β-蒎烯衍生物的合成及抑菌、抗肿瘤活性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松节油是我国重要的天然可再生资源,其来源丰富,结构独特,具有广泛的生物活性。作为松节油的主要组分之一,β-蒎烯化学性质活泼,具有很多潜在的利用价值。
     本文以β-蒎烯为原料,经氧化、异构、Diels-Alder加成、酯化等化学反应,制备了二氢枯茗酸酰胺、二氢枯茗酸酯、二氢枯茗酸酰基硫脲、二氢枯茗酸肟酯、蒎烯–马来酸酯、蒎烯–马来酸酰胺等六类共45种新化合物;利用傅里叶变换红外光谱、核磁共振、质谱、元素分析等分析测试手段对合成的六类化合物进行了结构表征。对二氢枯茗酸衍生物进行了抑菌和体外抗肿瘤活性测试,根据测试结果,初步探讨了抑菌活性的构效关系和作用机制,研究结果为松节油的深加工利用提供基础。
     以β-蒎烯为原料,碱性高锰酸钾为氧化剂,水和叔丁醇的混合溶液为反应介质合成了诺蒎酸,并首次得到了诺蒎酸的晶体结构。诺蒎酸在硫酸的作用下,脱水,重排开环得到二氢枯茗酸,再经酰氯化、酯化、酰胺化、硫化等反应合成了酰胺、酯、酰基硫脲、肟酯等共36个新化合物,并首次得到了二氢枯茗酸苯酰胺的单晶。通过将β-蒎烯与马来酸酐进行Diels-Alder加成,在蒎烯母环上引入两个羧基结构,并合成了蒎烯-马来酸双酯加成物和蒎烯-马来酸酰胺衍生物。
     采用平板二倍稀释法,分别选取革兰氏阴性菌(大肠埃希氏杆菌Escherichia coli、绿脓假单胞菌Pseudomonas aeruginosa、肺炎克雷伯氏菌Klebsiella pneumoniae、产气肠杆菌Escherichia aerogenes)和革兰氏阳性菌(金黄色葡萄球菌Staphyloccocus aureu和表皮葡萄球菌Staphyloccocus epidermidi)六种菌株为受试菌种,对合成的二氢枯茗酸酰胺、二氢枯茗酸酯、二氢枯茗酸酰基硫脲、二氢枯茗酸肟酯、蒎烯-马来酸酯、蒎烯-马来酸酰胺等六类化合物进行了抑菌活性测试。测试结果表明,大部分的二氢枯茗酸衍生物具有一定的抑菌作用,其中二氢枯茗酸肟酯衍生物对六种菌种均具有较好的抑制性能,具有一定广谱抗菌性,化合物5a、5c、5d、5e、5g对产气肠杆菌的最小抑菌浓度均小于16μg/mL,低于三种对照品(新洁尔灭、氨苄青霉素钠、红霉素);除化合物5g外,其他肟酯类化合物对绿脓假单胞菌的的最小抑菌浓度均小于2μg/mL;化合物5e、5d对金黄色葡萄球菌的最小抑菌浓度为8μg/mL,与对照品新洁尔灭效果相当;化合物5c、5d、5e对表皮葡萄球菌的最小抑菌浓度小于8μg/mL,与对照品新洁尔灭和氨苄青霉素钠效果相当。因此二氢枯茗酸肟酯衍生物具有进一步开发研究用以筛选抑菌剂的应用价值。二氢枯茗酸酯衍生物对金黄色葡萄球菌和表皮葡萄球菌的抑制效果较好,除化合物3f、3k、3m、3n外,酯类化合物对金黄色葡萄球菌的最小抑菌浓度小于16μg/mL。除化合物4f外,二氢枯茗酸酰基硫脲衍生物对产气肠杆菌的抑制效果较好。
     选取了四种肿瘤细胞(分别为人非小细胞肺癌细胞、人乳腺癌细胞、人肝癌细胞和人结肠癌细胞)为受试细胞,采用噻唑蓝(MTT)比色法对二氢枯茗酸酰胺、二氢枯茗酸酯、二氢枯茗酸酰基硫脲、二氢枯茗酸肟酯等四类衍生物进行了体外抗肿瘤活性活性测试。结果表明部分化合物对四种肿瘤细胞具有一定的抑制作用,其中,二氢枯茗酸酰基硫脲对体外培养的人乳腺癌MCF-7和人结肠癌HCT116肿瘤细胞有一定的生长抑制作用,表现在化合物4d对人乳腺癌MCF-7肿瘤细胞的半数抑制浓度IC50为26.58μg/mL,化合物4c对人结肠癌HCT116肿瘤细胞的半数抑制浓度IC50为56.67μg/mL,均小于100μg/mL。
     比较了蒎烯衍生物的结构与抑菌活性之间的关系,结果显示,二氢枯茗酸的基本结构是抑菌作用的关键基团。通过比较二氢枯茗酸衍生物上的不同的取代基对于抑菌效果的影响,初步探讨了二氢枯茗酸衍生物抑菌活性的构效关系和作用机制。在大多数情况下,对于相同类型的二氢枯茗酸衍生物,分子量越小,含支链取代基越少,抑菌效果越理想。比较了对氨基苯甲酸、二氢枯茗酸衍生物和磺胺类抗菌剂的结构,二氢枯茗酸与对氨基苯甲酸和磺胺类抗菌剂在分子结构上具有一定的类似性,因此,推断在细胞内,二氢枯茗酸衍生物可能会代替对氨基苯甲酸,从而形成细菌代谢物质的类似物,以细菌拮抗物质的方式发挥抑菌的作用。
As an important renewable natural resource in China, turpentine has the abundantavailability, a unique structure, and widely bioactivity. β-pinene, one important component ofturpentine, is valuable in some fields due to its high chemical reactivity.
     In this thesis,45derivatives of amide, ester, oxime ester, and acylthiourea fromdihydrocumic acid as well as amide and ester from pinene-maleic acid were synthesizedthrough oxidation, isomerization, Diels-Alder reaction, esterification, and so on. Structures ofthese compounds were characterized by FTIR, NMR, MS, and Elemental Analysis. Theantibacterial activity and antitumor activity of these compounds were studied. According to thedata obtained from antibacterial test, the mechanism and the structure-activity relationship ofantibacterial activity were preliminarily discussed. The research provided new approaches ofthe deep processing and the utilization of turpentine.
     Nopinic acid was synthesized using β-pinene as raw material, potassium permanganateof alkaline as oxidant, and water/tert-butanol (v/v=1:2) as reaction medium, through which thecrystal structure of nopinic acid was firstly obtained. Dihydrocumic acid was synthesizedthrough reaction of dehydration, rearrangement, and ring-opening in the presence of sulfuricacid.38compounds of amides, esters, acylthioureas, and oxime ester were synthesized throughacylation, esterification, vulcanization, and so on. The crystal structure of4-isopropyl-N-phenylcyclohexa-1,3-dienecarboxamide was obtained. Through Diels-Alder reaction of β-pinene and maleic anhydride, two carboxyl groups was introducted into pinene, then amide andester from pinene-maleic acid were synthesized.
     The antibacterial activity of the derivatives was estimated by the2-fold agar dilutionmethod. Gram-negative bacteria (Escherichia coli, Klebsiella pneumonia, Pseudomonasaeruginosa, Escherichia aerogenes) and Gram-positive bacteria (Staphyloccocus epidermidis,Staphyloccocus aureu) were selected as test species. The results showed that most derivatives from dihydrocumic acid displayed antibacterial activity. Oxime esters from dihydrocumic aciddisplayed excellent antibacterial activity against all test species. MIC of compounds5a,5c,5d,5e, and5g against Escherichia aerogenes were lower than16μg/mL (lower than threereferences: Bromogeramine, Ampicillin Sodium, and Erythromycin). Except compound5g,MIC of oxime esters against Pseudomonas aeruginosa were lower than2μg/mL. MIC ofcompounds5e and5d against Staphyloccocus aureu were8μg/mL (equivalent toBromogeramine). MIC of compounds5c,5d, and5e against Staphyloccocus epidermidis werelower than8μg/mL (equivalent to Bromogeramine and Ampicillin Sodium). Oxime estersderivatives of dehydrocumic acid have potential value for further research to explore excellentantibacterial agent. Esters from dihydrocumic acid showed good antibacterial activity againstStaphyloccocus epidermidis and Staphyloccocus aureu. Except compounds3f,3k,3m, and3n,MIC against Staphyloccocus aureu were lower than16μg/mL. Acylthiourea fromdihydrocumic acid showed good antibacterial activity against Escherichia coli.
     Four kinds of cancer cell (human non-small cell lung cells, human breast cancer cells,human hepatoma cells, and human colon cancer cells) were selected as test cancer cells. Theantitumor activity in vitro of the derivatives of amide, acylthiourea, ester, and oxime ester fromdihydrocumic acid were estimated by the MTT method. The results showed that a part ofderivatives from dihydrocumic acid displayed some antitumor activity in vitro against cancercells. Among them, acylthiourea from dihydrocumic acid showed some antitumor activity invitro against human breast cancer cell MCF-7and human hepatoma cancer cell HCT116. TheIC50of compound4d against human breast cancer cell MCF-7was26.58μg/mL, and the IC50of compound4c against human hepatoma cancer cell HCT116was56.67μg/mL, which werelower than100μg/mL.
     The structure of derivatives and antibacterial activity were analyzed, and the resultshowed that dehydrocumic acid was the key group for antibacterial activity. The effection ofdifferent substituent in derivatives of dehydrocumic acid was studied. The structure-activityrelationship of derivatives was investigated preliminarily. In most cases, for the same kind of derivatives, compounds with lower molecular weight and less brabched substituents showedbetter antibacterial activity. The structures of PABA, dehydrocumic acid, and sulfa antibacteiralagent were compared. There were some structural similarity between these three compounds.After penetration into cell membrane, it is possible that derivatives of dihydrocumic acid couldtake the place of PABA, and play antagonistic effects on the metabolism of bacterium.
引文
[1]刘天成,王亚明.松节油及其精细化学利用.化工纵横,2002,16(9):4-7
    [2]宋湛谦.松属松脂特征与化学分类.合肥:中国科技大学出版社,2009:35-53
    [3]商士斌,宋湛谦.我国林产化学品“十一五”发展思路.精细与专用化学品,2006,14(8):1-5
    [4]张东峰.植物精油的研究开发新进展.河北化工,2008,31(2):10-12
    [5]王宗德,宋湛谦.松节油合成香料的研究现状(一).精细与专用化学品,2003,12:3-5
    [6]赵振东,刘先章.松节油的精细化学利用(Ⅰ)-松节油及精细化学利用基础.林产化工通讯,2001,35(1):42-47
    [7]李家泰.抗菌药物的研究进展与合理使用.中国临床药理学杂志,1990,6(4):197-211
    [8]孙胜,袁丽蓉.抗生素产生菌原生质体融合技术的研究进展.国外医药-抗生素分册,1989,10(4):251-255
    [9]许永杰,李电东.大分子抗肿瘤抗生素研究进展.中国抗生素杂志,1991,16(6):470-475
    [10]李文琴,贺长征.植物生长调节剂与抗生素在种子处理中的应用.天津农业科学,2002,8(2):31-34
    [11]朱昌雄,宋渊.我国农用抗生素的现状与发展趋势探讨.农药市场信息,2007,4:17-18
    [12]生物农药的应用现状及其前景.农化市场十日讯,2011,7:12-15
    [13]微生物农药在俄罗斯的应用进展.农化市场十日讯,2007,34:28-29
    [14]孟玲玲.浅谈畜禽养殖中抗生素的合理应用.畜牧兽医科技信息,2013,1:18-19
    [15]刘梦,黎建华.微生态制剂在兽药上的现况解析.农民致富之友,2013,2:149-150
    [16]刘文波,柴同杰.微生态制剂及其在畜牧业中的应用前景.饲料研究,2000,9:14-16
    [17]张正丈,韩宏.几种替代抗生素的新型水产饲料添加剂.科学养鱼,2012,11:71-72
    [18]马明,施进文,贺文瑞.头孢菌素类抗生素及其在畜牧生产中应用.养殖技术顾问,2012,10:178-179
    [19]李巧贤,哈斯,程超等.畜牧业生产中细菌素取代抗生素的发展趋势.畜牧与饲料科学,2008,1:1-3
    [20]史莹华,王成章,韩彪等.益生素的研究进展.河南农业大学学报,2001,4:376-380
    [21]赵明军,李文峰,刘炜.微生态制剂概述.饲料博览,2002,12:36-37
    [22]李慧昕,李金龙.动物微生态制剂的研究进展.中国动物保健,2003,07:32-33
    [23]刘翀,杨洋.安全的天然食品防腐剂细菌素.食品科学,2005,26(7):251-255
    [24] A. E. Belanger, T. R. Shryock. Macrolide-Resistant Campylobacter: the Meat of the Matter. The Journalof Antimicrobial Chemotherapy,2007,60(4):715-723
    [25]龙朝阳,许秀敏.动物源性食品中氨基糖苷类抗生素兽药残留分析.中国食品卫生杂志,2006,18(2):148-151
    [26]张致平.抗菌药物研究进展.中国抗生素杂志,2002,27(2):67-79
    [27]杨永青,伍贻康.抗霉素合成概览.有机化学,2006,26(10):1370-1378
    [28] K.W. Garey, I. Rubinstein, M. H. Gotfried, et al. Long-Term Clarithromycin Decreases PrednisoneRequirements in Elderly Patients with Prednisone-dependent Asthma. Chest.,2000,118(6):1826-1827
    [29]邵昌,周伟澄.半合成糖肽类抗生素的研究进展.中国医药工业杂志,2011,42(5):378-387
    [30] S. Douthwaite, L. H. Hansen, P. Mauvais. Macrolide-Ketolide Inhibition of MLS-Resistant Ribosomesis Improved by Alternative Drug Interaction with Domain II of23S rRNA. Molecular Microbiology,2000,36(1):183-193
    [31]滕德贞.浅议抗生素的耐药性与应用.医药论坛,2011,6:12
    [32]凌宙贵,刘卫.常见细菌耐药性机制和抗生素的应用.中华实用诊断与治疗杂志,2009,23(9):838-840
    [33]闫红叶.抗生素的耐药性与抗生素的应用.按摩与康复医学,2011,1(38):108
    [34]贾杰.抗生素的耐药性与抗生素的应用.中国热带医学,2007,7(9):1678-1680
    [35] A. R. Vasavada, D. Gajjar, S. M. Raj, et al. Comparison of2Moxifloxacin Regimens for PreoperativeProphylaxis: Prospective Randomized Triple-masked Trial. Part1: Aqueous Concentration of Moxifloxacin. Journal of cataract and refractive surgery,2008,34(8):1379-1382
    [36] K. C. Ofokansi, K. I. Chukwu, S. I. Ugwuanyi. The Use of Liquid Self-microemulsifying DrugDelivery Systems Based on Peanut oil/tween80in the Delivery of Griseofulvin. DrugDevelopment and Industrial Pharmacy,2009,35(2):185-191
    [37] R. Panchagnula, V. Bhardwaj. Effect of Amorphous Content on Dissolution Characteristics ofRifampicin. Drug Development and Industrial Pharmacy,2008,34(6):642-649
    [38] I. S. Ahmed, M. H. Aboul-Einien, O. H. Mohamed, et al. Relative Bioavailability of GriseofulvinLyophilized Dry Emulsion Tablet vs. Immediate Release Tablet: a Single-dose,Randomized, Open-label, Six-period, Crossover Study in Healthy Adult Volunteers in theFasted and Fed States. European Journal of Pharmaceutical Sciences,2008,35(3):219-225
    [39] H. Saitoh, B. J. Aungst, M. Tohyama, et al. In Vitro Permeation of Beta-lactam Antibiotics Across RatJejunum and its Correlation with Oral Bioavailability in Humans. British Journal of ClinicalPharmacol ogy,2002,54(4):445-448
    [40] S. Winstein, N. J. Holness, Neighboring Carbon and Hydrogen (XV). Solvolysis of the Nopinylp-bro mbenzenesulfonate. J Am Chem Soc,1955,77(11):3054-3061
    [41]金建忠,沈敏敏,哈成勇. β-蒎烯合成诺蒎酸的反应条件研究.林产化学与工业,2006,26(2):135-136
    [42]马世营,沈敏敏,哈成勇.均相体系中β-蒎烯氧化制备诺蒎酸.林产化学与工业,2007,27(2):114-116
    [43] H. Werner, H. J. Wahlborg. Acid-catalyzed Rearrangements of Nopinic Acid. J Org Chem,1962,27(3):1032-1034
    [44]金建忠,哈成勇. β-蒎烯合成对异丙基苯甲酸反应的研究.林产化学与工业,2006,26(3):27-30
    [45]金建忠.那格列奈合成方法研究.中国药学杂志,2007,42(12):946-948
    [46]陈家伟. Ⅱ型糖尿病降血糖药物应用的新进展.中华内分泌代谢杂志,2005,21(5):10-14.
    [47]L. Carmen, V. L. Queirroga. Three New Oxygenated Cadinanes from Baccharis Species.Phytochemistry,1996,42(4):1097-1103
    [48] H. E. Eschinazi, H. Pines. Study in the Terpene Series.(XXXI). Synthesis of Appinene by CatalyticDecarbonylation of Myrtenal. J Org Chem.,1959,24(9):1369-1369
    [49]姜红宇,哈成勇,金建忠等.用β-蒎烯为原料合成高纯度对异丙基苯酚.林产化学与工业,2004,24(4):53-55
    [50]徐克勋.有机化工原料及中间体便览.沈阳:辽宁省石油化工技术情报总站,1989:382
    [51]高锬.化学药品辞典.上海:上海科学技术出版社,1960:255
    [52] C. Herbert, Brown, A. Steven. Hydroboration(85). Synthesis and Hydroboration of (-)-2-Phenylapopinene. Comparison of Mono(2-phenylapoisopinocampheyl)Borane with its2-Methyl and2-ethyl Analo gues for the Chiral Hydroboration of Representative Alkenes. JOrg Chem.,1990,55(4):1217-1223
    [53] G. Michel, V. Z. Alex. Synthesis of Chiral Thienylpyridines from Naturally Occurring Monoterpenes:Useful Ligands for Cyclometallated Complexes. Synthesis,1996,6:702-706.
    [54] J. P. Bain, Nopol I. The Reaction of β-pinene with Formaldehyde. Journal of the American ChemicalSociety,1946,68(1):638-641
    [55]肖转泉,李竹青,陈金珠等.合成Nopol反应中主要副产物结构的分析和确认.江西师范大学学报:自然科学版,1999,23(4):360-362
    [56]易封萍,柯敏,王立升. Zn催化下的β-蒎烯与多聚甲醛的反应条件优化研究.林产化学与工业,2000,20(4):55-58
    [57]易封萍,李伟光,周永红等.密闭容器法和催化剂法合成诺卜醇的研究.广西大学大学学报:自然科学版,2001,26(2):108-111
    [58]曾庆友,曾明荣.阴离子交换树脂负载氯化锌催化合成诺卜醇.生物质化学工程,2006,40(3):6-8
    [59] G. Habar, A. Lepape, C. Descllsse. Microcapsules Containing Terpene or Abiefic Acid Derivatives asBiodegradable Solvents for Use on Chemical Copying Papers and Pressure-sensitive Papers. EP714786
    [60]徐景士,王红明,陈慧宗.纳米复合固体超强酸催化剂的制备及其在诺卜醇合成中的应用.江西师范大学学报:自然科学版,2006,27(4):286-289
    [61]刘传涛,罗金岳.微波辐射下SO2-4/TiO2-ZrO2催化合成诺卜醇.南京林业大学学报:自然科学版,2007,31(3):91-94
    [62]陆模文,胡文祥,恽榴红.有机微波化学研究进展.有机化学,1995,15(6):561-566
    [63]罗金岳,程康华,刘经诚等.淡竹叶中茶多酚的微波辅助提取.南京林业大学学报:自然科学版,2005,29(4):29-32
    [64] D. F. Zinkel, Naval Stores Production Chemistry Utilization. New York: Pulp Chemical Association Inc,1989
    [65]肖转泉,刘群芳,傅艳艳等.由β-蒎烯合成诺卜醇的反应研究.精细化工,1999,16(增刊):354-356
    [66]王宗德,肖转泉,陈金珠.诺卜醇衍生物的合成与表征.化学世界,2004,45(2):89-92
    [67]王宗德,肖转泉,陈金珠.相转移催化合成诺卜基类化合物.化学通报,2003,66(7):504
    [68] J. P. Bain, Alcohol and Esters Derived from Nopinene and Formaldehyde Polymer. US2340294
    [69]黄致喜,王慧辰.萜类香料化学.北京:轻工业出版社,1999
    [70] W. Heitmann, V. Maetzel. Preparation of cis-dihydronopol. EP406742
    [71] Z. K. MA, J. M. Bobbitt. Organic Oxoammonium Salts3. A new Convenient Method for the Oxidationof Alcohols to Aldehydes and Ketones. Journal of Organic Chemistry,1991,56(21):6110-6114
    [72] H. Firouzabadi, B. I. Mohammadpour. Zinc bismuthate Zn(BiO3)2.(I). A Useful Oxidizing Agent for theEfficient Oxidation of Organic Compounds. Bulletin of Chemical Society of Japan,1992,65(4):1131-1134
    [73] H. P. Kaufmann, H. Kirschnek. Zur kenntnis der Fettaldehyde IV: Darstellung mehrfach unges ttigterFettaldehyde, Fette, Seifen. Anstrichmittel,1958,60:12
    [74] C. Margot, M. Rizzolio, M. Sehlosser.1,2-Elimination of Alcohol from Homoallyl Ethers Under theInfluence of Mixed Metal Bases. Tetrahedron,1990,46(7):2411-2424
    [75]许戈义,李布青.合成香料产品技术手册.北京:中国商业出版社,1996
    [76]陈煜强,刘幼君.香料产品开发与利用.上海:上海科技出版社,1994
    [77] Ralf G. Berger. Method for the Production of Flavor-active Terpenes. US7803606B2
    [78] A. G. Schering.7-Mehyl-3-Vinyl-6-Oclen-1-Ol and7-Methyl-3-Ethyl-6-Octan-1-Ol. GP234900
    [79]张瑛,黄文孝.蒎烯水合制松醇油的研究.云南冶金,1985,1:25-27
    [80]李谦和,尹笃林.杂多酸催化下β-蒎烯水合反应的研究.湖南师范大学自然科学学报,1994,17(3):27-30
    [81]刘尧权,陈庆之,李允隆.丝光沸石催化下β-蒎烯水合反应的研究.林产化学与工业,1989,9(2):35-41
    [82]熊德元,刘雄民,马家孟. α-蒎烯制萜烯树脂的水效应研究.第九届全国化学工艺年会论文集,2005,1605-1609
    [83]庄海旗,李炳强,莫丽儿等.苯丙烯酸对松节油转化水合萜二醇的作用研究.化学研究与应用,1998,10(1):58-61.
    [84]顾永康.香料香精化妆品.1986,4:11.
    [85]陆铁,庄俊.香料工业.1984,1:1.
    [86]商士斌,谢晖,黄焕等.松节油改性聚氨醋涂料的合成研究.林产化学与工业,2001,21(4):16-20
    [87]陈健,黄力堆,黄茂村等.一种新型松节油系列单组分聚氨醋的研究.三明高等专科学校学报,2001,18(3):35-39
    [88]夏忠弟,毛学政,罗映辉. α-蒎烯抗真菌机制的研究.湖南医科大学学报,1999,24(6):507-509
    [89] S. Yoshinori, W. Keisuke, S. Hiroko, et al. Insect Repellents. EP0476885
    [90] S. Yoshinori, W. Keisuke, S. Hiroko, et al. Monoterpenediol Insect Repellents. US5130136
    [91]孙汉董,丁靖凯,李顺林. d-8-酰氧基别二氢葛缕酮类化合物及其合成方法. CN1105658
    [92]王宗德,陈金珠,宋湛谦,等.8-羟基别二氢葛缕醇甲酸酯及其合成方法和用作驱避剂. CN1730459
    [93] E. Paruch, Z. Cliunik, J. Nawrot, et al. Lactones9. Synthesis of Terpenoid Lactones Active InsectAntifeedants. Journal of Agriculture and Food Chemistry,2000,48:4973-4977
    [94] E. Paruch, J. Nawrot, Z. Cliunik, et al. Lactones: Part11. Feeding-deterrent Activity of some Bi-andTricyclic Terpenoid Lactones. Pest Management Science,2001,57:776-780
    [95] R. Samarasekera, I. S. Weerasinghe, KD. P. Hemalal. Insecticidal Activity of MentholderivativesAgainst Mosquitoes. Pest Management Science,2008,64:290-295
    [96] E. A. Martinuzz, J. C. Aragon, Process of Producing Insecticidal Chlorinated Pinenes. US3112347
    [97] J. T. Smith. Chlorination of Turpentine. US3287241
    [98]赵振东,刘先章.松节油的精细化学利用(Ⅵ)-松节油合成农用及家用生物活性物.林产化工通讯,2001,35(6):41-45
    [99]周永红,王延,宋湛谦. α-蒎烯合成杀虫增效剂的研究.林产化学与工业,1998,18(1):1-11
    [100] B. V. Schmeling, M. Kulka. Systemic Fungicidal Activity of1,4-Oxathiin Derivation. Science.1966,152(3722):659-660
    [101] E. H. Pommer, B. Girgensohn, K. H. Koning, et al. Development of New Systemic Fungicides withCarboxamide Structure. Kemia-Kemi.1974, l(9):617-618
    [102] G. H. Alt, W. G. Phillips, J. K. Pratt, et al. Substituted Thiazoles and their Use as Fungicides. US0371950
    [103] K. Yabutani, K. Ikeda, S. Hatta. Fungicidal Benzoylanilide Derivatives. DE2731522
    [104] X. P. Rao, Z. Q. Song, Z. D. Wang, et al. QSAR Study of SMMC7721Inhibitors from Diterpenoidswith a Dehydroabietyl Skeleton. Lett. Drug. Des. Disvcov.2012,9(2):177-184
    [105]尹延柏,宋湛谦,王宗德等.蒎酮酰芳胺衍生物的合成.现代化工,2007,11:37-39
    [106]尹延柏,宋湛谦,王宗德等.蒎酮酰胺衍生物的合成.现代化工,2008,8:53-55
    [107] J. Li, X. P. Rao, S. B. Shang, et al. Synthesis and Antibacterial Activity of Amide Derivatives fromAcrylopimaric Acid. Bioresources.2012,7(2):1961-1971
    [108]王宗德,姜志宽,宋湛谦.萜类驱避剂的研究与合成分析.中华卫生杀虫药械,2004,10(1):37-40
    [109]王宗德,陈金珠,宋湛谦等.四元环萜类化合物的合成及其趋蚊活性的初步研究.江西农业大学学报,2006,28(3):347-349
    [110]尹延柏.蒎酮酸衍生物的合成、表征及生物活性研究.中国林业科学研究院博士论文,2009,1-128
    [111]吕献海,张袖丽,唐文明.肉桂酰基硫脲衍生物的合成及杀菌活性.应用化学,2008,25(11):1286-1289
    [112]胡昌秋,秦敬东,胡冰等. N-(3-氟苯甲酰基)-N′-芳基硫脲衍生物的合成及其生物活性.合成化学,2010,18(1):44-47
    [113] G. Y. Jin, Y. C. Li, Z. F. Liu, et al. Synthesis and Biological Activity of Oximino-PhosphorothioateContaining1,2,4-Triazole. Chin. J. Appl. Chem.1997,14(6):5-8
    [114] C. Josep, T. Yudelsy, Isolation and Identifcation of neo-clerodane Diterpenes from Ajuga Remota byHigh-performance Liquid Chromatography. Phytochem. Analysis,2005,16(1):67-70
    [115] S. Kumar, R. N Singh. Ovicidal Action of Certain Pesticides against Eggs of two Spotted Mite,Tetranychus Urticae Koch under Laboratory Condition. Resistant Pest Management Newsletter,2004,4(1):8-9
    [116] J. Li, X. P. Rao, S. B. Shang, et al. Synthesis and Antibacterial Activity of Oxime Ester DerivativesContaining16-isopropyl-5,9-dimethyl tetracyclo [10.2.2.01,10.04,9] Hexadec-15-ene-5,14-dicarboxylgroup. J. Chem. Soc. Pak,2012,34(1):217-222
    [117] T. G. Li, J. P. Liu, J. T. Han, et al. Synthesis and Herbicidal Activity of α-phenylsulfonyl-Cyclododec anone Oxime Esters. Chin. J. Org. Chem,2009,29(6):898-903
    [118] X. H. Liu, L. P. Zhi, B. A. Song, et al. Synthesis, Characterization and Antibacterial Activity of5-arylPypazole Oxime Esters Derivatives. Chemical Research in Chinese Universities,2008,24(4):454-458
    [119] J. A. Ma, R.Q. Huang, Y. X. Chai. Synthesis and Insecticidal Activities of new Pyrethroid Acid OximeEster Derivatives. Progress in Natural Science,2002,12(4):271-277
    [120] C. C. Mies, P. A. Blanc. Campholinic Aldehyde Derivatives, Process for their Preparation and theirUse as Perfuming Ingredients. US5696075
    [121] E. Paruch, J. Nawrot, C. Wawrzenczyk. Lactones: Part11. Feeding-deterrent Activity of some Bi-andTricyclic Terpenoid Lactones. Pest Manag. Sci,2001,57(9):776-780
    [122] J. H. Paul. Phenyl cyclopropyl ketone insecticides. US4206230A
    [123]黄润秋,农药.1984,23:6.
    [124]刘长令,汪灿明.杀菌剂啶斑肟合成方法述评.浙江化工,1997,2:8-10
    [125]黄润秋,李慧英,马军安等.4-肟醚基喹唑啉类化合物的合成及其抗植物病毒TMV活性高等学校化学学报,1996,17(4):571-574.
    [126]候学太,陈昶,梁晓梅等.(E)-O-芳酰基-α-氧代环十二酮肟的合成及除草活性.农药学学报,1999,1(1):40-44
    [127]候仲轲,张立杰,盛书祥等.萜烯肟醚衍生物的合成及生物活性研究.浙江化工,2000,31(S):13-16
    [128] D. Pandey, S. B. Katti, W. Haq, et al. Synthesis and antimicrobial activity of erythromycin-A oximeanalogs. bioorg,med. Chem.2004,12(4):3807-3813
    [129]李再峰,罗富英. E-Z-2-(1-咪唑基)-O-(α-甲基-二氯苄基)-2,4-二氯苯乙酮肟硝酸盐的合成与抑菌活性.应用化学,2001,18(6):473-476
    [130] R. Ross. Aryl and heteroarylcyclopropyl oxime ethers and their use as fungicides and insecticides.EP1120403A2
    [131] G. Ayhan-Kilcigil, C.Bozdag, M. Tuncbilek, et al. Pharmazie,1999,54:228
    [132] D. Pitarokili, M. Couladis, N. Petsikos-Panayotarou, et al. Composition and Antifungal Activity onSoil-borne Pathogens of the essential Oil of Salvia Sclarea from Greece. J. Agric. Food Chem,2002,50(23):6688-6691
    [133] R. K. Satdive, D. P. Fulzele, S. Eapen. Enhanced Production of Azadirachtin by Hairy root Cultures ofAzadirachta Indica A. Juss by Elicitation and Media Optimization. J. Biotechnol,2007,128(2):281-289
    [134] M. R. J. Salton, K. S. Kim. Structure in: Baron's Medical Microbiology.4th ed. University of TexasMedical Branch,1996
    [135] V. Stefan, P. Kathleen, P. Muriel, et al. Inhibition of Cellobiohydrolases from Trichoderma reesei.Synthesis and Evaluation of Some Glucose-, Cellobiose-, and Cellotriose-derivedHydroximolactams and Imidazoles. Helvetica Chimica Acta,1999,82(7):963-908
    [136] M. B. Steven, B. Frank, C. Frederick, et al. Design of [R-(Z)]-(+)-α-(methoxyimino)-1-azabicyclo
    [2.2.2] octane-3-acetonitrile (SB202026), a Functionally Selective Azabicyclic Muscarinic M1AgonistIncorporating the N-Methoxy Imidoyl Nitrile Group as a Novel Ester Bioisostere. J. Med. Chem,1997,40(26):4265-4280
    [137] W. Thorsell, H. Tunon. Ortho Hydroxy-substituted Molecules might be of Importance for thePrevention of Bloodsucking by Mosquitos. Phytomedicine,1998,5(4):307-310
    [138] E. H. Uhing, Nebr. Omaha. Reaction Products of Polycyclic Olefins with P.sub.4S.sub.10and PSX.sub.3. US4758684
    [139]芮云峰,陈小龙,熊智强等.马来酸酯类物质的合成及其抑菌活性研究.浙江农业科学,2011,4:871-874
    [140]金侃华,陈小龙.含顺丁烯二酸酐结构化合物抑制黑曲霉性能的研究.安徽农业科学,2009,37(21):9857-9858
    [141]何其能,孟昭赫,赵学文等.新型防霉剂-富马酸二甲酯(一)、(二).湖南化工,1989(3):30-34
    [142]樊素芳,徐翠莲,王彩霞等.新型食品饲料防霉剂富马酸二甲酯的一锅合成法.郑州粮食学院学报,2000,21(2):38-40
    [143]陈刚,周玲妹,徐翠莲等.微波辐射一步法合成富马酸二乙酯的研究.河南科学,2006,24(5):655-656
    [144]王天贵,李强,余锡孟.马来酸二甲酯合成新工艺研究Ⅲ:铁、镁改性沸石催化酯化反应研究.化学工程师,2010,4:13-16
    [145]周永红,谢晖,宋湛谦.松节油酰亚胺的合成、鉴定及杀虫增效活性.林产化学与工业,2001,21(3):6-10.
    [146]沈萍,陈向东.微生物学.北京:高等教育出版社,2006:39-97.
    [147]李来才,唐作华.三种单环β-内酰胺抗生素分子药性机理的理论研究.化学物理学报,2000,13(1):61-65
    [148]张凤凯,金少鸿. β-内酰胺类抗生素的作用靶位-青霉素结合蛋白.国外医药:抗生素分册,2000,21(3):107-110
    [149]孙长贵,陈汉美.超广谱β-内酰胺酶研究进展.国外医药:抗生素分册,2000,21(3):111-115
    [150]杨小勇. β-内酰胺类药物的临床应用及抗生素基本常识.兽医导刊,2012,8:40-41
    [151]王学文. β-内酰胺抗生素的新进展.实用内科杂志,1989,9(12):664-666
    [152]杨频,张士国.青霉烯类β-内酰胺抗生素构效关系的理论研究.中国抗生素杂志,1990,15(4):257-260
    [153]尹述凡,毛文仁. β-内酰胺类抗生素分子作用机制与模式的研究概况.国外医药:抗生素分册,1989,10(2):99-104
    [154]刘浚,韩红娜.青霉烯类β-内酰胺抗生素的研究进展.四川生理科学杂志,2000,22(4):16-17
    [155]张致平. β-内酰胺类抗生素研究的进展.中国抗生素杂志,2000,25(2):81-86
    [156]张致平. β-内酰胺类抗生素研究的进展(Ⅱ).中国抗生素杂志,2000,25(3):233-237,239
    [157]徐能武,袁建成. β-内酰胺类抗生素诱导革兰氏阴性菌释放内毒素.中国抗生素杂志,2000,25(2):112-116
    [158]魏衍超,何志明.革兰阴性杆菌对头孢吡肟广谱β-内酰胺类抗生素的耐药性.中华检验医学杂志,2000,23(2):115-116
    [159]孙长贵,舒建.超广谱β-内酰胺酶大肠埃希菌对19种抗生素的耐药性.中华检验医学杂志,2000,23(1):43-44
    [160]吴红,王洪涛.幽门螺杆菌对抗生素的敏感性及细胞毒素相关蛋白A基因检测.临床消化病杂志,2000,12(5):195-197
    [161]王瑛瑛,陈媛,陈宇瑛.新型四环素类抗生素-amadacycline的合成方法进展.中国抗生素杂志,2012,37(12):896-898,939
    [162]王秋霞,赵刚,吴洪涛等.四环素的研究进展.现代畜牧兽医,2012,10:67-68
    [163]王丽娅,徐明娟,吴薇.多西环素抗肿瘤作用机制的研究进展.医学研究杂志,2012,41(8):14-16
    [164] W. L. Zheng, L. F. Zhang, K. Y. Zhang, et al. Determinati of Tetracyclines and their Epimers inAgricultural Soil Fertilized with Swine Manure by Ultrahighperformance LiquidChromato graphy Tandem Mass Spectrometry. Agricultural Sciences in China,2012,11(7):1189-1198
    [165] Y. S. Chen, H. B. Zhang, Y. M. Luo, et al. Occurrence and Assessment of Veteri nary Antibiotics inSwine Manures: A case study in East China. Chinese Science Bulletin,2012,57(6):606-614
    [166] P. Wang, X. F. Fu, J. Li, et al. Preparation of Hydrophilic Molecularlyimprinted Polymers forTetracycline Antibiotics Recognition. Chinese Chemical Letters,2011,22(5):611-614
    [167]于洋,曹飞飞,陈小龙.糖基转移酶的性质、作用机制及其在抗生素中的应用.中国抗生素杂志,2013,38(2):90-97
    [168]李凤华,肖显悦,江国托.氨基糖苷类药物在兽医临床上的应用及研究现状.黑龙江畜牧兽医,2012,10:37-39
    [169]武灵芝,胡栋,秦猛.氨基糖苷类修饰酶引起的细菌耐药性机制的研究进展.生物物理学报,2013,1:15-25
    [170]L. Z. Wu, D. Hu, L. H. Tang, et al. Thermody namical Properties of Protein Kinase with AdenineInhibitors. Chinese Science Bulletin,2013,1:68-73
    [171]李喆宇,崔玉彬,张静霞等.大环内酯类抗生素的研究新进展.国外医药:抗生素分册,2013,1:6-15
    [172]郭强,马淑涛.大环内酯类抗生素糖基的结构修饰.中国抗生素杂志,2013,38(1):12-21
    [173]刘耀川.细菌对大环内酯类药物耐药机制简介.现代畜牧兽医,2012,10:52-53
    [174]张骏梁,顾觉奋.治疗耐药细菌:一类新型的抗生素-逆转抗生素.国外医药:抗生素分册,2013,1:45-46
    [175]李辽闽.抗菌药氟喹诺酮的药理特性.中国医药指南,2012,36:642-643
    [176]许瑞.喹诺酮类药物的最新研究进展.兽药市场指南,2012,11:13-14
    [177]尚忠波,刘敏,黄俊伟等.多重耐药大肠埃希菌临床株质粒介导的喹诺酮类耐药机制研究.中华检验医学杂志,2012,12:1206-1208
    [178]崔玉彬,曹胜华,蒋晓磊.抗结核药物的研究新进展.中国抗生素杂志,2010,35(5):321-333
    [179]王道国,余辉山.抗结核药物的药理作用与用药方案.医药导报,2012,31(3):317-321
    [180]仇明华,谢文林,刘凤萍等.一种磺酰胺类碳酸酐酶Ⅱ抑制剂3D-QSAR分析新方法.化学学报,2010,68(24):101-109
    [181]郝建伟,毛晓鹏,丁德刚等. ABT-737与多西他赛杀伤前列腺癌PC-3细胞的协同作用研究.中华外科杂志,2012,50(2):161-164
    [182]鞠海青.临床使用抗生素不合理的原因及应对措施.中外医疗,2008,27(25):160
    [183]马寅姣,宋沁馨,顾觉奋.抗生素筛选方法.中国抗生素杂志,2010,35(9):654-658
    [184]罗萍.多重细菌耐药性治疗的研究现状.健康必读(下旬刊),2011(3):325
    [185]罗亚丽,周淑芬.后抗生素时代医学的沉思.临床合理用药杂志,2011,4(27):1-2
    [186]横田健,许铁男.抗生素及合成抗菌剂的研究进展.药学进展,1991,15(1):27-30

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700