呼吸道合胞病毒重组蛋白抗原免疫应答平衡调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
完善的呼吸道合胞病毒(respiratory syncytial virus, RSV)疫苗,需同时具备激发细胞免疫和体液免疫的能力。CTL介导的细胞免疫在清除病原物方面作用显著,对RSV的预防尤为重要。因为,虽然RSV感染后体液免疫是主要的保护机制,但这种保护很不完全,患者在感染后较短时间内乃至终生易发生多次重复感染。同时,安全的RSV疫苗需要诱导平衡的免疫应答反应。单独的重组G蛋白或G蛋白片段仅诱导IgG1型抗体和Th2型细胞因子优势应答,不产生CD8+ T细胞免疫。
     前期我们将含有B细胞表位的G蛋白片段G1和CD8+ T细胞表位的片段F1/M2:81-95的融合蛋白G1F1/M2免疫BALB/c小鼠同时诱导了高滴度的特异性抗体和CTL应答,而且CD8+ T的诱导下调了IgG1与IgG2a的比例。但融合蛋白G1F1/M2比含载体蛋白的融合蛋白DsbA-G1F1/M2所诱导的中和抗体弱;而且尽管IgG1/IgG2a的比例有所降低,但仍未达到自然感染时的水平。因此为进一步增强G1F1/M2诱导体液免疫和细胞免疫的能力,尤其是进一步增强MHCⅠ分子限制的CD8+ T细胞的激活,提高CTL活性,进一步调整Th1/Th2的比例,使免疫反应更加平衡,我们在G1F/M2融合蛋白中引入可以促进抗原交叉提呈的蛋白转导结构域HIV TAT或HSP70构建新的重组蛋白抗原,并对其抗原性和保护性等进行了研究。
     在重组表达载体pET-G1F/M2的基础上,构建了两种新的重组融合蛋白表达载体,在原核表达系统中实现了重组蛋白的诱导表达,通过亲和层析分离纯化制备了用于动物免疫试验的重组抗原。通过设计引物进行PCR扩增的方式直接将蛋白转导结构域HIV TAT基因连接至G1F/M2基因的上游,构建新的重组融合蛋白TAT-G1F/M2。由于在原核表达系统中不能实现HSP70和G1F/M2的融合表达,因此构建了一个可以与HSP70高亲和力结合的融合蛋白Javelin-G1F/M2,在G1F/M2 N端引入的Javelin序列可以与热休克蛋白HSP70高亲和力结合。通过构建引物进行PCR扩增的方式直接将Javelin短肽基因引入至G1F/M2基因的上游。上述表达载体导入原核表达系统成功实现了重组融合蛋白的诱导表达,并采用Western-blot鉴定了重组蛋白的RSV抗原特异性。重组蛋白经Ni2+螯合亲和层析柱分离纯化,梯度透析复性后得到了纯度较高的重组蛋白。
     在体外先将Javelin-G1F/M2和HSP70孵育制备HSP70: Javelin-G1F/M2复合物进行动物免疫,对复合物诱导IgG抗体及亚型、中和抗体、CTL应答以及保护性等进行了考察,并与Javelin-G1F/M2皮下免疫组和Javelin-G1F/M2铝佐剂腹腔免疫组进行比较研究。在不添加其他佐剂,皮下免疫的条件下HSP70: Javelin- G1F/M2复合物可诱导高滴度的IgG抗体和强的CTL应答,其抗体滴度和CTL应答强度均优于Javelin- G1F/M2加铝佐剂腹腔免疫和单独Javelin-G1F/M2皮下免疫。HSP70: Javelin- G1F/M2复合物在诱导中和抗体方面与Javelin-G1F/M2加铝佐剂腹腔免疫基本相当。HSP70: Javelin-G1F/M2复合物可以诱导更为平衡的Th1/Th2应答,IgG的亚型IgG1/IgG2a的比值在攻毒前后均低于Javelin-G1F/M2加铝佐剂腹腔免疫组和单独Javelin-G1F/M2皮下免疫组;而且攻毒后肺组织嗜酸性粒细胞浸润的程度较Javelin-G1F/M2加铝佐剂腹腔免疫组轻。病毒滴定结果表明HSP70: Javelin- G1F/M2复合物可为小鼠提供完全的保护作用。
     对重组融合蛋白TAT- G1F/M2诱导IgG抗体及亚型、中和抗体、CTL应答以及保护性等进行了考察,并与G1F/M2进行了比较研究。TAT-G1F/M2诱导的IgG抗体滴度和中和抗体滴度与G1F/M2免疫组基本相当,但其诱导的CTL应答强度要高于G1F/M2免疫组。而且TAT- G1F/M2诱导的IgG的亚型IgG1/IgG2a的比值在攻毒前后均低于G1F/M2免疫组。保护性试验表明TAT-G1F/M2可为小鼠提供完全的保护作用。
     因此可见在G1F/M2融合蛋白的基础上引入蛋白转导结构域HIV TAT,或者将G1F/M2与热休克蛋白HSP70构建HSP70:G1F/M2复合物均可通过促进RSV抗原的交叉提呈,增强抗原G1F/M2的CTL应答,使Th1/Th2应答朝平衡的方向偏移,改善Th2优势应答导致的毒副作用。
An ideal respiratory syncytial virus(RSV) vaccine should be capable of inducing humoral immune (antibody) , as well as cellular immune (CTLs). Cellular immune mediated by CTL plays an important role in elimination of pathogen, which is particularly important for prevention of RSV. Following RSV infection, humoral immunity is major protective mechanism, but this protection is not fully enough. After infection patients will be repeated infected during relatively short period of time or lifetime. Meanwhile, a safe RSV vaccine should be capable of inducing balanced immune response. However, previous studies in mice indicated that recombinant G protein or G protein fragment immunization resulted in IgG1 antibody and Th2-type response and failed to induce IgG2a, Th1 and MHC I-restricted CD8+T cell response.
     We engineered a fusion protein G1F/M2, consisting of an antibody epitope G: 125-225(G1) fragment from RSV-A G protein and a CD8+ T cell epitope (M2:81-95) from RSV-M2 protein. High titer of specific antibody and CTL response were induced in BALB/c mice intraperitoneal vaccinated with G1F/M2 formulated in Al(OH)3. And the induction of CD8+ T cells reduced the ratio of IgG1/IgG2a. But the titer of neutralization antibody induced by recombinant protein G1F/M2 was lower than DsbA-G1F1/M2, containing carrier protein DsbA. And despite the lower ratio of IgG1/IgG2a induced by G1F/M2, it was higher than that IgG1/IgG2a induced by RSV virus. The main aim of this study is to further enhance the G1F/M2’s ability of inducing humoral immunity and cellular immune, especially enhance MHC I-restricted CD8+T cell response and CTL activity. And then more balanced immune response will be achieved. So on the basis of recombinant protein G1F/M2, new recombinant proteins containing protein transduction domain HIV TAT or heat shock protein HSP70 were constructed to facilitate antigen cross-presentation. And studies of immunogenicity, protective efficacy and safety of recombinant proteins were investigated.
     Two new recombinant fusion proteins expression vectors were constructed. The inductions of recombinant proteins expression were achieved in prokaryotic expression system. And recombinant antigens were separated and purified by affinity chromatography. By primers design and PCR amplification, the gene of protein transduction domain HIV TAT was connected to the upstream of gene G1F/M2. A new recombinant protein expression vector, termed pET-TAT-G1F/M2, was constructed. Because recombinant fusion protein containing HSP70 and G1F/M2 can not be expressed in prokaryotic expression system, a new recombinant protein which can high-affinity bind to HSP70. By primers design and PCR amplification, peptide Javelin was introduced to the N terminal of G1F/M2. Through the high-affinity interaction between Javelin and HSP70, new recombinant fusion protein Javelin-G1F/M2 can form complex with HSP70. These expression vectors were transformed into prokaryotic expression system to achieve successful fusion protein expression. RSV-specific antigenicity of recombinant fusion protein were characterized by Western-blot. Recombinant fusion proteins were separated and purified by affinity chromatography on Ni2+ chelating Sepharose and refolded by gradient dialysis.
     HSP70: Javelin-G1F/M2 complex was prepared by incubation of Javelin-G1F/M2 and HSP70 in vitro. The titer of IgG antibody, IgG antibody subtype and neutralization antibody, CTL activities and protective efficacy induced by complex, Javelin-G1F/M2 and Javelin-G1F/M2 formulated in Al(OH)3 were investigated. High titer of IgG antibody and strong CTL responses were induced in BALB/c mice subcutaneous vaccinated with HSP70: Javelin-G1F/M2 complex without additional adjuvant. The titer of IgG antibody and the activity of CTL induced by HSP70: Javelin-G1F/M2 complex were markedly higher than those in mice subcutaneous vaccinated with Javelin-G1F/M2 or intraperitoneal vaccinated with Javelin-G1F/M2 formulated in Al(OH)3. The titer of neutralization antibody induced by HSP70: Javelin-G1F/M2 was equivalent with that induced by Javelin-G1F/M2 formulated in Al(OH)3. Compared with Javelin-G1F/M2 formulated in Al(OH)3, HSP70: Javelin-G1F/M2 complex can induce more balanced Th1/Th2 response. BALB/c mice were challenged with 106 pfu RSV-A at 14 days post immunization. before and after challenge the ratios of IgG1/IgG2a in mice subcutaneous vaccinated with HSP70: Javelin-G1F/M2 complex were lower than that of IgG1/IgG2a in mice subcutaneous vaccinated with Javelin-G1F/M2 or intraperitoneal vaccinated with Javelin-G1F/M2 formulated in Al(OH)3. After challenge, eosinophil infiltration in lungs of mice subcutaneous vaccinated with HSP70: Javelin-G1F/M2 complex was lighter. Virus titration results indicate that HSP70: Javelin-G1F/M2 complex protected the lungs against RSV-A challenge.
     The titer of IgG antibody, IgG antibody subtype and neutralization antibody, CTL activities and protective efficacy induced by TAT-G1F/M2 and G1F/M2 formulated in Al(OH)3 were investigated. The titer of IgG antibody and neutralization antibody induced by TAT-G1F/M2 was equivalent with that induced by G1F/M2. But the CTL activity of TAT-G1F/M2 group was higher than that of G1F/M2 group. Furthermore, TAT-G1F/M2 could induce lower ratio of IgG1/IgG2a in mice before and post challenge. Similarly, TAT-G1F/M2 could protect mice from RSV infection as well as G1F/M2.
     Therefore the cross presentation of antigen G1F/M2 can be enhanced by introduction of protein transduction domains HIV TAT or chaperoned by HSP70 in forms of HSP70:G1F/M2 complex. Ehanced cross presentation results in enhanced MHC I-restricted CD8+T cell response. So more balanced Th1/Th2 responses were induced and side effects caused by Th2 response were improved.
引文
1、Groothuis JR, Nishida H, Prevention of respiratory syncytial virus infections in high-risk infants by monoclonal antibody (palivizumab) [J]. Pediatr. Int , 2002 , 44: 235-41
    2、Van Drunen Littel-van den Hurk S, Mapletoft JW, Arsic N, et al, Immunopathology of RSV infection: prospects for developing vaccines without this complication[J]. Rev Med Virol. 2007, 17(1): 5-34
    3、Crowe JE. Current approaches to the development of vaccines against disease caused by respiratory syncytial virus (RSV) and parainfluenza virus (PIV). A meeting report of the WHO Programme for Vaccine Development[J]. Vaccine 1995, 13: 415-421
    4、Paes BA. Current strategies in the prevention of respiratory syncytial virus disease[J]. Paediatr. Respir. Rev, 2003, 4: 21-27
    5、Power UF, Nguyen TN, Rietveld E et al. Safety and immunogenicity of a novel recombinant subunit respiratory syncytial virus vaccine (BBG2Na) in healthy young adults[J]. J. Infect. Dis. 2001, 184: 1456-1460
    6、Ostler T, Davidson W, Ehl S. Virus clearance and immunopathology by CD8(+) T cells during infection with respiratory syncytial virus are mediated by IFN-gamma[J]. Eur. J. Immunol. 2002, 32: 2117-2123
    7、Steward MW. The development of a mimotope-based synthetic peptide vaccine against respiratory syncytial virus[J]. Biologicals, 2001, 29: 215-219
    8、Lelievre D, Hsu SC, Daubos P, et al. Structural properties of chimeric peptides containing a T-cell epitope linked to a fusion peptide and their importance for in vivo induction of cytotoxic T-cell responses[J]. Eur. J. Biochem, 1997, 249: 895-904
    9、Simard C, Nadon F, Seguin C, et al. Evidence that the amino acid region 124-203 of glycoprotein G from the respiratory syncytial virus (RSV) constitutes a major part of the polypeptide domain that is involved in the protection against RSV infection[J]. Antiviral Res. 1995, 28: 303-315
    10、Kulkarni AB, Morse HC, Bennink JR, et al. Immunization of mice with vaccinia virus-M2 recombinant induces epitope-specific and cross-reactive Kd-restricted CD8+ cytotoxic T cells[J]. J. Virol, 1993, 67: 4086-4092
    11、Hsu SC, Shaw DM, Steward MW. The induction of respiratory syncytial virus-specific cytotoxic T-cell responses following immunization with a synthetic peptide containing a fusion peptide linked to a cytotoxic T lymphocyte epitope[J]. Immunology, 1995, 85: 347-350
    12、Plotnicky-Gilquin H, Huss T, Aubry JP, et al. Absence of lung immunopathology following respiratory syncytial virus (RSV) challenge in mice immunized with a recombinant RSV G protein fragment[J]. Virology, 1999, 258(1):128-140
    13、Boelen A, Andeweg A, Kwakkel J, et al. Both immunisation with a formalin-inactivated respiratory syncytial virus (RSV) vaccine and a mock antigen vaccine induce severe lung pathology and a Th2 cytokine profile in RSVchallenged mice[J]. Vaccine,2000, 19(7-8):982-991
    14、Srikiatkhachirn A, Braciale TJ. Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection[J]. J Exp Med, 1997, 186:421~432
    15、Hsu SC, Chargelegue D, Steward MW. Reduction of respiratory syncytial virus titer in the lungs of mice after intranasal immunization with a chimeric peptide consisting of a single CTL epitope linked to a fusion peptide[J]. Virology,1998, 240: 376~381
    16、Fan CF, Zeng RH, Sun CY, et al. Fusion of DsbA to the N-terminus of CTL chimeric epitope, F/M2:81-95, of respiratory syncytial virus prolongs protein- and virus-specific CTL responses in Balb/c mice[J]. Vaccine, 2005, 23:2869-2875
    17、Fan CF, Mei XG. Co-immunization of BALB/c mice with recombinant immunogens containing G protein and chimeric CTL epitope of respiratory syncytial virus induces enhanced cellular immunity and high level of antibody response[J]. Vaccine, 2005, 23:4453-4461
    18、Zeng RH, Gong W, Fan CF, et al. Induction of balanced immunity in BALB/c mice by vaccination with a recombinant fusion protein containing a respiratory syncytial virus G protein fragment and a CTL epitope[J]. Vaccine, 2006, 24:941-947
    19、Groothuis TA, Neefjes J. The many roads to cross-presentation[J]. J Exp Med, 2005, 202(10):1313-1318.
    20、Schwarze SR. In vivo protein transduction: delivery of a biologically active prtein into the mouse[J]. Science, 1999, 285(5433):1569-1572.
    21、Morón G, Dadaglio G, Leclerc C. New tools for antigen delivery to the MHC class I pathway[J]. Trends Immunol, 2004, 25 (2): 92-97.
    22、Bachran C, Heisler I, Fuchs H. Influence of protein transduction domains on target-specific chimeric proteins[J]. Biochem Biophy Res Commun, 2005, 337(2): 602-609.
    23、Mattner F, Fleitmann JK, Lingnau K, et al. Vaccination with poly-L-arginine as immunostimulant for peptide vaccines: induction of potent and long-lasting T-cell responses against cancer antigens[J]. Can Res, 2002, 62(5): 1477-1480.
    24、Lundberg M, Wikstrom S, Johansson M. Cell surface adherence and endocytosis of protein transduction domains[J]. Mol Ther, 2003, 8 (1): 143-150.
    25、Silhol M, Tyagi M, Giacca M, et al. Different mechanisms for cellular internalization of the HIV-1 Tat-derived cell penetrating peptide and recombinant proteins fused to Tat[J]. Eur J Biochem, 2002, 269(2): 494-450.
    26、Wadia JS, Stan RV, Dowdy SF. Transducible TAT-HA fusogenic peptide enhances escape of TAT-fusion proteins after lipid raft macropinocytosis[J]. Nat Med, 2004, 10(3): 310-315.
    27、Kaplan IM, Wadia JS, Dowdy SF. Cationic TAT peptide transduction domain enters cells by macropinocytosis[J]. J Controlled Rel, 2005, 102(1): 247-253.
    28、Noguchi H, Matsumoto S. Protein transduction technology : a novel therapeutic perspective[J]. Acta Med Okayama, 2006, 60(1):1-11.
    29、Shibagaki N, Udey MC. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity[J]. Immunology, 2002, 168(5): 2393-2401.
    30、Leifert JA, Lindencrona JA, Charo J, et al. Enhancing T cell activation and antiviral protection by introducing the HIV-1 protein transduction domain into a DNA vaccine[J]. Hum Gene Ther, 2001, 12(15): 1881-1892.
    31、Viehl CT, Tanaka Y, Chen T, et al. Tat mammaglobin fusion protein transduced dendritic cells stimulate mammaglobin-specific CD4 and CD8 T cells[J]. Breast Cancer Res Treat, 2005, 91(3):271-278.
    32、Wang H, Fu TH, Wang G, et al. Induction of CD4+ T cell–dependent antitumor immunity by TAT-mediated tumor antigen delivery into dendritic cells[J]. J Clin Invest, 2002, 109(11):1463-1470.
    33、Shibagaki N, Udey MC. Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma[J]. Eur J Immunol, 2003, 33(4): 850-860.
    34、Leifert JA, Harkins S, Whitton JL. Full-length proteins attached to the HIV tat protein transduction domain are neither transduced between cells, nor exhibit enhanced immunogenicity[J]. Gene Ther, 2002, 9(21): 1422-1428.
    35、Pietersz GA, Li WJ , Apostolopoulos V. A 16-mer peptide (RQIKIWFQNRRMKWKK) from antennapedia preferentially targets the Class I pathway[J]. Vaccine, 2001, (19):1397-1405.
    36、Apostolopoulos V, Pouniotis DS, van Maanen PJ, et al. Delivery of tumor associated antigens to antigen presenting cells using penetratin induces potent immune responses[J]. Vaccine, 2006, 24(16):3191-3202.
    37、Pouniotis DS, Apostolopoulos1 V, Pietersz GA. Penetratin tandemly linked to a CTL peptide induces anti-tumour T-cell responses via a cross-presentation pathway[J]. Immunology, 2005, 117(3):329-339.
    38、Chikh GG, Kong S, Bally MB, et al. Efficient delivery of antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells[J]. J Immunol, 2001, 167(11): 6462-6470.
    39、Mitsui H, Inozume T, Kitamura R, et al. Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC class I and class II and elicits superior antitumor immunity[J]. J Invest Dermatol, 2006, 126 (8):1804-1812.
    40、Inozume T, Mitsui H, Okamoto T, et al. Dendritic cells transduced with autoantigen FCRLA induce cytotoxic lymphocytes and vaccinate against murine B-cell lymphoma[J]. J Invest Dermatol, 2007, [Epub ahead of print]
    41、Luhrs P, Schmidt W, Kutil R. Induction of specific immune responses by polycation-based vaccines[J]. J Immunol, 2002, 169(9): 5217-5226.
    42、Cheng WF, Hung CF, Hsu KF, et al. Cancer immunotherapy using Sindbis virus replicon particles encoding a VP22-antigen fusion[J]. Hum Gene Ther, 2002, 13(4): 553-568.
    43、Tanaka Y, Dowdy SF, Linehan DC, et al. Induction of antigen-specific CTL by recombinant HIV trans-activating fusion protein-pulsed human monocyte-derived dendritic cells[J]. J Immunol, 2003, 170(3):1291-1298.
    44、Lu J, Wettstein PJ, Higashimoto Y, et al.TAP-independent presentation of CTL epitopes by trojan antigens[J]. J Immunol, 2001, 166(12):7063-7071.
    45、Justesen S, Buus S, Claesson MH,et al. Addition of TAT protein transduction domain and GrpE to human p53 provides soluble fusion proteins that can be transduced into dendritic cells and elicit p53-specific T-cell responses in HLA-A*0201 transgenic mice[J]. Immunology, 2007, 122(3):326-334.
    46、Rhyner C, Kündig T, Akdis CA, et al. Targeting the MHC II presentation pathway in allergy vaccine development[J]. Biochem Soc Trans, 2007, 35(Pt 4):833-834.
    47、Audibert F. Adjuvants for vaccines, a quest[J]. International Immunopharmacology, 2003, 3:1187-1193
    48、Srivastava PK, Menoret A, Basu S, et al. Heat shock proteins come of age: primitive functions acquire new roles in an adaptive world[J]. Immunity, 1998, 8:657–665
    49、Breloer M, Marti T, Fleischer B, et al. Isolation of processed, H-2Kb-binding ovalbumin-derived peptides associated with the stress proteins HSP70 and gp96[J]. Eur. J. Immunol, 1998, 28:1016–1021
    50、Arnold D, Faath S, Rammensee H, et al. Cross-priming of minor histocompatibility antigen-specific cytotoxic T cells upon immunization with the heat shock protein gp96[J]. J. Exp. Med, 1995, 182:885–889
    51、Suzue K, Zhou X, Eisen HN, et al. Heat shock fusion proteins as vehicles for antigen delivery into the major histocompatibility complex class I presentation pathway[J]. Proc. Natl. Acad. Sci. USA, 1997, 94:13146–13151
    52、Ciupitu AM, Petersson M, O’Donnell CL, et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results in protective antiviral immunity and specific cytotoxic T lymphocytes[J]. J. Exp. Med, 1998, 187:685–691
    53、Blachere NE, Li Z, Chandawarkar RY, et al. Heat shock protein–peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity[J]. J. Exp. Med, 1997, 186: 1315–1322
    54、Srivastava PK, Udono H, Blachere NE, et al. Heat shock proteins transfer peptides during antigen processing and CTL priming[J]. Immunogenetics, 1994, 39:93-98.
    55、Wells AD, Rai SK, Salvato MS, et al. Hsp72-mediated augmentation of MHC class I surface expression and endogenous antigen presentation[J]. Int Immunol, 1998, 10:609-617.
    56、Binder RJ, Blachere NE, Srivastava PK. Heat shock protein chaperoned peptides but not free peptides introduced into the cytosol are presented efficiently by major histocompatibility complex I molecules[J]. J Biol Chem, 2001, 276:17163-17171.
    57、Chandawarkar RY, Wagh MS, Srivastava PK. The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med, 1999, 189:1437-1442.
    58、Singh-Jasuja H, Toes RE, Spee P, et al.: Cross-presentation of glycoprotein 96-associated antigens on major histocompatibility complex class I molecules requires receptor-mediated endocytosis[J]. J Exp Med, 2000, 191:1965-1974.
    59、Castellino F, Boucher PE, Eichelberg K, et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex class I antigen presentation via two distinct processing pathways[J]. J Exp Med, 2000, 191:1957-1964.
    60、Binder RJ, Han DK, Srivastava PK. CD91: a receptor for heat shock protein gp96[J]. Nat mmunol, 2000, 1:151-155.
    61、Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation[J]. Curr Opin Immunol, 2002, 14:45-51.
    1、Flechtner JB, Cohane KP, Mehta S, et al. High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses[J]. J Immunol, 2006, 177(2):1017-1027
    2、Kane JF, Hartley DL. Properties of recombinant protein-containing inclusion bodies in Escherichia Coli[J]. Bioprocess Technol, 1991, 12:121-145
    3、Hlodan R, Craig S, Pain RH. Folding and it implications for the production of recombinant proteins[J]. Biotechnol Genet Eng Rev, 1991, 9:47-88
    4、Suttnar J, Dyr JE, Hamsikova E, et al. Procedure for refolding and purification of recombinant proteins from Escherichia Coli inclusion bodies using a strong anionexchanger[J]. J Chromatogr B Biomed Appl, 1994, 656(1):123-126
    5、Phadtare S, Fisher MT, Yarbrough LR. Refolding and release of tubulins by a functional immobilized groEL column[J]. Biochim Biophys Acta, 1994, 1208(1):189-192
    6、Werner MH, Clore GM, Gronenborn AM, et al. Refolding proteins by gel filtration chromatography[J]. FEBS Lett, 1994, 345(2-3):125-130
    1、Wang Y, Whittall T, McGowan E, et al. Identification of stimulating and inhibitory epitopes within the heat shock protein 70 molecule that modulate cytokine production and maturation of dendritic cells[J]. J Immunol, 2005, 174(6):3306-3316
    2、Wang Y, Kelly CG, Singh M, et al. Stimulation of Th1-polarizing cytokines, C-C chemokines, maturation of dendritic cells, and adjuvant function by the peptide binding fragment of heat shock protein 70[J]. J Immunol, 2002, 169(5):2422-2429
    3、Panjwani NN, Popova L, Srivastava PK. Heat shock proteins gp96 and hsp70 activate the release of nitric oxide by APCs[J]. J Immunol, 2002, 168(6):2997-3003
    4、Zugel U, Sponaas AM, Neckermann J, et al. gp96-peptide vaccination of mice against intracellular bacteria[J]. Infect Immun, 2001, 69(6):4164-4167
    5、Sato K, Torimoto Y, Tamura Y, et al. Immunotherapy using heat-shock protein preparation of leukemia cells after syngeneic bone marrow transplantation in mice[J]. Blood, 2001, 98(6):1852-1857
    6、Ciupitu AM, Petersson M, O’Donnell CL, et al. Immunization with a lymphocytic choriomeningitis virus peptide mixed with heat shock protein 70 results inprotective antiviral immunity and specific cytotoxic T lymphocytes[J]. J Exp Med, 1998, 187(5):685-691
    7、Navaratnam M, Deshpande MS, Hariharan MJ, et al. Heat shock protein-peptide complexes elicit cytotoxic T-lymphocyte and antibody responses specific for bovine herpesvirus 1[J]. Vaccine, 2001, 19(11-12):1425-1434
    8、Wan T, Zhou XY, Chen GY, et al. Novel heat shock protein HSP70L1 activates dendritic cells and acts as a Th1 polarizing adjuvant[J]. Blood, 2004, 103(5):1747-1754
    9、Li Z. In vitro reconstitution of heat shock protein-peptide complexes for generating peptide-specific vaccines against cancers and infectious deseases[J]. Methods, 2004, 32:25-28
    10、Flynn GC, Pohl J, Flocco, MT, et al. Peptide-binding specificity of the molecular chaperone BiP[J]. Nature, 1991, 353(6346):726-730
    11、Flechtner JB, Cohane KP, Mehta S, et al. High-affinity interactions between peptides and heat shock protein 70 augment CD8+ T lymphocyte immune responses[J]. J Immunol, 2006, 177(2):1017-1027
    12、Basu S, Binder RJ, Ramalingam T, et al. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin[J]. Immunity, 2001, 14(3):303-313
    13、Berwin B, Hart JP, Rice S, et al. Scavenger receptor-A mediates gp96/GRP94 and calreticulin internalization by antigen-presenting cells[J]. EMBO J, 2003, 22(22):6127-6136
    14、Becker T, Hartl FU, Wieland F. CD40, an extracellular receptor for binding and uptake of Hsp70-peptide complexes[J]. J Cell Biol, 2002, 158(7):1277-1285
    15、Binder RJ, Vatner R, Srivastava P. The heat-shock protein receptors: some answers and more questions[J]. Tissue Antigens, 2004, 64(4):442-451
    16、Castellino F, Boucher PE, Eichelberg K, et al. Receptor-mediated uptake of antigen/heat shock protein complexes results in major histocompatibility complex classⅠantigen presentation via two distinct processing pathways[J]. J Exp Med,2000, 191(11):1957-1964
    17、Binder RJ, Srivastava PK. Peptides chaperoned by heat-shock proteins are a necessary and sufficient source of antigen in the cross-priming of CD8+ T cells[J]. Nat Immunol, 2005, 6(6):593-599
    18、Moroi Y, Mayhew M, Trcka J, et al. Induction of cellular immunity by immunization with novel hybrid peptides complesed to heat shock protein 70[J]. Proc Natl Acad Sci USA, 2000, 97(7):3485-3490
    19、Singh-Jasuja H, Hilf N, Arnold-Schild D, et al. The role of heat shock proteins and their receptors in the activation of the immune system[J]. Biol Chem, 2001, 382:629-636
    20、Li Z, Menoret A, Srivastava P. Roles of heat-shock proteins in antigen presentation and cross-presentation[J]. Curr Opin Immunol, 2002, 14:45-51
    21、Blachere NE, Li Z, Chandawarkar RY, et al. Heat shock protein-peptide complexes, reconstituted in vitro, elicit peptide-specific cytotoxic T lymphocyte response and tumor immunity. J Exp Med, 1997, 186:1315-1322
    22、Chandawarkar RY, Wagh MS, Srivastava PK. The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med, 1999, 189:1437-1442
    23、Tripp RA, Moore D, Anderson LJ. Th1- and th2-type cytokine expression by activated t lymphocytes from the lung and spleen during the inflammatory response to respiratory syncytial virus[J]. Cytokine, 2000, 12(6):801-807
    1、Groothuis TA, Neefjes J. The many roads to cross-presentation[J]. J Exp Med, 2005, 202(10):1313-1318
    2、Schwarze SR. In vivo protein transduction: delivery of a biologically active prtein into the mouse[J]. Science, 1999, 285(5433):1569-1572
    3、Lu J, Wettstein PJ, Higashimoto Y, et al. TAP-Independent Presentation of CTL Epitopes by Trojan Antigens[J]. J Immunol, 2001, 166: 7063-7071
    4、Lippolis JD, Denis-Mize KS, Brincherhoff LH, et al. Pseudomonas exotoxin-mediated delivery of exogenous antigens to MHC class I and class II processing pathways[J]. Cell Immunol, 2000, 203(2):75-83
    5、De Haan L, Hearn AR, Rivett AJ, et al. Enhanced delivery of exogenous peptides into the class I antigen processing and presentation pathway[J]. Infect Immun, 2002, 70(6):3249-3258
    6、Carbonetti NH, Tuskan RG, Lewis GK. Stimulation of HIV gp120-specific cytolytic T lymphocyte responses in vitro and in vivo using a detoxified pertussis toxin vector[J]. AIDS Res Hum Retroviruses, 2001, 17(9):819-827
    7、Haicheur N, Bismuth E, Bosset S, et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class Irestrictedpresentation of peptides derived from exogenous antigens[J]. J Immunol, 2000, 165(6):3301-3308
    8、Stenmark H, Moskauq JO, Madshus IH, et al. Peptides fused to the amino-terminal end of diphtheria toxin are translocated to the cytosol[J]. J Cell Biol, 1991, 113(5):1025-1032
    9、Goletz TJ, Klimpel KR, Arora N, et al. Targeting HIV proteins to the major histocompatibility complex class I processing pathway with a novel gp120–anthrax toxin fusion protein[J]. Proc. Natl Acad Sci USA, 1997, 94(22): 12059-12064
    10、Shibagaki N, Udey MC. Dendritic cells transduced with protein antigens induce cytotoxic lymphocytes and elicit antitumor immunity[J]. Immunology, 2002, 168(5): 2393-2401
    11、Apostolopoulos V, Pouniotis DS, van Maanen PJ, et al. Delivery of tumor associated antigens to antigen presenting cells using penetratin induces potent immune responses[J]. Vaccine, 2006, 24(16):3191-3202
    12、Bachran C, Heisler I, Fuchs H. Influence of protein transduction domains on target-specific chimeric proteins[J]. Biochem Biophy Res Commun, 2005, 337(2): 602-609
    13、Mattner F, Fleitmann JK, Lingnau K, et al. Vaccination with poly-L-arginine as immunostimulant for peptide vaccines: induction of potent and long-lasting T-cell responses against cancer antigens[J]. Can Res, 2002, 62(5): 1477-1480
    14、Luhrs P, Schmidt W, Kutil R. Induction of specific immune responses by polycation-based vaccines[J]. J Immunol, 2002, 169(9): 5217-5226
    15、Viehl CT, Tanaka Y, Chen T, et al. Tat mammaglobin fusion protein transduced dendritic cells stimulate mammaglobin-specific CD4 and CD8 T cells[J]. Breast Cancer Res Treat, 2005, 91(3):271-278
    16、Chikh GG, Kong S, Bally MB, et al. Efficient delivery of antennapedia homeodomain fused to CTL epitope with liposomes into dendritic cells results in the activation of CD8+ T cells[J]. J Immunol, 2001, 167(11): 6462-6470
    17、Justesen S, Buus S, Claesson MH,et al. Addition of TAT protein transductiondomain and GrpE to human p53 provides soluble fusion proteins that can be transduced into dendritic cells and elicit p53-specific T-cell responses in HLA-A*0201 transgenic mice[J]. Immunology, 2007, 122(3):326-334
    18、Tanaka Y, Dowdy SF, Linehan DC, et al. Induction of antigen-specific CTL by recombinant HIV trans-activating fusion protein-pulsed human monocyte-derived dendritic cells[J]. J Immunol, 2003, 170(3):1291-1298
    19、Lu J, Wettstein PJ, Higashimoto Y, et al.TAP-independent presentation of CTL epitopes by trojan antigens[J]. J Immunol, 2001, 166(12):7063-7071
    20、Shibagaki N, Udey MC. Dendritic cells transduced with TAT protein transduction domain-containing tyrosinase-related protein 2 vaccinate against murine melanoma[J]. Eur J Immunol, 2003, 33(4): 850-860
    21、Mitsui H, Inozume T, Kitamura R, et al. Polyarginine-mediated protein delivery to dendritic cells presents antigen more efficiently onto MHC class I and class II and elicits superior antitumor immunity[J]. J Invest Dermatol, 2006, 126 (8):1804-1812
    22、Rhyner C, Kündig T, Akdis CA, et al. Targeting the MHC II presentation pathway in allergy vaccine development[J]. Biochem Soc Trans, 2007, 35(Pt 4):833-834
    23、Srikiatkhachirn A, Braciale TJ. Virus-specific CD8+ T lymphocytes downregulate T helper cell type 2 cytokine secretion and pulmonary eosinophilia during experimental murine respiratory syncytial virus infection[J]. J Exp Med, 1997, 186:421~432
    24、Hsu SC, Chargelegue D, Steward MW. Reduction of respiratory syncytial virus titer in the lungs of mice after intranasal immunization with a chimeric peptide consisting of a single CTL epitope linked to a fusion peptide[J]. Virology,1998, 240: 376~381

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700