rapae werequantitatively determined at different time intervals post parasitization (24, 36, 48, 60and 72 h after parasitization). The activities of superoxide dismutase in fat body,catalase in hemolymph and glutathione-S-transferase both in hemolymph and fat body,showed significant reductions compared to the control ones. These results showed thatthe venom injected into P. rapae followed parasitization together with ROS released by P. rapae inactivated the antioxidant enzymes. While glutathione reductase and reducedglutathione showed no differences to the controls indicated that parasitization did notinduce glutathione reductase and reduced glutathione to defend against parasitization.
     5 The effects of parasitization by P. puparum on activities of membranebound phosphatases and transaminases in P. rapae
     The activities of membrane bound phosphatases and transaminases were analyzed inhemolymph and fat body of P. rapae parasitized by P. puparum at different timeintervals post parasitization (24, 36, 48, 60 and 72 h after parasitization). Our resultsshowed that the activities of membrane bound phosphatases (Na~+ K~+ ATPase,C~(a2+)ATPase, Mg~(2+) ATPase and Total ATPase) in P. rapae parasitized by P. puparumsignificantly reduced compared to these control ones, which indicated that parasitizationcauses the decrease of membrane fluidity of host hemocytes and fat body cells. Theactivities of transaminases (alanine transaminase (ALT) and aspartate transaminase(AST)) were significantly elevated. This may be due to the tissues were large rangedamaged.
引文
蔡国斌,2008.医学吸虫抗氧化酶家族的研究进展.中国寄生虫学与寄生虫病杂志,26: 313-317.
    蔡峻,叶恭银,胡萃.2000.寄生对菜粉蝶蛹血淋巴中血细胞和可溶性蛋白组份的影响.植物保护学报,17:151-156.
    蔡峻,吕慧平,叶恭银,胡萃.2001.假寄生对菜粉蝶血细胞总数和包囊能力的影响.浙江大学学报(农业生命科学版),27:15-18.
    蔡峻,吕慧平,叶恭银,胡萃.2002.快速评价内寄生蜂雌蜂携带因子生理活性的简易方法.植物保护学,29:25-30.
    段家龙,陆翠珍,古贺克已,河口丰,伴野丰,1995.家蚕血淋巴超氧化物歧化酶初步研究.蚕业科学,21:102-105.
    冯从经,戴华国,武淑文,2001.褐飞虱高温条件下应激反应及体内保护酶系活性的研究.应用生态学报,12:409-413.
    冯从经,戴华国,符文俊,2002.腰带长体茧蜂寄生后亚洲玉米螟体内抗氧化酶活性及组织特异性.南京农业大学学报,25:31-35.
    何卓晶,王尊生,李素霞,袁勤生,2006.Cu~(2+)、Zn~(2+)胁迫对蛹虫草(Cordyceps militaris)抗氧化酶活性及脂氧化水平的影响.药物生物技术,13:36-39.
    胡萃,1986.蝶蛹金小蜂发育速率与温度的关系.昆虫学报,9:101-103.
    胡萃,俞伯良.1987.蝶蛹金小蜂散放试验.昆虫天敌,9:199-202.
    胡萃,万兴生.1988.蝶蛹金小蜂性比的研究.昆虫学报,31:332-335.
    梁光红,陈友荣,黄居昌,2007.寄生对橘小实蝇幼虫体内过氧化物酶活性的影响,中南林生科技大学学报,27:48-51.
    刘春,罗英,代方银,陈萍,唐云明,鲁成,2002.家蚕超氧化物歧化酶(SOD)不同品 种活性差异的研究.蚕学通讯,22:1-6.
    刘井兰,于建飞,吴进才,印建莉,吴东浩,2006.昆虫活性氧代谢.昆虫知识,43:752-756.
    吕慧平,蔡峻,叶恭银,徐红星,胡萃,2000.寄生对越冬代菜粉蝶蛹血淋巴中蛋白质和糖类代谢的影响.浙江大学学报(农业与生命科学版), 26:611-615.
    唐启义,冯明光,2007.DPS数据处理系统--实验设计、统计分析及数据挖掘.北京:科学出版社.
    王峰,2001.粘虫体内保护酶系统活力的研究.陕西师范大学硕士学位论文.
    吴玛莉,2008.蝶蛹金小蜂毒液的生理功能及活性成分分离纯化的研究.浙江大学博士学位论文.
    张忠,2005.蝶蛹金小蜂和丽蝇金小蜂毒液的生化特性和生理功能.浙江大学博士学位论文.
    张忠,叶恭银,胡萃,2004.两种金小蜂毒液对菜粉蝶蛹血细胞延展、存活及包囊作用的影响.昆虫学报,47:551-561.
    郑必平,2002.蓖麻蚕不同发育时期过氧化氢代谢的变化.浙江大学硕士学位论文.
    朱家颖,叶恭银,胡萃,2008.寄生蜂毒液蛋白的研究进展.植物保护学报,35:70-278.
    Agius, D. R., Bannister, W. H., Balzan, R., 1998. Prokaryotic iron superoxide dismutase replaces cytosolic copper, zinc superoxide dismutase in protecting yeast cells against oxidative stress. Biochemistry and Molecular Biology International, 44:41-49.
    Ahmad, S., Pritsos, C.A., Bowen, S.M., Kirkland, K.E., Blomquist, G.J., Pardini, R.S.,1987. Activities of enzymes that detoxify superoxide anion and related toxic oxyradicals in Trichoplusia ni. Archives of Insect Biochemistry and Physiology, 6: 85-96.
    Amaya, K.E., Asgari, S., Jung, R., Hongskula, M., Beckage, N.E., 2005. Parasitization of Manduca sexta larvae by the parasitoid wasp Cotesia congregata induces an impaired host immune response. Journal of Insect Physiology., 51: 505-512.
    Anggraeni, T., Ratcliffe, N.A., 1991. Studies on cell-cell cooperation during phagocytosis by purified haemocyte populations of the wax moth Gallaria mellonella. Journal of Insect Physiology, 37: 453-460.
    Ara(?)jo, H.C.R., Cavalcanti, M.G.S., Santos, S.S., Alves, L.C., Brayner, F.A., 2008. Hemocytes ultrastructure of Aedes aegypti (Diptera: Culicidae). Micron, 39:184-189.
    Arif, A., Scheller, K., Dutta-Gupta, A., 2003. Tyrosine kinase mediated phosphorylation of the hexamerin receptor in the rice moth Corcyra cephalonica by ecdysteroids. Insect Biochemistry and Molecular Biology, 33:921-928.
    Asgari, S., Zhang, G., Zareie, R., Schmidt, O., 2003. A serine proteinase homolog venom protein from an endoparasitoid wasp inhibits melanization of the host hemolymph. Insect Biochemistry and Molecular Biology, 33: 1017-1024.
    Bachere, E., Milalhe, E., Noel, D., Boule, V., Morvan, A., Rodriguez, J., 1995.Knowledge and research prospects in marine mollusk and crustacean immunology.Aquaculture, 132: 17-32.
    Bae, S., Kim, Y., 2004. Host physiological changes due to parasitism of a braconid wasp, Cotesia plutellae, on diamondback moth, Plutella xylostella. Comparative Biochemistry and Physiology, 138A: 39-44.
    Bae, S., Kim, Y., 2008. Parasitism by Cotesia plutellae inhibits imaginal wing disc development of diamondback moth, Plutella xylostella. Journal of Asia-Pacific Entomology, 11 : 83-87.
    Beetz, S., Brinkmann, M., Trenczek, T., 2004. Differences between larval and pupal hemocytes of the tobacco hornworm, Manduca sexta, determined by monoclonal antibodies. Journal of Insect Physiology, 50:805-819.
    Berra, E., Forcella, M., Giacchini, R., Rossaro, B., Parenti, P., 2006. Biomarkers in caddisfly larvae of the species Hydropsyche pellucidula (Trichoptera :Hydropsychidae) measured in natural populations and after short term exposure to fenitrothion. Bulletin of Environmental Contamination and Toxicology, 76:863-870.
    Bhagyalakshmi, A., Reddy, P.S., Ramamurthi, R.,1984. Subacute stress induced by sumithion on certain biochemical parameters in Oziotelphusa senex senex, the fresh-water rice field crab. Toxicology Letters, 21: 127-134.
    Bogdan, C, Rollinghoff, M., Diefenbach, A., 2000. Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12: 64-76.
    Borges, A.R., Santos, P.N., Furtado, A.F., Figueiredo, R.C.B.Q., 2008. Phagocytosis of latex beads and bacteria by hemocytes of the triatomine bug Rhodnius prolixus (Hemiptera: Reduvidae). Micron, 39: 486-494.
    Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72: 248-254.
    Brayner, F.A., Araujo, H.R.C., Cavalcanti, M.G.S, Alves, L.C. and Peixoto, C.A.,2005. Ultrastructural characterization of the hemocytes of Culex quinquefasciatus (Diptera: Culicidae). Micron, 36: 359-367.
    Butt, T.M. and Shields, K.S., 1996. The structure and behavior of gypsy moth Lymantria dispar hemocytes. Journal of Invertebrate Pathology, 68: 1-14.
    Cai, J., Ye, G.Y., Hu, C, 2001. Effect of parasitization by the pupal endoparasitoid,Pteromalus puparum (Hymenoptera: Pteromalidae) on humoral immune reactions of Pieris rapae (Lepidoptera: Pieridae). Entomologica Sinica, 8: 335-342.
    Cai, J., Ye, G.Y., Hu. C, 2004. Parasitism of Pieris rapae (Lepidoptera: Pieridae) by a pupal endoparasitoid, Pteromalus puparum (Hymenoptera: Pteromalidae):effects of parasitization and venom on host hemocytes. Journal of Insect Physiology, 50:315-322.
    Castillo, J.C., Robertson, A.E. and Strand, M.R., 2006. Characterization of hemocytes from the mosquitoes Anopheles gambiae and Aedes aegypti. Insect Biochemistry and Molecular Biology, 36:891-903.
    C(?)nsoli, F.L., Vinson, S.B., 2004. Host regulation and the embryonic development of the endoparasitoid Toxoneuron nigriceps (Hymenoptera: Braconidae). Comparative Biochemistry and Physiology, 137B: 463-473.
    C(?)nsoli, F.L., Brandt, S.L., Coudron, T.A., Vinson, S.B., 2005. Host regulation and release of parasitism-specific proteins in the system Toxoneuron nigriceps-Heliothis virescens. Comparative Biochemistry and Physiology, 142B: 181-191.
    Coudron, T.A., Iqbal, M., Rice, W.C., Ellersieck, M.R., Pinnell, R.E., 1999. Mediated pathogenicity of the baculovirus AcMNPV by the venom from Euplectrus comstockii Howard (Hymenoptera: Eulophidae). Comparative Biochemistry. Physiology, 124B: 231-240.
    Dani, M.P., Richards, E.H., Edwards, J.P.,2004. Venom from the pupal endoparasitoid,Pimpla hypochondriaca, increases the susceptibility of larval Lacanobia oleracea to the entomopathogens Bacillus cereus and Beauveria bassiana. Journal of Invertebrate Pathology, 86:19-25.
    Digilio, M.C., Pennacchio, F., Tremblay, E., 1998. Host regulation effects of ovary fluid and venom by Aphidius ervi (Hymenoptera: Braconidae). Journal of Insect Physiology, 44: 779-784.
    Dikshith, T.S.S., Beharl, J.R., Datta, K.K., Mathur, A.K., 1975. Effect of diazinon in male rats-histropathological and biochemical study. Environmental Physiology and Biochemistry, 5: 293-299.
    Dutra, B. K., Femandes, F. A., Oliveira, G. T., 2008. Carbofuran-induced alterations in biochemical composition, lipoperoxidation, and Na~+/K~+ATPase activity of Hyalella pleoacuta and Hyalella curvispina in bioassays. Comparative Biochemistry and Physiology, 147C: 179-188.
    Dutra, B.K., Fernandes, F.A., Lauffer, A.L., Oliveira, G.T., 2009. Carbofuran-induced alterations in the energy metabolism and reproductive behaviors of Hyalella castroi (Crustacea: Amphipoda). Comparative Biochemistry and Physiology, 149 C: 640-646.
    Edwardsa, J.P., Bella, H.A., Audsleya, N., Marrisa, G.C., Kirkbride-Smitha, A., Bryninga, G., Friscob, C., Cusson, M., 2006. The ectoparasitic wasp Eulophus pennicornis (Hymenoptera: Euiophidae) uses instar-specific endocrine disruption strategies to suppress the development of its host Lacanobia oleracea (Lepidoptera: Noctuidae). Journal of Insect Physiology, 52:1153-1162.
    Ergin, E., Uckan, F., Rivers, D.B., Sak, O., 2006. In vivo and in vivo activity of venom from the endoparasitoid wasp Pimla turinellae L. (Hymenoptera: Ichneumomidae). Archives of Insect Biochemistry and Physiology, 61: 87-97.
    Etebari, K., Bizhannia, A.R., Sorati, R., Matindoost, L., 2007. Biochemical changes in haemolymph of silkworm larvae due to pyriproxyfen residue. Pestcide Biochemistry and Physiology, 88: 14-19.
    Faraldo, A.C., Sa-Nunes, A., Faccioli, L.H., Del-Bel, E.A., Lello, E., 2007. Nitric oxide synthase activity in tissues of the blowfly Chrysomya megacephala Fabricius. Biocell, 31 : 205-211.
    Felton, G.W., Summers, C.B., 1995. Antioxidant systems in insects. Archives of Insect Biochemistry and Physiology, 29:187-197.
    Frasco, M. F., Guilhermino, L., 2002. Effects of dimethoate and beta-naphthoflavone on selected biomarkers of Poecilia reticulata. Fish Physiology and Biochemistry, 26: 149-156.
    Garc(?)a-Gil de Mu(?)oz, F., Lanz-Mendoza, H., Hern(?)ndez-Hern(?)ndez, F.C., 2007. Free radical generation during the activation of hemolymph prepared from the homopteran Dactylopius coccus. Archives of Insect Biochemistry and Physiology,65: 20-28.
    Gardiner, E.M.M. and Strand, M.R., 1999. Monoclonal antibodies bind distinct classes of hemocytes in the moth Pseudoplusia includens. Journal of Insect Physiology, 45:113-126.
    Giglio, A., Battistella, S., Talarico, F.F., Tullia Zetto Brandmayr, T.Z., Giulianini, P.G.,2008. Circulating hemocytes from larvae and adults of Carabus (Chaetocarabus lefebvrei) (Coleoptera: Carabidae): Cell types and their role in phagocytosis after in vivo artificial non-self-challenge. Micron, 39: 552-558.
    Gillespie, J.P., Kanost, M.R., Trenczek, T., 1997. Biological mediators of insect immunity. Annual Review of Entomology, 42:611-643.
    Giulianini, P.G., Bertolo, F., Battistella, S., Amirante, G.A., 2003. Ultrastructure of the hemocytes of Cetonischema aeruginosa larvae (Coleoptera: Scarabaeidae): involvement of both granulocytes and oenocytoids in in vivo phagocytosis. Tissue and Cell, 35: 243-251.
    Gorman, M.J., Schwartz, A.M., Paskewitz, S.M., 1998. The role of surface characteristics in eliciting humoral encapsulation of foreign bodies in Plasmodium-refractory and susceptible strains of Anopheles gambiae. Journal of Insect Physiology, 44: 947-954.
    Handy, R.D., Abd-El Samei H.A., Bayomy, M.F.F., Mahran, A.M., Abdeen, A.M., El-Elaimy, E.A. Chronic diazinon exposure: pathologies of spleen, thymus, blood cells, and lymph nodes are odulated by dietary protein or lipid in the mouse.Toxicology, 172:13-34.
    Handy, R. D., Galloway, T. S., Depledge, M. H., 2003. A proposal for the use of biomarkers for the assessment of chronic pollution and in regulatory toxicology. Ecotoxicology, 12:331-343.
    Harvey, J.A., Bezemer, T.M., Gols, R., Gols, R., Nakamatsu, Y., T., 2008. Comparing the physiological effects and function of larval feeding in closely-related endoparasitoids (Braconidae: Microgastrinae). Physiological Entomology, 33: 217-225.
    Huang, F., Shi, M., Yang, Y.Y., 2009. Changes in hemocytes of Plutella xylostella after parasitism by Diadegma semiclausum. Archives of Insect Biochemistry and Physiology, 70:177-187.
    Ibrahim, A.M.A. and Kim, Y., 2006. Parasitism by Cotesia plutellae alters the hemocyte population and immunological function of the diamondback moth,Plutella xylostella. Journal of Insect Physiology, 52: 943-950.
    Iwama, R., Ashida, M., 1986. Biosynthesis of prophenoloxidase in hemocytes of larval hemolymph of the silkworm, Bombyx mori. Insect Biochemistry. 16: 547-555.
    Jiang, H., Wang, Y., Ma, C, Kanost, M.R., 1997. Subunit composition of pro-phenoloxidase from Manduca sexta: molecular cloning of subunit proPO-Pl. Insect Biochemistry and Molecular Biology, 27: 835-850.
    Jirathitikal, V., Bourinbaiar, A.S., 2002. Safety and efficacy of an oral HIV vaccine (V-l Immunitor) in AIDS patients at various stages of the disease. HIV Clin Trials,3: 21-26.
    Johansson, M.W., 1999. Cell adhesion molecules in invertebrate immunity.Developmental and Comparative Immunology, 23: 303-315.
    Joseph, K. V., Rao, K. J., 1991. Protein-degradation and related enzyme proliles on a sublethal toxicity of aldrin in the tissues of rana-hexadactyla. Ecotoxicology and Environmental Safety, 22: 32-35.
    Jovanovic-Galovic, A., Blagojevic, D.P., Grubor-Laj(?)i(?), G., Worland, R., Spasic, M.B.,2004. Role of antioxidant defense during different stages of preadult life cycle in european corn borer (Ostrinia nubilalis, Hubn.): Diapause and Metamorphosis.Archives of Insect Biochemistry and Physiology, 55:79-89.
    Kakimoto, H., Imai, Y., Kawata, S., Inada, M., Ito, T., Matsuzawa, Y., 1995. Altered lipid composition and differential changes in activities of membrane-bound enzymes of erythrocytes in hepatic cirrhosis. Metabolism, 44: 825-832.
    Kamboj, A., Kiran, R., Sandhir, R., 2006. N-acetylcysteine ameliorates carbofuran induced alterations in lipid composition and activity of membrane bound enzymes. Molecular and Cellular Biochemistry, 286: 107-114.
    Kanost, MR., Gorman, M.J., 2008. Phenoloxidases in Insect Immunity.// Beckage, N. E.Insect Immunology, Elsevier, 69-96.
    Keller, J.N., Mark, R.J., Bruce, A.J., Blanc, E., Rothstein, J.D., Uchida, K., Waeg, G.,Mattson, M. P., 1997. 4-Hydroxynonenal, an aldehydic product of membrane lipid peroxidation, impairs glutamate transport and mitochondrial function in synaptosomes. Neuroscience, 80: 685-696.
    Kitano H., 1986. The role of Apanteles glomeratus venom in the defensive response of its host, Pieris rapae crucivora. Journal of Insect Physiology, 32: 369-375.
    Lavine, M.D., Strand, M.R., 2001. Surface characteristics of foreign targets that elicit an encapsulation response by the moth Pseudoplusia includens. Journal of Insect Physiology, 47: 965-974.
    Lavine, M.D. and Strand M.R., 2002. Insect hemocytes and their role in immunity.Insect Biochemistry and Molecular Biology, 32: 1295-1309.
    Lemaitre, B., Hoffmann, J., 2007. The host defense of Drosophila melanogaster.Annual Review of Immunology, 25: 697-743.
    Leonald, C, Ratcliffe, N.A., Rowley, A.F., 1984. The role of prophenoloxidase activation in non-self recognition and phagocytosis by insect blood cells. Journal of Insect Physiology ,31: 789-799.
    Li, Y., Lu, J.F., Feng, C,J., Ke, X., Fu, W.J., 2007. Role of venom and ovarian proteins in immune suppression of Ostrinia furnacalis (Lepidoptera: Pyralidae) larvae parasitized by Macrocentrus cingulum (Hymenoptera: Braconidae), a polyembryonic parasitoid. Insect Science, 14: 93-100.
    Ling, E., Yu, X. Q., 2005. Hemocytes from the tobacco hornworm Manduca sexta have distinct function in phagocytosis of foreign particles and self dead cells.Developmental and Comparative Immunology, 30: 301-309.
    Ling, E., Yu, X.Q., 2006. Hemocytes from the tobacco hornworm Manduca sexta have distinct functions in phagocytosis of foreign particles and self dead cells. Developmental and Comparative Immunology, 30:301-309.
    Liu, Y. H., Li, B. P., 2006. Developmental interactions between Spodoptera exigua(Noctuidae : Lepidoptera) and its uniparental endoparasitoid, Meteorus pulchricornis (Braconidae : Hymenoptera). Bilolgical Control, 38: 264-269.
    Lowenberger, C., 2001. Innate immune response of Aedes aegypti. Insect Biochemistry and Molecular Biology. 31 : 219-229.
    Madanagopal, N., Kim, Y., 2006. Parasitism by Cotesia glomerata induces immunosuppression of Pieris rapae: effects of ovarian protein and polydnavirus. Journal of Asia-Pacific Entomology, 9: 339-346.
    Mark, R.J., Pang, Z., Geddes, J.W., Uchida, K., Mattson, M.P, 1997. Amyloid betapeptide impairs glucose transport in hippocampal and cortical neurons:involvement of membrane lipid peroxidation. Journal of Neuroscience, 17:1046-1054.
    Marmaras, V.J. Lampropoulou, M., 2009. Cellular Signalling .Regulators and signalling in insect haemocyte immunity. Cellular Signalling, 21: 186-195.
    Marris, G.C., Weaver, R.J., Bell, J., Edwards, J.P., 2001a. Venom from the ectoparasitoid wasp Eulophus pennicornis disrupts host ecdysteroid production by regulating host prothoracic gland activity. Physiological Entomology, 26:229-238.
    Milatovic, D., Gupta, R.C., Dekundy, A., Montine, T.J., Dettbam, W.D., 2005.Carbofuraninduced oxidative stress in slow and fast skeletal muscles: prevention by memantine and atropine. Toxicology, 208: 13-24.
    Mohankumar, K., Ramasamy, P., 2006 a. White spot syndrome virus infection decreases the activity of antioxidant enzymes in Fenneropenaeus indicus. Virus Research, 115A: 69-75.
    Mohankumar, K., Ramasamy, P., 2006 b. Activities of membrane bound phosphatases,transaminases and mitochondrial enzymes in white spot syndrome virus infected tissues of Fenneropenaeus indicus. Virus Research, 118B: 130-135.
    Moorthy, K.S., Naidu, M.D., Chetty, C.S., Swami, K.S., 1983. Changes in carbohydrate metabolism in tissues of fresh water mussel (Lamellidens marginalis) exposed to phosphamidon, Bull. Environ. Contam. Toxicol, 30: 219-222.
    Moreau, S.J.M., Dingremont, A., Doury, G., Giordanengo, P., 2002. Effects of parasitism by Asobara tabida (Hymenoptera: Braconidae) on the development,survival and activity of Drosophila melanogaster larvae. Journal of Insect Physiology, 48:337-347.
    Munoz, M., Cedeno, R., Rodriquez, J., Van der knaap, W., Mialhe, E., Bacher, E., 2000. Measurement of reactive oxygen intermediate production in haemocytes of Penaeid shrimp, Penaeus Vannamei. Aquaculture, 191: 89-107.
    Muriel, P., Mourelle, M., 1990. The role of membrane composition in ATPase activies of cirrhotic rat liver. Effect of silmarin. Journal of Applied Toxicology, 10:281-284.
    Muta, T., Iwanaga, S., 1996. The role of hemolympyh coagulation in innate immunity.Current Opinion in Immunology, 8: 41-47.
    Nakamatsu, Y., Gyotoku, Y., Tanaka, T., 2001. The endoparasitoid Cotesia kariyai (Ck) regulates the growth and metabolic efficiency of Pseudaletia separata larvae by venom and Ck polydnavirus. Journal of Insect Physiology, 47: 573-584.
    Nakamatsu, Y., Tanaka, T., 2003. Venom of ectoparasitoid, Euplectrus sp. near plathypenae (Hymenoptera: Eulophidae) regulates the physiological state of Pseudaletia separate (Lepidoptera: Noctuidae) host as food resource. Journal of Insect Physiology, 49: 149-159.
    Nakamatsu, Y., Tanaka, T., 2004. Venom of Euplectrus separatae causes hyperlipidemia by lysis of host fat body cells. Journal of Insect Physiology, 50:267-275.
    Nappi, A.J., Vass, E., Frey, F., Carton, Y., 1995. Superoxide anion generation in Drosophila during melanotic encapsulation of parasites. European Journal of Cell Biology, 68: 450-456.
    Nappi, A.J., Vass, E., 1998. Hydrogen peroxide production in immunereactive Drosophila melanogaster. Journal of Parasitology, 84:1150-1157.
    Nappi, A.J., Vass, E., Frey, F., Carton, Y., 2000. Nitric oxide involvement in Drosophila immunity. Nitric Oxide-biology and Chemistry, 4: 423-430.
    Nath, B.S., 2000. Changes in carbohydrate metabolism in hemolymph and fat body of the silkworm, Bombyx mori L., exposed to organophosphorus insecticides. Pesticide Biochemistry and Physiology, 68:127-137.
    Nath, B.S., 2002. Shifts in glycogen metabolism in hemolymph and fat body of the silkworm, Bombyx mori (Lepidoptera: Bombycidae) in response to organophosphorus insecticides toxicity. Pesticide Biochemstry and Physiology, 74:73-84.
    Parkinson, N., Smith, I., Audsley, N., 2002. Purification of pimplin, a paralyic heterodimeric polypeptide from venom of the parasitoid wasp Pimpla hypochondriaca, and cloning of the cDNA encoding one of the subunits. Insect Biochemistry and Molecular Biology, 32:1769-1773.
    Parkinson, N.M., Weaver, R.J., 1999. Noxious components of venom from the pupal specific parasitoid Pimpla hypochondriaca. Journal of Invertebrate Pathology, 73: 74-83.
    Pech, L.L., Strand, M.R., 1996. Granular cells are required for encapsulation of foreign targets by insect haemocytes. Journal of Cell Science, 109: 2053-2060.
    Rahb(?), Y., Digilio, M.C., Febvay, G., Guillaud, J., Fanti, P., Pennacchio, F., 2002.Metabolic and symbiotic interactions in amino acid pools of the pea aphid,Acyrthosiphom pisum, parasitized by the Braconid Aphidiuservi. Journal of Insect Physiology, 48: 507-516.
    Raman, T., Arumugam, M., Mullainadhan, P.,2008. Agglutinin-mediated phagocytosis-associated generation of superoxide anion and nitric oxide by the hemocytes of the giant freshwater prawn Macrobrachium rosenbergii. Fish and Shellfish Immunology, 24: 337-345.
    Reddy, P. S., Pushpalatha, T., 2007. Effect of serotonin on hemolymph glucose regulation in the fresh water edible crab Oziotelphusa senex senex. Aquaculture,266: 274-278.
    Reddy, P.S., Sainath, S.B., 2008. Effect of retinoic acid on hemolymph glucose regulation in the fresh water edible crab Oziotelphusa senex senex. General and Comparative Endocrinology, 155: 496-502.
    Richards, E.H., Edwards, J.P., 2000. Parasitization of Lacanobia oleracea (Lepidoptera) by the ectoparasitic wasp, Eulophus pennicornis, Suppress haemocyte-mediated recognition of non-self and phagocytosis. Journal of Insect Physiology, 46: 1-11.
    Richards, E. H., Edwards, J. P., 2002. Parasitism of Lacanobia oleracea (Lepidoptera) by the ectoparasitic wasp, Eulophus pennicornis, disrupts the cytoskeleton of host haemocytes and suppresses encapsulation in vivo. Archives of Insect Biochemistry and Physiology, 49: 108-124.
    Richards, E.H., Parkinson, N.M., 2000. Venom from the endoparasitic wasp Pimpla hypochondriaca adversely affects the morphology, viability, and immune function of hemocytes from larvae of the tomato moth, Lacanobia oleracea. Journal of Invertebrate Pathology, 76: 33-42.
    Rivers, D. B., Denlinger, D. L., 1994, Redirection of metabolism in the flesh fly,Sarcophaga bullata, following envenomation by the ectoparasitoid Nasonia vitripennis and correlation of metabolic effects with the diapause status of the host.Journal of Insect Physiology, 40:207-215.
    Rivers, D.B., Denlinger, D.L., 1995. Venom-induced alterations in fly lipid metabolism and its impact on larval development of the ectoparasitoid Nasonia vitripennis Walker (Hymenoptera: Pteromalidae). Journal of Invertebrate Pathology, 66:104-110.
    Rivers, D.B., Ruggiero, L., Hayes, M., 2002. The ectoparasitic wasp Nasonia vitripennis (Walker) (Hymenoptera: Pteromalidae)differentially affects cells mediating the immune response of its flesh fly host, Sarcophaga bullata Parker(Diptera: Sarcophagidae). Journal of Insect Physiology, 48:1053-1064.
    Rizki T.M., Rizki R.M., 1992. Lamellocyte differentiation in Drosophila larvae parasitized by L. boulardi. Developmental and Comparative Immunology, 16:103-110.
    Rizki T.M., Rizki R.M., 1984. Selective destruction of a host blood cell type by aparasitoid wasp. Proceeding of National Academic Sci. USA 91, 41.
    Robinson, J.M., Badwey, J.A., 1994. Production of active oxygen species by phagocytic leukocytes. Immunology, 60:159-178.
    Rohloff, L.H., Wiesner, A., G(o|¨)tz, P., 1994. A fluorescence assay demonstrating stimulation of phagocytosis by haemolymph molecules of Galleria mellonella. Journal of Insect Physiology, 40:1045-1049.
    Salvador, G., C6nsoli, F.L., 2008. Changes in the hemolymph and fat body metabolites of Diatraea saccharalis (Fabricius) (Lepidoptera: Crambidae) parasitized by Cotesia flavipes (Cameron) (Hymenoptera: Braconidae). Biological Control, 45:103-110.
    Sass, M., Kiss, A., Locke, M., 1994. Integument and hemocyte peptides. Journal of Insect Physiology, 40:407-421.
    Schafellner, C., Markt, R.C., Schopf, A., 2007. Inhibition of juvenile hormone esterase activity in Lymantria dispar (Lepidoptera: Lymantriidae) larvae parasitized by Glyptapanteles liparidis (Hymenoptera: Braconidae). Journal of Insect Physiology,53: 858-868.
    Schmidt, O., Theopold, U. and Strand, M.R., 2001. Innate immunity and evasion by insect parasitoids. BioEssays, 23: 344-351.
    Schmit, A. R., Ratcliffe, N. A., 1977. The encapsulation of foreign tissue implants in Galleria mellonella larvae. Journal of Insect Physiology, 23:175-184.
    Schwarz, K. B., 1996. Oxidative stress during viral infection: a review. Free Radical Biology and Medicine, 21 : 641-649.
    Shelby, K.S., Webb, B.A., 1994. Polydnavirus infection inhibits synthesis of an insect plasma protein, arylphorin. Journal of General Virology, 75: 2285-2292.
    Shelby, K.S., Webb, B.A., 1997. Polydnavirus infection inhibits translation of specific growth-associated host proteins. Insect Biochemistry and Molecular Biology, 27:263-270.
    Sreenivasa, M.K., Kasi, R.B., Swami, K.S., Chetty, C.S., 1984. Kinetics of succinic dehydrogenase inhibition by methyl parathion and its recovery by oximes and L-cysteine in hepatopancreas of Lamellidens marginalis. Archives Internationales de Physiologie et de Biochimie, 92: 147-151.
    Steenvoorden, D.P.T., Henegouwen, G.M.J.B.V., 1997. The use of endogenous antioxidants to improve photoprotection. Journal of Photochemistry and Photobiology, 41B: 1-10.
    Stettler, P., Trenczek, T., Wyler, T., Pfister-Wilhelm, R., Lanzrein, B., 1998. Overview of parasitism associated effects on host haemocytes in larval parasitoids and comparison with effects of the egg-larval parasitoid Chelonus inanitus on its host Spodoptera littoralis. Journal of Insect Physiology, 44: 817-831.
    Strand, M.R., 2008. The insect cellular immune response. Insect Science, 15: 1-14.
    Strand, M.R., Beck, M.H., Lavine, M.D., Clark, K.D., 2006. Microplitis demolitor bracovirus inhibits phagocytosis by hemocytes from Pseudoplusia includens.Archives of Insect Biochemistry and Physiology, 61: 134-145.
    Strand, M.R., Dover, B.A., 1991. Developmental disruption of Pseudoplusia includens and Heliothis virescens larvae by the calyx fluid and venom of Microplitis demolitor. Archives of Insect Biochemistry and Physiology, 18: 131-145.
    Suzuki, M, Tanaka, T., 2006. Virus-like particles in venom of Meteorus pulchricornis induce host hemocyte apoptosis. Journal of Insect Physiology, 52: 602-613.
    Takeda, T. Nakamatsu, Y., Tanaka, T., 2006. Parasitization by Cotesia plutellae enhances detoxifying enzyme activity in Plutella xylostella. Pesticide Biochemistry and Physiology, 86:15-22.
    Thompson, S.N., 1983. Biochemical and physiological effects of metazoan endoparasites on their host species. Comparative Biochemistry and Physiology,74B: 183-211.
    Thompson, S.N., Dahlman, D.L., 1999. Blood sugar formation due to abnormally elevated gluconeogenesis: aberrant regulation in a parasitized insect, Manduca sexta L. Biochimica et Biophysica Acta, 1454:133-142.
    Thompson, S. N., 2001. Parasitism enhances the induction of glucogenesis by the insect Manduca sexta L. International Journal of Biochemistry and Cell Biology, 33:163-173.
    Tojo, S., Naganuma, F, Arakawa, K., Yokoo, S., 2000. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. Journal of Insect Physiology, 46:1129-1135.
    Ulug, E.T., Garry, R.F., Bose, H.R., 1996. Inhibition of Na~+K~+ATPase activity in membranes of Sindbis virus-infected chick cells. Virology, 216:299-308.
    Vass, E., Nappi, A.J., 2001. Fruit fly immunity. BioEssays, 51: 529-535.
    Vercesi, A.E., Kowaltowski, A.J., Grijalba, M.T., Meinicke, A.R., Castilho, R.F., 1997.The role of reactive oxygen species in mitochondrial permeability transition.Bioscience Reports, 17: 43-52.
    Wang, Y., Oberley, L.W., Murhammer, D.W., 2001. Antioxidant defense systems of two lipidopteran insect cell lines. Free Radical Biology and Medicine, 30:1254-1262.
    Weaver, R.J., Marris, G.C., Olieff, S., Mosson, H.J., 1997. Role of ectoparasitoid venom in the regulation of haemolymph ecdysteroid titres in a host noctuid moth.Archives of Insect Biochemistry and Physiology, 35:169-178.
    Wertheim, B., Kraaijeveld, A.R., Schuster, E., Blanc, E., Hopkins, M., Pletcher, S.D.,Strand, M.R., Godfray, H.C.J., Partridge, L., 2005. Genome wide expression in response to parasitoid attack in Drosophila. Genome Biology, 94R: 1-20.
    Whitten, M.M.A., Ratcliffe, N.A., 1999. In vitro superoxide activity in the haemolymph of the West Indian leaf cockroach, Blaverus discoidalis. Journal of Insect Physiology, 45: 667-675.
    Wiesner, A., Gotz, P., 1993. Silica beads induce cellular and humoral immune responses in Galleria mellonella larvae and in isolated plasmatocytes, obtained by a newly adapted nylon wool separation method. Journal of Insect Physiology, 39:865-876.
    Wiesner, A., Wittwer, D., Gotz, P., 1996. A small phagocytosis stimulating factor is released by and acts on phagocytosing Galleria mellonella haemocytes in vitro.Journal of Insect Physiology, 42: 829-835.
    Wu, M.L., Ye, G.Y., Zhu, J.Y., Chen, X.X. and Hu, C, 2008. Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. Journal of Invertebrate Pathology, 99, 186-191.
    Ye, G.Y., Zhu, J.Y., Zhang, Z., Fang, Q., Cai, J., Hu, C, 2007. Venom from the endoparasitoid Pteromalus puparum (Hymenoptera: Pteromalidae) adversely affects host hemocytes: differential toxicity and microstructural and ultrastructural changes in plasmatocytes and granular cells.// Rivers, D.B., Yoder, J.A. In Recent Advances in the Biochemistry, Toxicity, and Mode of Action of Parasitic Wasp Venoms. Eds. Research Signpost, Kerala, India: 115-127.
    Yokoo, S., Gotz, P., Tojo, S., 1995. Phagocytic activities of haemocytes separated by two simple methods from larvae of two lepidopteran species, Agrotis segetum and Galleria mellonella. Applied Entomology and Zoology, 30: 343-350.
    Yu, B.P., 1994. Cellular defenses against damage from reactive oxygen species.Physiological Reviews, 74:139-162.
    Yu, R.X., Chen, Y.F., Chen, X.X., Huang, F., Lou, Y.G., Liu, S.S., 2007. Effects of venom/calyx fluid from the endoparasitic wasp Cotesia plutellae on the hemocytes of its host Plutella xylostella in vitro. Journal of Insect Physiology, 53: 22-29.
    Zhang, G., Lu, Z.Q., Jiang, H., Asgari, S., 2004. Negative regulation of prophenoloxidase (proPO) activation by a clip-domain serine proteinase homolog (SPH) from endoparasitoid venom. Insect Biochemistry and Molecular Biology, 34:477-83.
    Zhang, Z., Ye, G.Y., Cai, J. and Hu. C., 2005. Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon, 46: 337-349.
    Zhang, G., Schmidta, O., Asgari, S., 2006. A calreticulin-like protein from endoparasitoid venom fluid is involved in host hemocyte inactivation.Developmental and Comparative Immunology, 30: 756-764.
    Zhu, J.Y., Ye, G.Y., Hu, C., 2008 a. Morphology and ultrastructure of the venom apparatus in the endoparasitic wasp Pteromaluspuparum (Hymenoptera:Pteromalidae). Micron, 39: 926-933.
    Zhu, J.Y., Ye, G.Y., Hu, C., 2008 b. Molecular cloning and characterization of acid phosphatase in venom of the endoparasitoid wasp Pteromalus puparum (Hymenoptera: Pteromalidae). Toxicon, 51: 1391-1399.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700