海藻糖对未转染和已转染人野生型或A53T突变型α突触核蛋白基因的PC12细胞的促自噬作用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson’s disease,PD)是常见的神经退行性疾病,但迄今该病病因和发病机制未明。路易小体(Lewy body)是PD患者脑内特征性的病理学标志,异常聚集的α突触核蛋白(α-synuclein)是家族遗传性和散发性PD患者脑内路易小体的主要成份。α突触核蛋白的病理性积聚是PD临床症状发生、发展及受累脑区变性的重要原因。如何阻断α-synuclein的异常沉积或者促进聚集的α-synuclein降解是当前PD研究中的重要课题。近年来,相关研究发现海藻糖通过与蛋白质分子间的相互作用,可抑制中枢神经系统变性病中相关蛋白的异常聚集。海藻糖还可促进强力霉素诱导的转染人A53T突变型α-synuclein基因的PC12细胞自噬,并且能促使突变的α-synuclein降解。我们利用慢病毒表达载体,建立长期稳定过表达人野生型和A53T突变型α-synuclein的PC12细胞株,利用蛋白酶体抑制剂(MG132)抑制α-synuclein降解,建立α-synuclein异常聚集的PD细胞模型,观察海藻糖是否对未转染的PC12细胞、过表达人野生型和A53T突变型α-synuclein的PC12细胞有相似的促自噬作用,并且能否使异常聚集的野生型和A53T突变型α-synuclein降解;另外,自噬的增强对细胞的存活是否有影响。
     第一部分人野生型和A53T突变型α-突触核蛋白慢病毒表达载体的构建及在PC12细胞中的转染
     目的构建长期稳定过表达人野生型和A53T突变型α-突触核蛋白的PC12细胞株。材料和方法首先制备慢病毒表达载体,经测序鉴定正确后转染PC12细胞,然后通过细胞的免疫荧光染色检测α-synuclein-V5融合蛋白,PCR法扩增转基因PC12细胞的SNCA片段后进行测序检测突变基因,Western Blot法检测PC12细胞α-synuclein的表达从而鉴定转基因细胞能否稳定表达目的基因,MTT法测细胞活力,绘制生长曲线。结果经测序,pLenti6/V5-SNCA-WT和pLenti6/V5-SNCA-A53T表达质粒构建成功;免疫荧光染色示基因转染后,大于95%的PC12细胞中有α-synuclein-V5融合蛋白表达;转基因细胞的SNCA片段测序结果显示,慢病毒表达载体成功整合入PC12细胞基因组;Western Blot法检测结果示转基因PC12细胞能够过表达α-synuclein蛋白。3种细胞生长曲线无明显差异。结论我们已成功构建了人野生型和A53T突变型α-突触核蛋白慢病毒表达载体,并且成功建立了稳定过表达人野生型和A53T突变型α-突触核蛋白的PC12细胞株,过表达人野生型和A53T突变型α-突触核蛋白对细胞活力无明显影响。
     第二部分海藻糖促进未转染和已转染人野生型或A53T突变型α突触核蛋白基因的PC12细胞自噬
     目的研究海藻糖对未转染和已转染人野生型或A53T突变型α-synuclein基因的PC12细胞的促自噬作用。材料和方法用不同浓度(10mM、50mM和100mM)的海藻糖干预细胞24h,然后用免疫荧光检测自噬泡及自噬溶酶体,用透射电镜观察细胞内自噬泡数量的变化,用免疫印迹检测LC3II和α-synuclein的表达,观察海藻糖对细胞是否有促自噬作用,能否促进过表达的人野生型和A53T突变型α-synuclein降解;用MTT法检测细胞活力,观察海藻糖对细胞有无损伤或保护作用。结果50mM和100mM的海藻糖能使细胞内自噬泡和自噬溶酶体显著增多,并且使LC3II的表达量显著上调(P<0.01),同时促进A53T突变型α-synuclein的降解(50mM海藻糖组,P<0.05;100mM海藻糖组,P<0.01),而对WT型α-synuclein无明显影响(P>0.05);给予2mM 3-MA预孵育3小时可以阻断海藻糖的促自噬作用;50mM和100mM海藻糖均能降低PC12细胞和A53T转基因细胞的活力(P<0.01),仅100mM海藻糖能降低WT转基因细胞活力(P<0.05)。海藻糖对WT转基因细胞的损伤作用较其他两种细胞弱(P<0.05)。结论海藻糖能促进未转染和已转染人野生型或A53T突变型α-synuclein基因的PC12细胞自噬,并且能促进A53T突变型α-synuclein降解,但对野生型α-synuclein无明显作用。大剂量海藻糖能降低细胞活力,对WT转基因细胞的活力影响较轻。
     第三部分海藻糖对蛋白酶体抑制剂介导的PD细胞模型的作用
     目的研究海藻糖对蛋白酶体抑制剂介导的α-synuclein异常聚集模型的促自噬作用。材料和方法给予500nM MG132、500nM MG132同时加不同浓度(10mM、50mM、100mM)海藻糖进行干预,继续培养24h后,进行免疫荧光检测细胞内的自噬泡、溶酶体和自噬溶酶体,用免疫印迹检测LC3II和α-synuclein的表达,观察海藻糖对MG132介导的细胞模型是否有促自噬作用,是否能促进异常聚集的人野生型和A53T突变型α-synuclein降解;用MTT法检测细胞活力,观察海藻糖对MG132介导的细胞损伤有无保护作用。结果500nM MG132能显著抑制α-synuclein降解(P<0.05),并且代偿型增多细胞内自噬泡、溶酶体和自噬溶酶体的数量,海藻糖能增强MG132介导的细胞自噬现象,使LC3II的表达量比500nM MG132单独作用时明显上调(P<0.05);海藻糖能促进细胞内异常聚集的A53T突变型α-synuclein降解(50mM海藻糖组,P<0.05;100mM海藻糖组,P<0.01),但对野生型α-synuclein无明显作用;海藻糖能明显加重MG132介导的细胞损伤(P<0.05)。结论蛋白酶体抑制剂MG132能导致细胞内α—synuclein异常聚集,同时增强细胞自噬。海藻糖可显著增强MG132介导的细胞自噬,并且能促进异常聚集的A53T突变型α-synuclein降解,但对野生型α-synuclein无明显作用。海藻糖加重MG132介导的细胞损伤。
     结论
     1.成功建立长期、稳定过表达人野生型和A53T突变型α—synuclein的PC12细胞系。
     2.海藻糖增强细胞的自噬降解活性,但仅能降解A53T突变型α—synuclein蛋白,对野生型α—synuclein作用不明显。
     3.在营养状况正常的情况下,大剂量海藻糖使细胞活力下降。
     4.蛋白酶体抑制剂MG132能导致细胞α—synuclein异常聚集,同时增强细胞自噬,可能为细胞的代偿性反应。
     5.海藻糖能显著增强蛋白酶体抑制剂MG132介导的细胞自噬。
     6.海藻糖加重蛋白酶体抑制剂MG132介导的细胞损伤。
Parkinson's disease (PD) is a common neurodegenerative disease, but its exactpathogenesis is still unknown so far.α-synuclein, a main component of Lewy bodyof the familial and sporadic PD patient's brain, has been demonstrated to beimplicated in formation of Lewy body and pathogenesis of PD. The aggregation ofα-synuclein is being considered as one of the main cause to the apoptosis indopaminergic neurons, leading to the manifestation of bradykinesia, tremor, andrigidity. How to inhibit the formation of aggregatedα-synuclein or enhance itsdegradation is an issue with significant potential for clinical application. During thepast several years, trehalose has been found to be able to prevent the aggregation ofthe key proteins responsible for other neurodegenerative diseases includingAlzheimer's disease and Huntington's disease. Trehalose was also reported that itcould enhance the autophagy of the doxycycline-inducible PC12 cell lines transfectedwith A53T mutant SNCA and increase the degradation of A53T mutantα-synuclein.In the current study, we constructed PC12 cells lines stably expressing wild type andA53T mutantα-synuclein by using the lentivirus expression vectors ofpLenti6/V5-SNCA-WT and pLenti6/V5-SNCA-A53T and establish an in vitro modelfor PD by applying proteasome inhibitor(500nM MG132), to investigate whethertrehalose can enhance autophagy of untransfected and transfected PC12 cells withhuman WT or A53T mutant SNCA gene, and whether trehalose can accelerate thedegradation of WT and A53T mutantα-synuclein. Furthermore, we also investigatedthe possible effects of the enhanced autophagy induced by trehalose on the cellviability.
     PartⅠConstruction of The Lentivirus Expression Vector of Wild Type andA53T Mutant Alpha-synuclein and Its Transfection in PC12 Cells
     Aim: To construct PC12 cells which can stably express human wild type andA53T mutantα-synuclein. Methods: The lentivirus containing wild type and A53Tmutantα-synuclein was developed and confirmed by DNA sequencing. Then, it wastransfected into PC12 cells. To identify whether the transfected PC12 cells can stablyexpress theα-synuclein, we detectedα-synuclein-V5 merged protein by using cellularimmunofluorescence staining, confirmed mutant gene sequence by cloning SNCAgene in transfected PC12 cells and sequencing it, measured the level ofα-synucleinexpression in PC12 cells by performing Western Blot, and estimated cell viability byMTT. Results: The lentivirus of pLenti6/V5-SNCA-WT andpLenti6/V5-SNCA-A53T were successfully constructed,α-synuclein-V5 mergedprotein were detected in more than 95% gene-transfected PC12 cells, and thesequence of SNCA-WT and SNCA-A53T gene were confirmed in gene-transfectedPC12 cells by DNA sequencing, the over-expression of SNCA gene were detected ingene-transfected PC12 cells by using Western Blot, and no significant differenceswere detected among the growth curves of three kinds of PC12 cells. Conclusion: Wenot only constructed the lentivirus expression vectors of pLenti6/V5-SNCA-WT andpLenti6/V5-SNCA-A53T, created PC12 cells lines stably expressing wild type andA53T mutantα-synuclein, furthermore, we proved that over-expression of humanWT or A53T mutantα-synuclein had no obvious effects on the cell viability of PC12cells, which lays a good foundation for studying its role in pathogenesis of PD in thefurther research.
     PartⅡTrehalose Enhances Autophagy of Untransfected and Transfected PC12Cells with Human WT or A53T Mutant SNCA Gene
     Aim: To study whether trehalose can enhance autophagy of untransfected andtransfected PC12cells with human WT or A53T mutant SNCA gene. Methods: Wetreated the cells with trehalose at different concentrations (10mM, 50mM and 100mM)for 24 hours, then detected the change of the number of autophagosome andautolysosome by immunofluorescence and transmission electron microscopy, andanalyzed the expression of LC3Ⅱto investigate whether trehalose could facilitate the autophagy. The expression ofα-synuclein was also analyzed by Western blotting toevaluate whether trehalose could enhance the degradation of WT and A53T mutantα-synuclein. The effects of trehalose on cell viability were judged by MTT assay.
     Results: Both 50mM and 100mM trehalose significantly increased the number ofautophagosome and autolysosome, up-regulated the expression of LC3Ⅱ(P<0.01) ,and enhanced the degradation of A53T mutantα-synuclein (50mM trehalose group,P<0.05; 100mM trehalose group, P<0.01 ) , but had no obvious effects on theexpression of WTα-synuclein (P>0.05) . When the cells were pretreated with 2mM3-MA for 3 hours, the autophagy induced by trehalose was inhibited. Both 50mM and100mM trehalose significantly decreased the cell viability of untransfected andtransfected PC12cells with human A53T mutant SNCA gene (P<0.01) , only 100mMtrehalose reduced the cell viability of transfected PC12cells with human WT SNCAgene (P<0.05. The reduction of cell viability of transfected PC12cells with human WTSNCA gene induced by trehalose was less than that of the other two types ofPC12cells (P<0.05) Conclusion: Trehalose could enhance the autophagy ofuntransfected and transfected PC12cells with human WT or A53T mutant SNCA gene,accelerate the degradation of A53T mutantα-synuclein and decrease the cell viabilityof all the three above types of PC12 cells. Trehalose exerted no obvious effects on theexpression of WTα-synuclein. The reduction of cell viability of transfected PC12cells with human WT SNCA gene induced by trehalose was less than that of the othertwo types of PC12 cells.
     PartⅢThe Effects of Trehalose on The PD cell Models Induced by ProteasomeInhibitor
     Aim: To investigate whether trehalose can enhance the autophagy of the PD cellmodels induced by proteasome inhibitor. Methods: We treated the cells withMG132(500nM), or MG132(500nM) and trehalose of different concentration(10mM、50mM、100mM) for 24 hours, then detected the change of the number ofautophagosome and autolysosome by immunofluorescence, and analyzed theexpression of LC3Ⅱby Western blotting to investigate whether trehalose couldenhance the autophagy of the PD cell models induced by proteasome inhibitor. Theexpression ofα-synuclein was also analyzed by Western blotting to investigatewhether trehalose could facilitate the degradation of the aggregated WT and A53Tmutantα-synuclein. The effects of trehalose on the viability of the cells treated by MG132 (500nM) were evaluated by MTT assay. Results: MG132(500nM) couldsignificantly inhibit the degradation ofα-synuclein (P<0.05), increase the number ofautophagosome, lysosome and autolysosome. Compared with MG132(500nM) group,Trehalose could significantly enhance the autophagy of the cells induced byMG132(500nM), obviously upregulate the expression of LC3Ⅱ(P<0.05) , alsofacilitate the degradation of the aggregated A53Tmutantα-synuclein (50mM trehalosegroup, P<0.05; 100mM trehalose group, P<0.01) , but had no effects on thedegradation of the aggregated WTα-synuclein induced by MG132. Trehalosesignificantly decreased the viability of the cells treated by MG132 (P<0.05)
     Conclusion: MG132 could facilitate the aggregation ofα-synuclein, compensatorilyenhance autophagy. Trehalose could enhance the autophagy of the cells induced byMG132 and accelerate the degradation of the aggregated A53T mutantα-synuclein,but had no effects on the degradation of the WTα-synuclein. Trehalose significantlydecreased the viability of the cells treated by MG132.
     Summary
     1. We successfully constructed PC12 cells lines stably expressing wild type and A53Tmutantα-synuclein.
     2. Trehalose could enhance the autophagy of untransfected and transfected PC12cellswith human WT or A53T mutant SNCA gene, facilitate the degradation of A53Tmutantα-synuclein.
     3. Trehalose could decrease the cell viability of all three types of PC12 cells.
     4. Proteasome inhibitor (MG132) could cause the aggregation ofα-synuclein,compensatorily enhance autophagy.
     5. Trehalose could enhance the autophagy of the cells induced by proteasomeinhibitor (MG132) and accelerate the degradation of the aggregated A53Tmutantα-synuclein
     6. Trehalose significantly decreased the viability of the cells treated by proteasomeinhibitor (MG132) .
引文
[1] Tabner BJ, El Agnaf OM, German MJ, et al . Protein aggregation, metals and oxidative stress in neurodegenerative diseases[J]. Biochem Soc Trans, 2005, 33(Pt5):1082-1086.
    
    [2] Paleologou KE, Irvine GB, El Agnaf OM. Alpha-synuclein aggregation in neurodegenerative diseases and its inhibition as a potential therapeutic strategy[J]. Biochem Soc Trans ,2005, 33(Pt 5):1106-1110.
    [3] Ross CA, Poirier MA. Protein aggregation and neurodegenerative disease[J]. Nat Med, 2004,10 Suppl:S10-S17.
    [4] Spillantini MG, Schmidt ML, Lee VM, et al. Alpha-synuclein in Lewy bodies[J]. Nature, 1997, 388(6645):839-840.
    
    [5] Baba M, Nakajo S, Tu PH, et al. Aggregation of alpha-synuclein in Lewy bodies of sporadic Parkinson's disease and dementia with Lewy bodies[J]. Am J Pathol, 1998, 152(4):879-884.
    
    [6] Maroteaux L, Campaneli JT, Scheller RE. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal[J]. J Neurosci, 1988, 8: 2804-2815.
    [7] Julie L. Webb, Brinda Ravikumar, Jane Atkins, et al. α-Synuclein Is Degraded by Both Autophagy and the Proteasome[J]. Biochem J, 2003, 278(27): 25009-25013
    [8] Kim TD, Palk SR,Yang CH, et al. Structural changes in alpha-synuclein affect its chaperone-like activity in vitro[J]. Protein Sci, 2000, 9: 2489-2496.
    [9] Mukaetova-Ladinska EB, McKeith IG. Pathophysiology of synuclein aggregation in Lewy body disease[J]. Mech Ageing Dev, 2006,127(2): 188-202.
    [10] Elkon H, Melamed E, Offen D. Oxidative stress, induced by 6-hydroxydopamine, reduces proteasome activities in PC12 cells: implications for the pathogenesis of Parkinson's disease[J]. J Mol Neurosci, 2004, 24(3):387-400.
    
    [11] McNaught KS, Bjorklund LM, Belizaire R, et al. Proteasome inhibition causes nigral degeneration with inclusion bodies in rats[J]. Neuroreport, 2002, 13(11):1437-1441.
    [12] Zeevalk GD, Bernard LP. Energy status, ubiquitin proteasomal function, and oxidative stress during chronic and acute complex I inhibition with rotenone in mesencephalic cultures[J]. Antioxid Redox Signal, 2005, 7(5-6):662-672.
    [13] Shamoto-Nagai M, Maruyama W, Kato Y, et al. An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH-SY5Y cells[J]. J Neurosci Res, 2003, 74(4):589-597.
    [14] Li J, Zhu M, Rajamani S, et al . Rifampicin inhibits alpha-synuclein fibrillation and disaggregates fibrils[J]. Chem Biol, 2004,11(11):1513-1521.
    [15] Zhu M, Rajamani S, Kaylor J, et al. The flavonoid baicalein inhibits fibrillation of alpha-synuclein and disaggregates existing fibrils[J]. J Biol Chem, 2004, 279(26):26846-26857.
    [16] Elbein AD, Pan YT, Pastuszak I, et al. New insights on trehalose: a multifunctional molecule[J]. Glycobiology, 2003,13(4):17R-27R.
    [17] Liu R, Barkhordarian H, Emadi S, et al. Trehalose differentially inhibits aggregation and neurotoxicity of beta-amyloid 40 and 42[J]. Neurobiol Dis, 2005, 20(1):74-81.
    [18] Romisch K. A cure for traffic jams: small molecule chaperones in the endoplasmic reticulum[J]. Traffic, 2004, 5(11):815-820.
    [19] Singer MA, Lindquist S. Thermotolerance in Saccharomyces cerevisiae: the Yin and Yang of trehalose[J]. Trends Biotechnol, 1998,16(11):460-468.
    [20] Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo[J]. Mol Cell, 1998,1(5):639-648.
    [21] Goyal K, Walton LJ, Tunnacliffe A. LEA proteins prevent protein aggregation due to water stress[J]. Biochem J, 2005,388(Pt 1):151-157.
    
    [22] Tanaka M, Machida Y, Niu S, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntingdon disease[J]. Nat Med, 2004,10(2):148-154.
    [23] Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein[J].J Biol Chem, 2007, 282:5641-5652.
    [24] Feany MB, Bender WW. A drosophila model of Parkinson's disease[J]. Nature,2000, 404: 394-398.
    [25] Biasini E, Fioriti L, Ceglia I, et al. Proteasome inhibition and aggregation in Parkinson's disease: a comparative study in untransfected and transfected cells[J].J Neurochem, 2004,88(3):545-53.
    [1] Ulmer TS, Bax A. Comparison of structure and dynamics of micelle-bound human alpha-synuclein and Parkinson disease variants[J]. J Biol Chem, 2005, 280:43179-43187.
    [2] Feany MB, Bender WW. A drosophila model of Parkinson's disease[J]. Nature,2000, 404: 394-398.
    [3] Biasini E, Fioriti L, Ceglia I, et al. Proteasome inhibition and aggregation in Parkinson's disease: a comparative study in untransfected and transfected cells[J].J Neurochem, 2004, 88: 545-553.
    [4] Perez RG, Waymire JC, Lin E, et al. A role for alpha-synuclein in the regulation of dopamine biosynthesis[J]. J Neurosci, 2002, 22:3090-3099.
    [5] Lee FJ, Liu F, Pristupa ZB, et al. Direct binding and functional coupling of alpha-synuclein to the dopamine transporters accelerate dopamine-induced apoptosis[J]. FASEB J, 2001,15: 916-926.
    [6] Joseph S, David WR. Molecular Cloning: A Laboratory Manual, 3rd ed[M]. New York: Cold Spring Haror Laboratory Press, 2006, 26-105.
    [7] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the a-Synuclein Gene Identified in Families with Parkinson's Disease[J]. Science, 1997, 276:2045-2047.
    [8] 张春岩,蔡青,于顺,等[J].α-突触核蛋白在正常大鼠脑神经元中的亚细胞定位.解剖学报,2006,37:251-254.
    [9] George JM. The synucleins[J]. Genome Biol, 2002, 3: 1-6.
    [10] Stefanis L, Kholodilov N, Rideout HJ, et al. Synuclein-1 is selectively up-regulated in response to nerve growth factor treatment in PC12 cells[J]. J Neurochem, 2001, 76:1165-1176.
    [11] Stefanis L, Larsen KE, Rideout HJ, et al. Expression of A53T mutant but not wild-type alpha-synuclein in PC12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death[J]. J Neurosci, 2001, 21:9549-9560.
    [12] McLaughlin SK, Collis P, Hermonat PL, et al. Adeno-associated virus general transduction vectors: analysis of proviral structures[J]. J Virol, 1988,62(6):1963-1973.
    [13] Muzyczka N. Use of adeno-associated virus as a general transduction vector for mammalian cells[J]. Curr Top Microbiol Immunol, 1992, 158:97-129
    [14] Buchschacher GL Jr, Wong-Staal F. Development of lentiviral vectors for gene therapy for human diseases[J]. Blood, 2000, 95: 2499-2504.
    [15] Dull T, Zufferey R, Kelly M, et al. A third-generation lentivirus vector with a conditional packaging system[J]. J Virol, 1998, 72:8463-8471.
    [1] Schmitz I, Kirchhoff S, Krammer PH. Regulation of death receptor-mediated apoptosis pathways[J]. Int J Biochem Cell Biol, 2000, 32:1123-1136.
    [2] Adams JM. Ways of dying: multiple pathways to apoptosis[J]. Genes Dev, 2003,17:2481-2495
    [3] Meijer AJ and Codogno P. Regulation and role of autophagy in mammalian cells[J]. Int J Biochem Cell Biol, 2004, 36: 2445-2462.
    [4] Kabeya Y, Mizushima N, Ueno T et al. LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing[J]. EMBO J, 2000, 19:5720-5728.
    [5] Mizushima N, Yoshimori T. How to Interpret LC3 Immunoblotting[J]. Autophagy, 2007 , 3:6542-6545.
    [6] Ashford TP and Porter KR. Cytoplasmic components in hepatic cell lysosomes[J]. J Cell Biol,1962,12:198-202.
    [7] Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply[J]. Annu Rev Nutr, 1987, 7:539-564.
    [8] Klionsky DJ and Emr SD. Autophagy as a regulated pathway of cellular degradation[J]. Science,2000, 290:1717-1721.
    [9] Crowe, JH, Crowe, LM. Preservation of mammalian cells earning nature tricks[J]. Nat Biotechnol, 2000, 18:145-147
    [10]Mazzobre, M.F, Del Pilar Buera, M. Combined effects of trehalose and cations on the thermal resistance of beta-galactosidase in freeze-dried systems[J]. Biochimica et Biophysica Acta, 1999,14:337-334
    [1 l]Tanaka M, Machida Y, Niu S, et al. Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease[J]. Nat Med, 2004, 10(2):148-154.
    [12]Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein[J]. J Biol Chem, 2007, 282:5641-5652
    [13]Crotzer VL and Blum JS. Autophagy and intracellular surveillance: Modulating MHC class Ⅱ antigen presentation with stress[J]. Proc Natl Acad Sci USA, 2005,102(22): 7779-7780.
    [14]Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes[J]. Science, 1996, 273:501-503.
    [15]Conway, K. A, Harper, J. D, and Lansbury, P. T. Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease[J].Nat Med,1998, 4:1318-1320
    [16] Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. Alpha-Synuclein is degraded by both autophagy and the proteasome[J]. J Biol Chem,2003,278(27):25009-13.
    [17] Kaul S. Anantharam V, Kanthasamy A, et al. Wild-type alpha-synuclein interacts with pro-apoptotic proteins PKCdelta and BAD to protect dopaminergic neuronal ceils against MPP+-induced apoptotic cell death[J]. Brain Res Mol Brain Res, 2005,139(1):137-52.
    [1] Moore DJ, Dawson VL, Dawson TM. Role for the ubiquitin-proteasome system in Parkinson's disease and other neurodegenerative brain amyloidoses[J]. Neuromol Med,2003,4(1-2):95-108.
    [2] McNaught KS, Perl DP, Brownell AL, et al. Systemic exposure to proteasome inhibitors causes a progressive model of Parkinson's disease[J]. Ann Neurol, 2004, 56(1):149-162.
    [3] McNaught KS, Olanow CW. Protein aggregation in the pathogenesis of familial and sporadic Parkinson's disease[J]. Neurobiol Aging, 2006, 27(4):530-545
    [4] Biasini E, Fioriti L, Ceglia I, et al. Proteasome inhibition and aggregation in Parkinson's disease: a comparative study in untransfected and transfected cells[J]. J Neurochem. 2004,88(3):545-53.
    [5] Ashish C. Massey, Susmita Kaushik, Guy Sovak, et al. Autophagy and neuro-degeneration: when the cleaning crew goes on strike[J]. Proc Natl Acad Sci. 2006, 103 ( 15): 5805-5810
    [6] Iwata A, Riley BE, Johnston JA, et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin[J]. J Biol Chem, 2005, 280: 40282-92.
    [7] Massey AC, Kaushik S, Sovak G, et al. Consequences of the selective blockage of chaperone-mediated autophagy[J]. Proc Natl Acad Sci USA, 2006, 103: 5805-10.
    [8] Sarkar S, Davies JE, Huang Z, et al. Trehalose, a novel mTOR-independent autophagy enhancer, accelerates the clearance of mutant huntingtin and alpha-synuclein[J]. J Biol Chem, 2007, 282:5641-5652
    
    [9] Kanzawa T, Germano, IM, Komata T,et al. Role of autophagy in temozolomide- induced cytotoxicity for malignant glioma cells[J]. Cell Death Differ, 2004,11:448-457.
    
    [10] Chang CP, Yang MC, Liu HS, et al. Concanavalin A induces autophagy in hepatoma cells and has a therapeutic effect in a murine in situ hepatoma model[J]. Hepatology, 2007,45: 286-296
    [11] Twig G, Elorza A, Molinal A JA, et al. Fission and selective fusion govern mitochondrial segregation and elimination by autophagy[J]. EMBO J, 2008, 27: 433-446
    
    [12]Seglen PO, Gordon PB. 3-Methyladenine: specific inhibitor of autophagic/lysoso- mal protein degradation in isolated rat hepatocytes[J]. Proc Natl Acad Sci, 1982 ,79(6): 1889-1892.
    
    [13] Webb JL, Ravikumar B, Atkins J, et al. a-Synuclein is degraded by both autophagy and the proteasome[J]. Biochem J, 2003, 278(27): 25009-25013
    [1] Adams JM. Ways of dying: multiple pathways to apoptosis Genes Dev, 2003, 17:2481-2495
    [2] Mortimore GE, Poso AR. Intracellular protein catabolism and its control during nutrient deprivation and supply[J]. Annu Rev Nutr, 1987,7:539-564.
    [3] Kondo Y, Kanzawa T, Sawaya R, et al. The role of autophagy in cancer development and response to therapy[J]. Nat Rev Cancer, 2005, 5: 726-734 .
    [4] Crotzer VL and Blum JS. Autophagy and intracellular surveillance: Modulating MHC class II antigen presentation with stress[J]. Proc Natl Acad Sci USA,2005,102(22): 7779-7780.
    [5] Cuervo AM, Dice JF. A receptor for the selective uptake and degradation of proteins by lysosomes[J]. Science, 1996,273:501-503.
    [6] Tanida I, Ueno T, Kominami E. LC3 conjugation system in mammalian autophagy[J]. Int J Biochem Cell Biol,2004,36(12):2503-2518.
    [7] Meijer AJ and Codogno P. Regulation and role of autophagy in mammalian cells[J]. Int J Biochem Cell Biol, 2004, 36: 2445-2462.
    [8] Baehrecke EH. Autophagy: dual roles in life and death[J]? Nature Reviews Molecular Cell Biology, 2005,6:505-510.
    [9] Klionsky DJ . The molecular machinery of autophagy:unanswered questions[J]. J Cell Sci, 2005,118:7-18.
    [10]Webb JL, Ravikumar B, Atkins J, et al. Alpha-synuclein is degraded by both autophagy and the proteasome[J]. J Biol Chem. 2003,278: 25009-25013.
    [11]Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy[J]. Science, 2004, 305: 1292-1295.
    [12]Cuervo AM. Autophagy in neurons: it is not all about food[J]. Trends Mol Med,2006,12: 461-464.
    [13]Massey AC, Kaushik S, Sovak G , et al.Consequences of the selective blockage of chaperone-mediated autophagy[J]. Proc Natl Acad Sci USA, 2006,103: 5805-5810.
    [14]Iwata A, Riley BE, Johnston JA, et al. HDAC6 and microtubules are required for autophagic degradation of aggregated huntingtin[J]. J Biol Chem, 2005, 280: 40282-40292.
    [15]Rideout HJ, Lang-Rollin I, Stefanis L. Involvement of macroautophagy in the dissolution of neuronal inclusions[J]. Int J Biochem Cell Biol, 2004, 36: 2551-2562.
    [16]Gusella JF. Huntington disease collaborative reasearch group: A novel gene containing a trinucleotide repeat that is expanded and unstable on Hunting6tn's disease chromosomes[J]. Cell, 1993, 72: 971-976.
    [17] Harper PS. A specific mutation on Huntington's disease[J]. J Med Genet, 1993,30:975-978.
    [18]Kahlem P, Green H, Djian P. Transglutaminase action imitates Huntington disease: selective polymerization of Huntingtin containing expanded polyglutamine[J]. Mol. Cell, 1998, 1(4): 595-601.
    [19] Rubinsztein DC, DiFiglia M, Tolkovsky A, et al. Autophagy and its possible roles in nervous system diseases, damages and repair[J]. Autophagy, 2005, 1(1):011-022.
    [20]Nixon RA, Cataldo AM, Mathews PM. The endosomal-lysosomal system of neurons in Alzheimer's disease pathogenesis: a review[J]. Neurochem Res,2000, 25(9-10): 1161-1172.
    [21]Kegel KB, Kim M, Sapp E, et al. Huntingtin expresssion stimulates endosomal-lysosomal activity, endosome tubulation, and autophagy[J]. J Neurosci,2000, 20(19): 7268-7278.
    [22]Stefanis L, Larsen KE, Rideout HJ, et al. Expression of A53T mutant but not wild-type alpha-synuclein in PC 12 cells induces alterations of the ubiquitin-dependent degradation system, loss of dopamine release, and autophagic cell death[J]. J Neurosci,2001, 21(24): 9549-9560.
    [23] Chang RC, Wong AK, Ng HK, et al. Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer's disease[J]. Neuroreport,2003, 13(18): 2429-2432.
    [24] Petersen A, Larsen KE, Behr GG et al. Expanded CAG repeats in exon 1 of the Huntington's disease gene stimulate dopamine-mediated striatal neuron autophagy and degeneration[J]. Hum Mol Genet,2001,10(12): 1243-1254.
    [25] Gomez-Santos C, Ferrer I, Santidrian AF, et al. Dopamine induces autophagic cell death and alpha-synuclein increase in human neuroblastoma SH-SY5Y cells[J]. J Neurosci Res,2003, 73(3): 341-350.
    [26] Michalik A and Van Broeckhoven C. Pathogenesis of polyglutamine disorders: aggregation revisited[J]. Hum Mol Genet, 2003,12:R173-R186.
    [27] Ravikumar B, Duden R and Rubinsztein DC. Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy [J]. Hum Mol Genet,2002,11(9): 1107-1117.
    [28]Norris EH, Giasson BI. Role of oxidative damage in protein aggregation associated with Parkinson's disease and related disorders[J]. Antioxid Redox Signal, 2005, 7: 672-684.
    [29] Mitsumoto A, Nakagawa Y. DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin[J]. Free Radic Res, 2001, 35: 885-893.
    [30]Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1[J]. Science, 2004, 304:1158-1160.
    [31]Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism[J]. Nature, 1995, 392: 605-608.
    [32]McNaught KS, Mytilineou C, Jnobaptiste R, et al. Impairment of the ubiquitin-proteasome system causes dopaminergic cell death and inclusion body formation in ventral mesencephalic cultures[J]. J Neurochem, 2002, 81: 301-306.
    [33]Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase[J]. Nat Genet, 2006, 38: 1184-1191.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700