Nanog在胚胎干细胞自我更新中的作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎干细胞(embryonic stem cells,ES cells)是一群具有多向分化潜能的细胞,发育上的全能性赋予其在临床上广泛的应用前景。对胚胎干细胞全能性机制的研究是其在临床上得以应用的前提和基础。Nanog是2003年新发现的一个转录因子,特异性的表达于全能性细胞中,研究发现Nanog在胚胎干细胞的全能性维持、早期分化以及成体细胞的去分化过程中起至关重要的作用,但是其具体的作用机制现在仍未阐明。本研究旨在通过研究Nanog的下游靶基因、上游信号转导通路调控、以及其是否参与成体细胞的去分化过程来阐明Nanog在胚胎干细胞自我更新中的作用机制。
     本研究的第一部分旨在研究胚胎干细胞中受Nanog表达调控的相关基因。Nanog作为一个转录因子通过调控下游基因的表达来发挥作用,对这些基因的分析研究能够更好地了解Nanog在胚胎干细胞中的作用机制。我们采用RNA干扰(RNA interference,RNAi)的方法特异性的降低胚胎干细胞中Nanog的表达,为了得到有效的干扰片断,我们设计合成了四个特异性的Nanog干扰片断以及一个阴性对照片断。从中筛选得到一个高效的干扰片断Nanog-siRNA-P1,Western-Blot和Real-Time PCR分析结果显示Nanog-siRNA-P1对Nanog表达的抑制效率可达90%。Nanog表达降低后,胚胎干细胞呈现分化特征,并伴随着细胞增殖能力下降。在用RNA干扰方法沉默Nanog表达24h和48h后,采用表达谱芯片筛选变化基因。我们认为这些差异表达基因为Nanog的相关下游靶基因,对这些基因的进一步研究分析将有助于我们了解Nanog在ES细胞全能性维持中的作用机制。
     在本研究的第二部分中,我们观察了PI3K信号转导通路对胚胎干细胞自我更新能力以及Nanog表达的影响。首先,我们观察到利用PI3K信号通路特异性的抑制剂LY294002特异性地抑制PI3K通路的激活后,ES细胞呈现明显的分化状态,Nanog表达下降。为了了解PI3K信号通路在ES细胞自我更新中的作用是否是通过调节Nanog的表达介导的,我们构建了Nanog-GFP融合蛋白表达载体,并转染ES细胞,G418筛选后得到过表达Nanog的ES细胞(Ex-Nanog-J1)。结果表明Nanog的过表达可以使小鼠的ES细胞在无LIF条件下保持不分化状态,并可以减弱由于LY294002所引起的ES细胞分化,但是外源性的Nanog并不能完全逆转这一分化作用。
     本研究的第三部分中我们观察了Nanog在成体细胞去分化中的作用。大家都知道胚胎干细胞可以在适宜的条件下向三个胚层的各种组织细胞分化,成体细胞也可以通过细胞融合(cell fusion)以及成体细胞核移植(somatic cells nucleartransfer,SCNT)的方法去分化到多能性干细胞阶段。Nanog特异性的表达于胚胎干细胞中,并且在胚胎干细胞的多能性维持中也起重要作用,那么,Nanog是否参与成体细胞的去分化过程呢?为了研究Nanog在成体细胞去分化中的作用,我们构建了Nanog-GFP融合蛋白表达载体,并转染3T3细胞,G418筛选得到表达Nanog的3T3细胞,观察到外源性Nanog特异性的表达于3T3细胞的细胞核中,这与Nanog在胚胎干细胞中的表达定位相同。继而我们观察了表达Nanog的3T3细胞是否向着全能性细胞转化,镜下观察其细胞形态并没有显著的变化,细胞周期检测Nanog可以提高3T3细胞的S期降低G0/G1期和M期,可以激活Oct4的表达,但是却未检测到其它的ES细胞相关基因Sox2、Utf1、Ets2的表达。这些表明Nanog在成体细胞去分化过程中,可能会起一定的作用,但是单纯的Nanog过表达并不足以使成体细胞去分化到全能性细胞阶段。
     通过该项研究我们发现:Nanog在胚胎干细胞的自我更新过程中起至关重要的作用,作为一个转录因子Nanog通过促进全能性相关基因的表达以及抑制分化相关基因的表达来维持ES细胞的不分化状态;PI3K信号通路参与胚胎干细胞全能性的维持,利用LY294002(PI3K通路特异性的抑制剂)抑制PI3K通路后诱导ES细胞分化。外源性地过表达Nanog会削弱由于LY294002引起的分化,但是却不能完全逆转这一分化作用,这表明PI3K信号通路在ES细胞中的作用只有一部分是通过调节Nanog的表达来介导;Nanog在成体细胞的去分化过程中起一定的作用,但是单纯的Nanog过表达并不足以使成体细胞去分化到全能性干细胞阶段。
Embryonic stem cells (ES cells) have two defining properties, self-renewal and pluripotency, which makes them very attractive in clinic. Fully understanding of the mechanism involved in the pluripotency and early differentiation is essential for achieving these goals. Nanog, a homeodomain-containing transcription factor, was found at 2003 and specially expressed in pluripotency cells. Nanog plays important roles in ES cells pluripotency, early differentiation and somatic cells dedifferentiation. But its mechanism is not well elucidated. Here, we aimed to illustrate the mechanism of Nanog in embryonic stem cells by studying the target genes, the related signaling pathway and the effect in the somatic cells dedifferentiation.
     The purpose of the first part of this paper is to investigate the target genes which be regulated by Nanog. Nanog, as a transcription factor, produces effects by regulating target genes expression. The information about these target genes is helpful for us to well known the mechanism of Nanog in embryonic stem cells self-renewal. Here, we aim to investigate the genes possibly participating in the course of self-renewal regulated by Nanog by combining RNA interference and microarray detection method. In order to down-regulate Nanog expression efficiently, four siRNAs were designed on the basis of the conserved Nanog sequence and their effects on the Nanog expression were tested by Western-Blot and Real-Time PCR. Among these four siRNAs, Nanog-siRNA-P1 was found to be most effective. The interference efficience was up to 90%. Once Nanog was down-regulated, ES cells underwent differentiation by showing morphological change and decreased proliferation rate. Microarray analysis was then used to identify the altered gene expression at 24 or 48 hours after Nanog was silenced. These changed genes in our experiment were considered as the result of Nanog downregulation, and this would help us to known better the mechanism of Nanog in the pluripotency of ES cells. In the second part, we investigated the effect of PI3K signaling transduction pathway on ES cells self-renewal and Nanog expression. We found that LY294002, a specific inhitor of PI3K pathway, induced mouse ES cells differentiation and decreased Nanog expression. To investigate the mechanism of PI3K signaling on ES cells self-renewal, we constructed a Nanog-GFP fusion protein expression plasmid, and then trasfected ES cells. After G418 selection, we got Nanog-overexpressing ES cells (Ex-Nanog-J1). Exogenous Nanog sustained mouse ES cells pluripotency independent of LIF, and alleviates the differentiation induced by LY294002. But it was insufficient to totally reverse the differentiation.
     In the third part, we tried to investigate the effect of Nanog in somatic cells dedifferentiation (reprogramming). We all know that ES cells have the ability to differentiate into all kind cells and tissues of three germinal layers. And, somatic cells can be dedifferentiated to stem cells by cell fusion and somatic cells nuclear transfer (SCNT). Nanog is expressed specifically in embryonic stem cells, and plays an important role in embryonic stem cells self-renewal. Then, we want to know the effect of Nanog in somatic cells dedifferentiation. To investigate the effect of Nanog in somatic cells dedifferentiation, we constructed Nanog-GFP fusion protein expression vector and then transfected it to 3T3 cells. After G418 selection, we got Nanog-expressing 3T3 cells. We observed that Nanog was located in 3T3 cells nuclear, which was similar with the location of Nanog in embryonic stem cells. Then we investigated if the 3T3 cells with Nanog-overexpression could dedifferentiate. There was no significant differentiation in the cells morphology. Cell cycle results showed that S phase was increased and G0/G1 phase and M phase were decreased in 3T3 cells with Nanog expression compared with wild-type 3T3 cells. Furthermore, we observed that Oct4 expressed in 3T3 cells with exogenous Nanog. But, other ES cells specific genes, such as Sox2, Utf1, and Ets2 were not detected in 3T3 cells with Nanog overexpression. All of these evidences indicated that Nanog might take part in the somatic cells dedifferentiation. But only exogenous Nanog was insufficient to promote somatic cells dedifferentiated totally.
     This investigation shows that Nanog plays a key role in ES cells self-renewal. Nanog, as a transcription factor, sustains ES cells undifferentiated state by activating pluripotency related genes expression and repressing differentiation related genes expression. PI3K signaling pathway plays a significant role in embryonic stem cells self-renewal. LY294002, a specific inhibitor of PI3K signaling, induced ES cells differentiation. Exogenous Nanog alleviates the differentiation induced by LY294002. But it's insufficient to totally reverse the differentiation. So, we think that the PI3K-dependent regulation of ES cells self-renewal is partially mediated by regulated Nanog expression. Nanog is helpful for somatic cells dedifferentiation but only Nanog overexpression was insufficient to induced somatic cells to pluripotency cells.
引文
1. Evans, M.J. and M.H. Kaufman, Establishment in culture of pluripotential cells from mouse embryos. Nature, 1981.292(5819): p. 154-6.
    
    2. Martin, G.R., Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci U S A, 1981. 78(12): p. 7634-8.
    
    3. Thomson, J.A., et al., Embryonic stem cell lines derived from human blastocysts. Science, 1998. 282(5391): p. 1145-7.
    
    4. Smith, A., Cell therapy: in search of pluripotency. Curr Biol, 1998. 8(22): p.R802-4.
    
    5. Reubinoff, B.E., et al., Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat Biotechnol, 2000. 18(4): p. 399-404.
    
    6. Smith, A.G., et al., Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988. 336(6200): p. 688-90.
    
    7. Williams, R.L., et al., Myeloid leukaemia inhibitory factor maintains the developmental potential of embryonic stem cells. Nature, 1988. 336(6200): p.684-7.
    
    8. Cartwright, P., et al., LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 2005. 132(5): p.885-96.
    
    9. Boeuf, H., et al., Leukemia inhibitory factor-dependent transcriptional activation in embryonic stem cells. J Cell Biol, 1997. 138(6): p. 1207-17.
    
    10. Niwa, H., et al., Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev, 1998. 12(13): p. 2048-60.
    
    11. Matsuda, T., et al., STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J, 1999. 18(15):p. 4261-9.
    
    12. Daheron, L., et al., LIF/STAT3 signaling fails to maintain self-renewal of human embryonic stem cells. Stem Cells, 2004. 22(5): p. 770-8.
    
    13. Humphrey, R.K., et al., Maintenance of pluripotency in human embryonic stem cells is STAT3 independent. Stem Cells, 2004. 22(4): p. 522-30.
    14. Sumi, T., et al., STAT3 is dispensable for maintenance of self-renewal in nonhuman primate embryonic stem cells. Stem Cells, 2004. 22(5): p. 861-72.
    
    15. Nichols, J., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998. 95(3): p.379-91.
    
    16. Niwa, H., J. Miyazaki, and A.G. Smith, Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet,2000. 24(4): p. 372-6.
    
    17. Avilion, A.A., et al., Multipotent cell lineages in early mouse development depend on SOX2 function. Genes Dev, 2003. 17(1): p. 126-40.
    
    18. Palmqvist, L., et al., Correlation of murine embryonic stem cell gene expression profiles with functional measures of pluripotency. Stem Cells, 2005.23(5): p. 663-80.
    
    19. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-55.
    
    20. Mitsui, K., et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003. 113(5): p. 631-42.
    
    21. Li, Y., et al., Murine embryonic stem cell differentiation is promoted by SOCS-3 and inhibited by the zinc finger transcription factor Klf4. Blood, 2005.105(2): p. 635-7.
    
    22. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006.126(4): p. 663-76.
    
    23. Nguyen, H., M. Rendl, and E. Fuchs, Tcf3 governs stem cell features and represses cell fate determination in skin. Cell, 2006. 127(1): p. 171-83.
    
    24. Ying, Q.L., et al., BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell,2003. 115(3): p. 281-92.
    
    25. Hamazaki, T., et al., The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. Mol Cell Biol, 2006. 26(20): p. 7539-49.
    
    26. Li, J., et al., MEK/ERK signaling contributes to the maintenance of human embryonic stem cell self-renewal. Differentiation, 2007. 75(4): p. 299-307.
    
    27. Mercer, K., et al., ERK signalling and oncogene transformation are not impaired in cells lacking A-Raf. Oncogene, 2002. 21(3): p. 347-55.
    
    28. Kielman, M.F., et al., Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nat Genet, 2002. 32(4): p.594-605.
    
    29. Sato, N., et al., Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Nat Med, 2004. 10(1): p. 55-63.
    
    30. Miyabayashi, T., et al., Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proc Natl Acad Sci U S A, 2007.104(13): p. 5668-73.
    
    31. Paling, N.R., et al., Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. J Biol Chem, 2004. 279(46): p.48063-70.
    
    32. Watanabe, S., et al., Activation of Akt signaling is sufficient to maintain pluripotency in mouse and primate embryonic stem cells. Oncogene, 2006.25(19): p. 2697-707.
    
    33. Liu, N., et al., Molecular mechanisms involved in self-renewal and pluripotency of embryonic stem cells. J Cell Physiol, 2007. 211(2): p. 279-86.
    
    34. Pan, G. and D. Pei, The stem cell pluripotency factor NANOG activates transcription with two unusually potent subdomains at its C terminus. J Biol Chem, 2005. 280(2): p. 1401-7.
    
    35. Zaehres, H., et al., High-efficiency RNA interference in human embryonic stem cells. Stem Cells, 2005. 23(3): p. 299-305.
    
    36. Ivanova, N., et al., Dissecting self-renewal in stem cells with RNA interference. Nature, 2006. 442(7102): p. 533-8.
    
    37. Darr, H., Y. Mayshar, and N. Benvenisty, Overexpression of NANOG in human ES cells enables feeder-free growth while inducing primitive ectoderm features. Development, 2006. 133(6): p. 1193-201.
    
    38. Hamazaki, T., et al., Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J Cell Sci, 2004. 117(Pt 23):p. 5681-6.
    
    39. Li, Z.J., et al., Kinetic expression of platelet endothelial cell adhesion molecule-1 (PECAM-1/CD31) during embryonic stem cell differentiation. J Cell Biochem, 2005. 95(3): p. 559-70.
    
    40. Elbashir, S.M., et al., Analysis of gene function in somatic mammalian cells using small interfering RNAs. Methods, 2002. 26(2): p. 199-213.
    
    41. Cullen, B.R., Enhancing and confirming the specificity of RNAi experiments.Nat Methods, 2006. 3(9): p. 677-81.
    
    42. Elbashir, S.M., et al., Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature, 2001. 411(6836): p. 494-8.
    
    43. Patterson, T.A., et al., Performance comparison of one-color and two-color platforms within the Micro Array Quality Control (MAQC) project. Nat Biotechnol, 2006. 24(9): p. 1140-50.
    
    44. Van Gelder, R.N., et al., Amplified RNA synthesized from limited quantities of heterogeneous cDNA. Proc Natl Acad Sci U S A, 1990. 87(5): p. 1663-7.
    
    45. Yang, Y.H., et al., Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation.Nucleic Acids Res, 2002. 30(4): p. e15.
    
    46. Tusher, V.G., R. Tibshirani, and G. Chu, Significance analysis of microarrays applied to the ionizing radiation response. Proc Natl Acad Sci U S A, 2001.98(9): p. 5116-21.
    
    47. Eisen, M.B., et al., Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14863-8.
    
    48. Matoba, R., et al., Dissecting Oct3/4-regulated gene networks in embryonic stem cells by expression profiling. PLoS ONE, 2006. 1: p. e26.
    
    49. Pereira, L., F. Yi, and B.J. Merrill, Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol, 2006. 26(20): p.7479-91.
    
    50. Tan, S.M., et al., A UTF1-based selection system for stable homogeneously pluripotent human embryonic stem cell cultures. Nucleic Acids Res, 2007. 35(18):p.e118.
    
    51. Fujikura, J., et al, Differentiation of embryonic stem cells is induced by GATA factors. Genes Dev, 2002. 16(7): p. 784-9.
    
    52. Ahn, J.I., et al., Comprehensive transcriptome analysis of differentiation of embryonic stem cells into midbrain and hindbrain neurons. Dev Biol, 2004.265(2): p. 491-501.
    
    53. Vernay, B., et al., Otx2 regulates subtype specification and neurogenesis in the midbrain. J Neurosci, 2005. 25(19): p. 4856-67.
    
    54. Tabibzadeh, S. and A. Hemmati-Brivanlou, Lefty at the crossroads of "sternness" and differentiative events. Stem Cells, 2006. 24(9): p. 1998-2006.
    
    55. Sekkai, D., et al., Microarray analysis of LIF/Stat3 transcriptional targets in embryonic stem cells. Stem Cells, 2005. 23(10): p. 1634-42.
    
    56. Molenaar, M, et al., XTcf-3 transcription factor mediates beta-catenin-induced axis formation in Xenopus embryos. Cell, 1996. 86(3): p. 391-9.
    
    57. Babaie, Y., et al., Analysis of Oct4-dependent transcriptional networks regulating self-renewal and pluripotency in human embryonic stem cells. Stem Cells, 2007. 25(2): p. 500-10.
    
    58. Jirmanova, L., et al., Differential contributions of ERK and PI3-kinase to the regulation of cyclin D1 expression and to the control of the G1/S transition in mouse embryonic stem cells. Oncogene, 2002. 21(36): p. 5515-28.
    
    59. Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-56.
    
    60. Loh, Y.H., et al., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006. 38(4): p.431-40.
    
    61. Orkin, S.H., Chipping away at the embryonic stem cell network. Cell, 2005.122(6): p. 828-30.
    
    62. Fire, A., et al., Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature, 1998. 391(6669): p. 806-11.
    
    63. Sharp, P.A. and P.D. Zamore, Molecular biology. RNA interference. Science,2000. 287(5462): p. 2431-3.
    64. Bosher, J.M. and M. Labouesse, RNA interference: genetic wand and genetic watchdog. Nat Cell Biol, 2000. 2(2): p. E31-6.
    
    65. Marx, J., Interfering with gene expression. Science, 2000. 288(5470): p.1370-2.
    
    66. Hyslop, L., et al., Downregulation of NANOG induces differentiation of human embryonic stem cells to extraembryonic lineages. Stem Cells, 2005.23(8): p. 1035-43.
    
    67. Hough, S.R., et al., Differentiation of mouse embryonic stem cells after RNA interference-mediated silencing of OCT4 and Nanog. Stem Cells, 2006. 24(6):p. 1467-75.
    
    68. Nolden, L., et al., Site-specific recombination in human embryonic stem cells induced by cell-permeant Cre recombinase. Nat Methods, 2006. 3(6): p.461-7.
    
    69. Xu, R.H., et al., Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods, 2005. 2(3): p.185-90.
    
    70. Hallmann, D., et al., Altered signaling and cell cycle regulation in embryonal stem cells with a disruption of the gene for phosphoinositide 3-kinase regulatory subunit p85alpha. J Biol Chem, 2003. 278(7): p. 5099-108.
    
    71. Pyle, A.D., L.F. Lock, and P.J. Donovan, Neurotrophins mediate human embryonic stem cell survival. Nat Biotechnol, 2006. 24(3): p. 344-50.
    
    72. Takahashi, K., M. Murakami, and S. Yamanaka, Role of the phosphoinositide 3-kinase pathway in mouse embryonic stem (ES) cells. Biochem Soc Trans,2005. 33(Pt 6):p. 1522-5.
    
    73. Armstrong, L., et al., The role of PI3K/AKT, MAPK/ERK and NFkappabeta signalling in the maintenance of human embryonic stem cell pluripotency and viability highlighted by transcriptional profiling and functional analysis. Hum Mol Genet, 2006.15(11): p. 1894-913.
    
    74. Storm, M.P., et al., Regulation of Nanog expression by phosphoinositide 3-kinase-dependent signaling in murine embryonic stem cells. J Biol Chem,2007. 282(9): p. 6265-73.
    
    75. Burdon, T., et al., Signaling mechanisms regulating self-renewal and differentiation of pluripotent embryonic stem cells. Cells Tissues Organs, 1999.165(3-4): p. 131-43.
    
    76. Burdon, T., et al., Suppression of SHP-2 and ERK signalling promotes self-renewal of mouse embryonic stem cells. Dev Biol, 1999. 210(1): p. 30-43.
    
    77. Yoshida, K., et al., Maintenance of the pluripotential phenotype of embryonic stem cells through direct activation of gp130 signalling pathways. Mech Dev,1994. 45(2): p. 163-71.
    
    78. Ernst, M., et al., The carboxyl-terminal domains of gp130-related cytokine receptors are necessary for suppressing embryonic stem cell differentiation.Involvement of STAT3. J Biol Chem, 1999. 274(14): p. 9729-37.
    
    79. Rose-John, S., GP130 stimulation and the maintenance of stem cells. Trends Biotechnol, 2002. 20(10): p. 417-9.
    
    80. Suzuki, A., et al., Nanog binds to Smadl and blocks bone morphogenetic protein-induced differentiation of embryonic stem cells. Proc Natl Acad Sci U S A, 2006. 103(27): p. 10294-9.
    
    81. Wilmut, I., et al., Viable offspring derived from fetal and adult mammalian cells. Nature, 1997. 385(6619): p. 810-3.
    
    82. Broyles, R.H., et al., Nuclear reprogramming by cell fusion. Methods Mol Biol, 2006. 325: p. 47-57.
    
    83. Hochedlinger, K. and R. Jaenisch, Nuclear reprogramming and pluripotency.Nature, 2006. 441(7097): p. 1061-7.
    
    84. Cowan, C.A., et al., Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005. 309(5739): p. 1369-73.
    
    85. Tada, M., et al., Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol, 2001. 11(19): p. 1553-8.
    
    86. Do, H.J., et al., An intact homeobox domain is required for complete nuclear localization of human Nanog. Biochem Biophys Res Commun, 2007. 353(3):p. 770-5.
    
    87. Kim, J.S., et al., Identification and functional characterization of an alternative splice variant within the fourth exon of human nanog. Exp Mol Med, 2005.37(6): p. 601-7.
    88. Do, J.T. and H.R. Scholer, Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells, 2004. 22(6): p. 941-9.
    
    89. Dominguez-Sola, D., et al., Non-transcriptional control of DNA replication by c-Myc. Nature, 2007. 448(7152): p. 445-51.
    
    90. Silva, J., et al., Nanog promotes transfer of pluripotency after cell fusion.Nature, 2006. 441(7096): p. 997-1001.
    
    91. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
    
    92. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007. 448(7151): p. 318-24.
    1.Rossant,J.,Stem cells and early lineage development.Cell,2008.132(4):p.527-31.
    2.Cinalli,R.M.,R Rangan,and R.Lehmann,Germ cells are forever.Cell,2008.132(4):p.559-62.
    3.Wilmut,I.,et al.,Viable offspring derived from fetal and adult mammalian cells. Nature, 1997. 385(6619): p. 810-3.
    
    4. Byrne, J.A., et al., Nuclei of adult mammalian somatic cells are directly reprogrammed to oct-4 stem cell gene expression by amphibian oocytes. Curr Biol,2003. 13(14): p. 1206-13.
    
    5. Tada, M., et al., Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol, 2001. 11(19): p. 1553-8.
    
    6. Gurdon, J.B., J.A. Byrne, and S. Simonsson, Nuclear reprogramming and stem cell creation. Proc Natl Acad Sci U S A, 2003. 100 Suppl 1: p. 11819-22.
    
    7. Gurdon, J.B. and J.A. Byrne, The first half-century of nuclear transplantation. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8048-52.
    
    8. Hochedlinger, K. and R. Jaenisch, Nuclear reprogramming and pluripotency.Nature, 2006. 441(7097): p. 1061-7.
    
    9. Takahashi, K. and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 2006.126(4): p. 663-76.
    
    10. Gan, Q., et al., Concise review: epigenetic mechanisms contribute to pluripotency and cell lineage determination of embryonic stem cells. Stem Cells, 2007. 25(1): p.2-9.
    
    11. Surani, M.A., K. Hayashi, and P. Hajkova, Genetic and epigenetic regulators of pluripotency. Cell, 2007. 128(4): p. 747-62.
    
    12. Eggan, K., et al., Hybrid vigor, fetal overgrowth, and viability of mice derived by nuclear cloning and tetraploid embryo complementation. Proc Natl Acad Sci U S A, 2001. 98(11): p. 6209-14.
    
    13. Nagy, A., et al., Embryonic stem cells alone are able to support fetal development in the mouse. Development, 1990. 110(3): p. 815-21.
    
    14. Hochedlinger, K. and R. Jaenisch, Monoclonal mice generated by nuclear transfer from mature B and T donor cells. Nature, 2002. 415(6875): p. 1035-8.
    
    15. Inoue, K., et al., Generation of cloned mice by direct nuclear transfer from natural killer T cells. Curr Biol, 2005. 15(12): p. 1114-8.
    
    16. Blelloch, R., et al., Reprogramming efficiency following somatic cell nuclear transfer is influenced by the differentiation and methylation state of the donor nucleus. Stem Cells, 2006. 24(9): p. 2007-13.
    
    17. Inoue, K., et al., Differential developmental ability of embryos cloned from tissue-specific stem cells. Stem Cells, 2007. 25(5): p. 1279-85.
    
    18. Li, J., et al., Mice cloned from skin cells. Proc Natl Acad Sci U S A, 2007.104(8): p. 2738-43.
    19. Oback, B. and D.N. Wells, Donor cell differentiation, reprogramming, and cloning efficiency: elusive or illusive correlation? Mol Reprod Dev, 2007.74(5): p. 646-54.
    
    20. Sung, L.Y., et al., Differentiated cells are more efficient than adult stem cells for cloning by somatic cell nuclear transfer. Nat Genet, 2006. 38(11): p.1323-8.
    
    21. Hochedlinger, K. and R. Jaenisch, On the cloning of animals from terminally differentiated cells. Nat Genet, 2007. 39(2): p. 136-7; author reply 137-8.
    
    22. Hochedlinger, K. and R. Jaenisch, Nuclear transplantation, embryonic stem cells, and the potential for cell therapy. N Engl J Med, 2003. 349(3): p.275-86.
    
    23. Yang, X., et al., Nuclear reprogramming of cloned embryos and its implications for therapeutic cloning. Nat Genet, 2007. 39(3): p. 295-302.
    
    24. Brambrink, T., et al., ES cells derived from cloned and fertilized blastocysts are transcriptionally and functionally indistinguishable. Proc Natl Acad Sci U S A, 2006. 103(4): p. 933-8.
    
    25. Wakayama, S., et al., Equivalency of nuclear transfer-derived embryonic stem cells to those derived from fertilized mouse blastocysts. Stem Cells, 2006.24(9): p. 2023-33.
    
    26. Egli, D., et al., Developmental reprogramming after chromosome transfer into mitotic mouse zygotes. Nature, 2007. 447(7145): p. 679-85.
    
    27. Greda, P., J. Karasiewicz, and J.A. Modlinski, Mouse zygotes as recipients in embryo cloning. Reproduction, 2006. 132(5): p. 741-8.
    
    28. Solter, D., From teratocarcinomas to embryonic stem cells and beyond: a history of embryonic stem cell research. Nat Rev Genet, 2006. 7(4): p. 319-27.
    
    29. Zwaka, T.P. and J.A. Thomson, A germ cell origin of embryonic stem cells?Development, 2005. 132(2): p. 227-33.
    
    30. Cowan, C.A., et al., Nuclear reprogramming of somatic cells after fusion with human embryonic stem cells. Science, 2005. 309(5739): p. 1369-73.
    
    31. Yu, J., et al., Human embryonic stem cells reprogram myeloid precursors following cell-cell fusion. Stem Cells, 2006. 24(1): p. 168-76.
    
    32. Do, J.T. and H.R. Scholer, Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells, 2004. 22(6): p. 941-9.
    
    33. Silva, J., et al., Nanog promotes transfer of pluripotency after cell fusion.Nature, 2006. 441(7096): p. 997-1001.
    
    34. Matsumura, H., et al., Targeted chromosome elimination from ES-somatic hybrid cells. Nat Methods, 2007. 4(1): p. 23-5.
    
    35. Taranger, C.K., et al., Induction of dedifferentiation, genomewide transcriptional programming, and epi genetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell, 2005. 16(12): p. 5719-35.
    
    36. Guan, K., et al., Pluripotency of spermatogonial stem cells from adult mouse testis. Nature, 2006. 440(7088): p. 1199-203.
    
    37. Seandel, M., et al., Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature, 2007. 449(7160): p. 346-50.
    
    38. Croft, A.P. and S.A. Przyborski, Formation of neurons by non-neural adult stem cells: potential mechanism implicates an artifact of growth in culture.Stem Cells, 2006. 24(8): p. 1841-51.
    
    39. Neuhuber, B., et al., Reevaluation of in vitro differentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J Neurosci Res, 2004.77(2): p. 192-204.
    
    40. Joseph, N.M. and S.J. Morrison, Toward an understanding of the physiological function of Mammalian stem cells. Dev Cell, 2005. 9(2): p. 173-83.
    
    41. Wagers, A.J. and I.L. Weissman, Plasticity of adult stem cells. Cell, 2004.116(5): p. 639-48.
    
    42. Balsam, L.B., et al., Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature, 2004. 428(6983): p. 668-73.
    
    43. Murry, C.E., et al., Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature, 2004. 428(6983): p. 664-8.
    
    44. Jackson, K.A., D.S. Snyder, and M.A. Goodell, Skeletal muscle fiber-specific green auto fluorescence: potential for stem cell engraftment artifacts. Stem Cells, 2004. 22(2): p. 180-7.
    
    45. Wang, X., et al., Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature, 2003. 422(6934): p. 897-901.
    
    46. Chambers, I. and A. Smith, Self-renewal of teratocarcinoma and embryonic stem cells. Oncogene, 2004. 23(43): p. 7150-60.
    
    47. Ivanova, N., et al., Dissecting self-renewal in stem cells with RNA interference. Nature, 2006. 442(7102): p. 533-8.
    
    48. Masui, S., et al., Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol, 2007. 9(6): p.625-35.
    
    49. Nakagawa, M., et al., Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat Biotechnol, 2008. 26(1): p.101-6.
    
    50. Yu, J., et al., Induced pluripotent stem cell lines derived from human somatic cells. Science, 2007. 318(5858): p. 1917-20.
    
    51. Okita, K., T. Ichisaka, and S. Yamanaka, Generation of germline-competent induced pluripotent stem cells. Nature, 2007. 448(7151): p. 313-7.
    
    52. Wernig, M., et al., In vitro reprogramming of fibroblasts into a pluripotent ES-cell-like state. Nature, 2007. 448(7151): p. 318-24.
    
    53. Hochedlinger, K., et al., Ectopic expression of Oct-4 blocks progenitor-cell differentiation and causes dysplasia in epithelial tissues. Cell, 2005. 121(3): p.465-77.
    
    54. Meissner, A., M. Wernig, and R. Jaenisch, Direct reprogramming of genetically unmodified fibroblasts into pluripotent stem cells. Nat Biotechnol,2007. 25(10): p. 1177-81.
    
    55. Takahashi, K., et al., Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell, 2007. 131(5): p. 861-72.
    
    56. Park, I.H., et al., Reprogramming of human somatic cells to pluripotency with defined factors. Nature, 2008. 451(7175): p. 141-6.
    
    57. Chambers, I., et al., Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell, 2003. 113(5): p. 643-55.
    
    58. Mitsui, K., et al., The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell, 2003. 113(5): p. 631-42.
    
    59. Nichols, J., et al., Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell, 1998. 95(3): p.379-91.
    
    60. Ying, Q.L., et al., Changing potency by spontaneous fusion. Nature, 2002.416(6880): p. 545-8.
    
    61. Chambers, I., et al., Nanog safeguards pluripotency and mediates germline development. Nature, 2007. 450(7173): p. 1230-4.
    
    62. Boyer, L.A., et al., Core transcriptional regulatory circuitry in human embryonic stem cells. Cell, 2005. 122(6): p. 947-56.
    
    63. Loh, Y.H., et al., The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet, 2006. 38(4): p.431-40.
    
    64. Alon, U., Network motifs: theory and experimental approaches. Nat Rev Genet, 2007. 8(6): p. 450-61.
    65. Odom, D.T., et al., Core transcriptional regulatory circuitry in human hepatocytes. Mol Syst Biol, 2006. 2: p. 2006 0017.
    
    66. Kuroda, T., et al., Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol, 2005. 25(6): p.2475-85.
    
    67. Okumura-Nakanishi, S., et al., Oct-3/4 and Sox2 regulate Oct-3/4 gene in embryonic stem cells. J Biol Chem, 2005. 280(7): p. 5307-17.
    
    68. Wang, J., et al., A protein interaction network for pluripotency of embryonic stem cells. Nature, 2006. 444(7117): p. 364-8.
    
    69. Bernstein, B.E., et al., A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell, 2006. 125(2): p. 315-26.
    
    70. Lee, T.I., et al., Control of developmental regulators by Polycomb in human embryonic stem cells. Cell, 2006. 125(2): p. 301-13.
    
    71. Guenther, M.G., et al., A chromatin landmark and transcription initiation at most promoters in human cells. Cell, 2007. 130(1): p. 77-88.
    
    72. Azuara, V., et al., Chromatin signatures of pluripotent cell lines. Nat Cell Biol,2006. 8(5): p. 532-8.
    
    73. Mikkelsen, T.S., et al., Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature, 2007. 448(7153): p. 553-60.
    
    74. Kanellopoulou, C, et al., Dicer-deficient mouse embryonic stem cells are defective in differentiation and centromeric silencing. Genes Dev, 2005. 19(4):p. 489-501.
    
    75. Murchison, E.P., et al., Characterization of Dicer-deficient murine embryonic stem cells. Proc Natl Acad Sci U S A, 2005. 102(34): p. 12135-40.
    
    76. Wang, Y., et al., DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat Genet, 2007. 39(3): p. 380-5.
    
    77. Houbaviy, H.B., M.F. Murray, and P.A. Sharp, Embryonic stem cell-specific MicroRNAs. Dev Cell, 2003. 5(2): p. 351-8.
    
    78. Mineno, J., et al., The expression profile of microRNAs in mouse embryos.Nucleic Acids Res, 2006. 34(6): p. 1765-71.
    
    79. Suh, M.R., et al., Human embryonic stem cells express a unique set of microRNAs. Dev Biol, 2004. 270(2): p. 488-98.
    
    80. Acosta, D., et al., Search for the supersymmetric partner of the top quark in dilepton events from pp collisions at square root of s=1.8 TeV. Phys Rev Lett,2003. 90(25 Pt 1): p. 251801.
    81. Smith, A.G., et al., Inhibition of pluripotential embryonic stem cell differentiation by purified polypeptides. Nature, 1988. 336(6200): p. 688-90.
    
    82. Ogawa, K., et al., Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochem Biophys Res Commun, 2006. 343(1):p. 159-66.
    
    83. Bendall, S.C., et al., IGF and FGF cooperatively establish the regulatory stem cell niche of pluripotent human cells in vitro. Nature, 2007. 448(7157): p.1015-21.
    
    84. Lowell, S., et al., Notch promotes neural lineage entry by pluripotent embryonic stem cells. PLoS Biol, 2006. 4(5): p. e121.
    
    85. Okamoto, K., et al., A novel octamer binding transcription factor is differentially expressed in mouse embryonic cells. Cell, 1990. 60(3): p.461-72.
    
    86. Gu, P., et al., Orphan nuclear receptor GCNF is required for the repression of pluripotency genes during retinoic acid-induced embryonic stem cell differentiation. Mol Cell Biol, 2005. 25(19): p. 8507-19.
    
    87. Gu, P., et al., Differential recruitment of methylated CpG binding domains by the orphan receptor GCNF initiates the repression and silencing of Oct4 expression. Mol Cell Biol, 2006. 26(24): p. 9471-83.
    
    88. Feldman, N., et al., G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat Cell Biol, 2006. 8(2): p. 188-94.
    
    89. Boiani, M., et al., Oct4 distribution and level in mouse clones: consequences for pluripotency. Genes Dev, 2002. 16(10): p. 1209-19.
    
    90. Bortvin, A., et al., Incomplete reactivation of Oct4-related genes in mouse embryos cloned from somatic nuclei. Development, 2003. 130(8): p. 1673-80.
    
    91. Fernandez, P.C., et al., Genomic targets of the human c-Myc protein. Genes Dev, 2003.17(9): p. 1115-29.
    
    92. Li, Z., et al., A global transcriptional regulatory role for c-Myc in Burkitt's lymphoma cells. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8164-9.
    
    93. Dominguez-Sola, D., et al., Non-transcriptional control of DNA replication by c-Myc. Nature, 2007. 448(7152): p. 445-51.
    
    94. Santos, F., et al., Epigenetic marking correlates with developmental potential in cloned bovine preimplantation embryos. Curr Biol, 2003. 13(13): p.1116-21.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700