布置碳纤维发热线的混凝土路面及桥面融雪化冰试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速公路、城市高架桥、机场跑道、人行道及隧道口等重要场所及路段做好除冰雪的工作对保障道路畅通及人们出行安全具有非常重要的实际意义。本文介绍并比较了各种路面融雪化冰方式,选取混凝土板内埋设碳纤维发热线通电升温的方式融雪化冰。该融雪化冰方式避免了融雪剂对混凝土路面结构和环境产生的负面影响,而且碳纤维发热线比传统金属发热线材电热性能更好,成本更低。本文通过理论分析和试验研究,开展了如下研究工作:
     1.由基本传热学理论,得出布置发热线混凝土板的融雪化冰过程为在边界条件存在传导、对流和辐射换热情况下,且包括冰雪融化时的相变问题在内的有内热源物体的非线性瞬态传热问题。对系统融雪化冰过程中涉及到的重要参数做了详细介绍说明。由有限元温度场计算分析得出发热线间距小于100mm的混凝土板表面温差小于2℃,满足融雪化冰板面温度均匀性要求,且发热线的保护层厚度在20-60mm间变动对混凝土板表面温度场分布影响较小。
     2.室内试验研究首先对比了不同类型的碳纤维发热线,选取硅胶外被的碳纤维发热线作为埋设于混凝土板内融雪化冰的发热线缆。不同间距发热线的混凝土板温升试验显示发热线间距为100mm的混凝土板可以满足-25℃的化雪要求,即板面温度均匀性要求和在给定时间内板面平均温度达到0℃以上的化雪温度要求。
     3.混凝土小板试件在空气温度为-25℃时的升温试验结果显示不同功率下的升温幅度为10℃~30℃,功率与温度增量的拟合结果基本成线性。混凝土板的升降温全过程曲线显示加热过程中冰柜内空气温度变化不大,这证明了冰柜内模拟混凝土板融雪化冰试验方法的合理性。混凝土小板融雪化冰试验研究给出了不同空气温度、不同冰层厚度,化冰时间不超过3小时情况下所需要的最小功率值。板面融雪及化冰的对比试验显示融雪较快,因此路面清除积雪的工作应在雪变成冰之前进行。另外还对影响板升温的其他因素:有无预热、有无隔热层及缠绕发热线的钢筋进行了试验研究。
     4.室外试验研究首先介绍了布置发热线混凝土桥面板及路面板的制作方法。大板的温升试验研究了布置三种不同发热线间距的混凝土板板面温度的均匀性及风力等级对温升的影响。分析比较了路面板桥面板的温升过程。大板室外的融雪化冰试验在不同天气条件下进行,混凝土大板化雪试验的输入功率范围在300-1000W/m2,积雪融化时间最长不超过5.25小时。分析研究了路面融雪化冰系统控制电路的连接及工作流程,提出了由温湿度检测设备同时返回报警信号控制电源开闭的工作方式。
     5.发热线混凝土板融雪化冰的温度场有限元分析采用结冰的路面作为研究对象。由试错法根据温升试验的温度监测结果确定温度场有限元分析中的重要参数:混凝土导热系数,再将该导热系数运用于混凝土板的融雪化冰有限元分析计算中。与试验结果相比,数值结果较准确模拟了布置发热线的混凝土板融雪化冰的过程,证明了该计算方法的可行性。混凝土路面融雪化冰的有限元预测分析给出了不同天气条件下3-4小时内融雪化冰的输入功率和发热线布置间距。该预测分析为实际工程中混凝土板内发热线设计及输入功率的选取提供了参考和借鉴。
Deicing at the important locations, such as freeway, pedestrian bridge, airfield runway, side walks, and tunnel entrance, have an important practical significance to ensure road traffic safe and unblocked. By surveying the existing deicing and anti-icing methods and comparing them, a method of deicing with carbon fiber heating wire (CFHW) buried inside concrete slabs is presented in this paper to avoid the negative effects of traditional deicing salt on the structure, function and environment. In addition, CFHW is cheaper and has better electrical-thermal property than traditional metalic heating wire. Then the work is done in this dissertation using theoretical analysis and experimental method as follows.
     1. By the theory of heat transfer, the process of concrete slab deicing with CFHW belongs to nonlinear transient heat transfer issue of research object with inner heat source. The boundary conditions including thermal conduction, convection, radiation and the phase transition of ice and snow are involved in this issue. The important parameters related to thermal analysis of system deicing are described in detail. The finite element analysis of temperature field shows that the temperature difference on concrete slab surface is less than 2℃when CFHW spacing is not more than 100mm, which meets the temperature uniformity requirements for deicing. The change of CFHW cover thickness in the range of 20-60mm has the less influence on temperature distribution on concrete slab surface.
     2. In laboratory experiments of small-scale slab, CFHW with silicon gel coat was selected to be used in concrete deicing system by evaluating different types of CFHW. The slab heating experiments of different CFHW spacings indicate 100 mm CFHW spacing can meet the deicing requirements at-25℃, i.e., the temperature distribution on the slab surface is uniform and the average temperature can rise above 0℃within a given time period.
     3. When air temperature is-25℃, the range of temperature increment on slab surface is 10℃-30℃under different input power. The fitting result from the real values of experiments approximates a straight line. During the heating process, the environment temperature in refrigerator was stable, which verified the rationality of the experiment method of refrigerator simulating low-temperature environment. For different air temperature and ice thickness, the minimum input power of slab for deicing in 3h was summarized. Snow melting is more quickly than ice melting under similar situation. So in practice the road deicing should be done before snow turn into ice for saving time and energy. Another influence factors on slab heating, such as pre-heating, insulating layer, reinforcing steel bar wound around CFHW, were experimental researched.
     4. In field experiments, the production process of concrete slabs simulating pavement and bridge deck installed with CFHW is introduced. For these concrete slabs with three types of CFHW spacing, temperature uniformity of slab surface and the influence of wind force scale on slab heating were researched. The heating experiments of pavement and bridge deck model were analyzed and compared. The range of input power is 300-1000W/m2 for deicing experiments and deicing time is not more than 5.25h under different weather condition. The control circuit connection and working flow chart for control circuit of deicing system were studied and an operation mode of controlling switch by returning alarm signal obtained from temperature and humidity sensors was proposed. The analysis about net participants'cost and operation cost of concrete slab deicing with CFHW shows that this method has advantages of not only eco-friendly but also cost-effective.
     5. The ice pavement is determined as study object in finite element analysis of temperature field of concrete slab deicing with CFHW. According to experimental results of slab heating, a trial-error approach is proposed to determine the important parameter in finite element analysis of temperature field:thermal conductivity of concrete, and then it is applied in finite element analysis of concrete slab deicing. Compared with experimental results, the calculated ones show good agreement for the heating process of concrete slab deicing, which verified the validity of analytical method. Prediction results of concrete pavement deicing with CFHW in 3-4 hours by finite element analysis list the input power and CFHW spacing under different weather situation, which provides some references for designing CFHW spacing and selecting input power in the real projects of concrete slab deicing with CFHW.
引文
[1]李昌龙,付俊荣,吕金林.试论高速公路冬季除雪防滑[J].东北公路,2001,24(2):3-6.
    [2]Elvik, Rune. Assessing the validity of road safety evaluation studies by analyzing causal chains[J]. Accident Analysis and Prevention,2003,35(5):741-748.
    [3]Parmenter B S, Thornes J E. The use of a computer model to predict the formation of ice on road surfaces[R]. Transport and Road Research Laboratory Research Report,1986,1:1-19.
    [4]磨炼同.导电沥青混凝土的制备与研究[D].硕士学位论文.武汉:武汉理工大学,2004.
    [5]Gard, Gunvor, Lundborg. Pedestrians on slippery surfaces during winter—methods to describe the problems and practical tests of anti-skid devices [J]. Accident Analysis & Prevention,2000,32(3): 455-460.
    [6]洪乃丰.氯盐融雪剂是把“双刃剑”—浅议国外使用化冰盐的教训与经验[J].城市与减灾,2005,(4):19-21.
    [7]CRREL. Manual of practice for an effective anti-icing program:a guide for highway winter maintenance personnel.1995 [2007,02,06]. http://www.fhwa.dot.gov/reports/mopeap/mop0296a.htm.
    [8]Yehia S, Tuan C Y. Bridge deck deicing [C]. Transportation Conference Proceedings.1998.
    [9]Cryotech. Importance of product concentration for potassium acetate runway deicers.1995 [2007,02, 06]. http://www.cryotech.com/technical_bulletins/E36/9-15-95.php.
    [10]Johnson K L. Environmentally safe liquid runway deicer.1992 [2007,02,06]. http://www.p2pays.org/ref/12/11425.pdf.
    [11]Zwahlen H T, Russ A, Vatan S. Evaluation of ODOT roadway/weather sensor systems for snow and ice removal operations Part I:RWIS[R]. Russ College of Engineering and Technology Final Report, FHWA/OH-2003/008A,2003.
    [12]Kuemmel D A. Report on the 1998 scanning review of European winter service technology[R]. NCHRP Research Results Digest No 238, Washington, DC,1999.
    [13]Corsi S R, Geis S W, Loyo-Rosales J E, et al. Characterization of aircraft deicer and anti-Icer components and toxicity in airport snowbanks and snowmelt runoff [J]. Environment Science Technology,2006,40 (10):3195-3202.
    [14]Anti-icing and RWIS technology in Canada. Canadian Strategic Highway Research Program (C-SHRP). C-SHRP Technical Brief#20.2000 [2010,04,10]. http://www.cshrp.org/products/brief-20.pdf.
    [15]Zhang J, Das D, Peterson R, et al. Comprehensive evaluation of bridge anti-icing technologies-final report [R]. Alaska Department of Transportation and Public Facilities.2007.1.
    [16]Persichetti B. Safe in the snow.2006 [2007,02,06]. http://goBridges.com/article.asp?id=1457.
    [17]Wang Kejin, Nelsen D E, Nixon W A. Damaging effects-of deicing chemicals on concrete materials [J]. Cement and Concrete Composites,2006,28(2):173-188.
    [18]洪乃丰.防冰盐腐蚀与钢筋混凝土的耐久性[J].建筑技术,2000,(2):102-104.
    [19]洪乃丰.我国北方地区冬季撒盐的利害分析与对策[J].低温建筑技术,2000,(3):12-13.
    [20]Green S M, Machin R, Cresser M S. Effect of long-term changes in soil chemistry induced by road salt applications on N-transformations in roadside soils [J]. Environmental Pollution,2008,152(1):20-31.
    [21]Blomqvist G, Johansson E L. Airborne spreading and deposition of de-icing salt-a case study [J]. Science of The Total Environment,1999,235(1-3):161-168.
    [22]Thunqvist E L. Regional increase of mean chloride concentration in water due to the application of deicing salt [J]. Science of the Total Environment,2004,325(1-3):29-37.
    [23]Backstrom M, Karlsson S, Backman L, et al. Mobilisation of heavy metals by deicing salts in a roadside environment [J]. Water Research,2004,38(3):720-732.
    [24]Novotny E V, Murphy D, Stefan H G. Increase of urban lake salinity by road deicing salt [J]. Science of The Total Environment,2008,406(1-2):131-144.
    [25]Godwin K S, Hafner S D, Buff M F. Long-term trends in sodium and chloride in the Mohawk River, New York:the effect of fifty years of road-salt application [J]. Environmental Pollution,2003, 124(2):273-281.
    [26]Norrstrom A C. Metal mobility by de-icing salt from an infiltration trench for highway runoff [J]. Applied Geochemistry,2005,20(10):1907-1919.
    [27]Thunqvist E L. Increased chloride concentration in a lake due to deicing salt application [J]. Water Science and Technology,2003,48(9):51-59.
    [28]Kayama M, Quoreshi A M, Kitaoka S, et al. Effects of deicing salt on the vitality and health of two spruce species, Picea abies Karst., and Picea glehnii Masters planted along roadsides in northern Japan [J]. Environmental Pollution,2003,124(1):127-137.
    [29]姚婧.融雪剂之害[J].期刊经济ECONOMY,2006,(1):130-132.
    [30]Xie P, Gu P, Fu Y, et al. Conductive Cement-based Compositions [P].1995, Patents ALERT 5447564: 459.
    [31]张雄.建筑功能材料[M].北京:中国建筑工业出版社,2000.
    [32]李仁福.导电混凝土采暖地面[J].混凝土,1998,(6):47-48.
    [33]Fu X L, Chung DDL. Carbon fiber reinforced mortarasan electrical contact material for cathodic protection [J]. Cement and Concrete Research,1995,25(4):689-694.
    [34]Fu X L, Chung D D L. Radio-wave-reflecting concrete for lateral guidance in automatic highways [J]. Cement and Concrete Research,1998,28(6):795-801.
    [35]Shi Z Q, Chung D D L. Carbon fiber reinfoced concrete for traffic monitoring and weighing in motion [J]. Cement and Concrete Research,1999,29(4):435-439.
    [36]Fu X L, Chung D D L. Self-monitoring of fatigue damage in carbon fiber reinforced cement [J]. Cement and Concrete Research,1996,26(1):15-20.
    [37]Tumidajski P J, Xie P, Arnott M, et al. Overlay current in a conductive concrete snow melting system [J]. Cement and Concrete Research,2003, (33):1807-1809.
    [38]雀部博之.导电高分子材料[M].北京:科学出版社,1989.
    [39]Xie P, Beaudoin J J. Electrically conductive concrete and its application in deicing [C]. Advances in Concrete Technology. In:Proceedings, Second CANMETP ACI International Symposium. Mich: 1995:399-417.
    [40]Tumidajski P J. High powered concrete [J]. St.Lawrence Cem.World,2002,(1):5.
    [41]杨伯科.混凝土实用新技术手册[M].长春:吉林科学技术出版社,1998.
    [42]何永晋.大庇天下寒士俱欢颜—访俄罗斯导电混凝土专家金博士[N].科技日报,1994,12,17.
    [43]Manchuk R V. Electroconducting concrete as a material for protection of electronic equipment and personnel against electromagnetic impact [J]. Chemical Abstracts,2001,(59):58.
    [44]Xie P, Gu P, Beaudonin J J. Electrical percolation phenomenain cement composites containing conductive fibres[J]. Journal of Materials Science,1996,31(15):4093-4097.
    [45]Gu P, Xie P, Beaudoin J J, et al. A.C. impedance spectroscopy (I):A new equivalent circuit model for hydrated portland cement paste[J]. Cement and Concrete Research,1992,22(5):833-840.
    [46]Pye G B, Myers R E, Arnott M R, et al. Conductive concrete compositions containing carbonaceous particles[J]. Chemical Abstracts,2001,(58):76.
    [47]孙浦生.英国研制出能快速变热的导电混凝土[J].石油工程建设,1998,(6):54.
    [48]Kang S H, Ko J S, Kim J J, et al. Conductive carbon fiber composite for concrete structures [J]. Chemical Abstracts,2001,(57):58.
    [49]Sherif Y, Tuan C Y. Conductive concrete overlay for bridge deck deicing [J]. ACI Materials Journal, 1999,96(3):382-390.
    [50]Serif Y, Tuan C Y, Ferdonetal D. Conductive concrete overlay for bridge deck deicing:mixture proportioning optimization and properties [J]. ACI Materials Journal,2000,97(2):172-181.
    [51]Tuan C Y. Electrical resistance heating of conductive concrete containing steel fibers and shavings [J]. ACI Materials Journal,2004,(1-2):65-71.
    [52]Tuan C Y, Sherif Y. Evaluation of electrically conductive concrete containing carbon products for deicing [J]. ACI Materials Journal,2004,(7-8):287-293.
    [53]Tuan C Y. Roca Spur Bridge:the implementation of an innovative deicing technology [J]. Journal of Cold Regions Engineering,2008,22(1):1-15.
    [54]Wang Gang. Electrically conductive graphite containing concrete[J]. Chemical Abstracts,2001,(58): 57.
    [55]李仁福,戴成琴,于纪寿等.导电混凝土采暖地面[J].混凝土,1998,(1):47-48.
    [56]孙旭.导电混凝土在变电站接地网中的应用[J].高电压技术,2001,(1):66-67.
    [57]唐祖全,李卓球,侯作富等.导电混凝土电热层布置对路面除冰效果的影响[J].武汉理工大学学报,2002,(2):45-48.
    [58]侯作富,李卓球,王建军.碳纤维水泥基复合材料电阻变化规律研究[J].武汉理工大学学报,2007,29(7):30-32.
    [59]侯作富,李卓球,唐祖全.融雪化冰用碳纤维混凝土的导电性能研究[J].武汉理工大学学报,2002,24(8):32-34.
    [60]唐祖全,李卓球,徐东亮等.碳纤维导电混凝土电热升降温规律研究[J].华中科技大学学报(城市科学版),2009,19(3):7-9.
    [61]唐祖全,李卓球,侯作富等.导电混凝土电热除冰化雪的功率分析[J].重庆建筑大学学报,2002,24(3):101-105.
    [62]侯作富,李卓球,唐祖全.导电混凝土除冰化雪系统输入功率的有限元计算[J].华中科技大学学报(城市科学版),2002,19(1):82-85.
    [63]沈刚,董发勤.碳纤维导电混凝土的性能研究[J].公路,2004,(12):178-181.
    [64]朱四荣,李卓球,宋显辉等.PAN基碳纤维毡的电热性能[J].武汉理工大学学报,2004,(9):13-16.
    [65]吴少鹏,磨炼同,水中和.石墨改性沥青混凝土的导电机制[J].自然科学进展,2005,15(4):446-452.
    [66]李玉静.发热电缆及其在民用建筑中的应用[J].山西建筑,2009,35(25):203-204.
    [67]李炎锋,胡世阳,武海琴等.发热电缆用于路面融雪化冰的模型[J].北京工业大学学报,2008,34(12):1298-1303.
    [68]Henderson D J. Experimental roadway heating project on a bridge approach[R]. Highway Research Record,1965,111(14):14-25.
    [69]Zenewitz, J A. Survey of alternatives to the use of chlorides for highway deicing [R]. Report No. FHWA-RD-77-52,1977.
    [70]Mark D J, Felix C M. Electric heating of Ⅰ-84 in Ladd Canyon, Oregon[R]. Oregon Department of Transportation Research Unit and Federal Highway Administration. Report No. FHWA-OR-RD-06-17,2006.
    [71]刘红梅.低温发热电缆在住宅工程中的应用[J].建筑技术,2006,37(7):507-508.
    [72]李建平.访欧随笔[J].国外采风,2005,(12):50-52.
    [73]朱强,赵军,刘益青.太阳能—土壤蓄热技术在公路融雪中的应用[J].建设科技,2005,(14):70-71.
    [74]朱强,宋著坤,赵军.太阳能和地表热能道路融雪化冰系统[J].太阳能,2004,(6):84-85.
    [75]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路,2007,(5):170-174.
    [76]Wadivkar O. An experimental and numerical study of the thermal performance of a bridge deck de-icing system [D]. Degree of Master of Science. Oklahoma, Oklahoma State University,1997.
    [77]Ferrara A A, Haslett R. Prevention of preferential bridge icing using heat pipes[R]. Report No. FHWA-RD-75-111, Federal Highway Administration.1975.
    [78]Lee R C, Sackos J T, Nydahl J E, et al. Bridge heating using ground-source heat pipes [J]. Transportation Research Record,1984,(962):51-57.
    [79]Heated Pipes keep deck ice free [J]. Civil Engineering, ASCE,1998,68(1):19-20.
    [80]Cress M D. Heated bridge deck construction and operation in Lincoln Nebraska[C]. IABSE Symposium, San Francisco,1995,449-454.
    [81]Ficenec J A, Kneip S D, Tadros M K, et al. Prestressed spliced Ⅰ cirders:tenth street viaduct project Lincoln Nebr [J]. PCI Journal,1993,(9-10):38-48.
    [82]Mahadevan Ramamoorthy. Applications of hybrid ground source heat pump systems to builds and bridge decks [D]. Oklahoma State University, MSC dissertation,2001.
    [83]Switzenbaum M S, Veltman S, et al. Best management practices for airport deicing stormwater [J]. Chemosphere,2001,(43):1051-1062.
    [84]Yehia S, Tuan C Y. Bridge deck deicing[C]. In Transportation Conference Proceedings.1998,51-57.
    [85]Johnson G. Smart roads can de-ice itself:pavement overlay releases chemical in bad weather. The Calgary Herald,2006[2010,03,06]. http://www.southam.com/calgaryherald.
    [86]Oregon Department of Transportation (ODOT, ODOT Region 5 Ladd Canyon Heating Project) [R]. 2006 [2010,04,16]. http://www.oregon.gov/ODOT/HWY/REGION5/ladd_canyon_heating.shtml.
    [87]Spitler J D, Ramamoorthy M. Bridge deck deicing using geothermal heat pumps[C]. In Proceedings of the Fourth International Heat Pumps in Cold Climates Conference, in Alymer, Quebec,2000.
    [88]Xie P, Gu P, Beaudion J J. Electrical percolation phenomena in cement composites containing conductive fibers [J]. Journal of Materials Science,1996,31(15):4093-4097.
    [89]Chapman A J. Heat Transfer [M]. New York:Mac-millan,1974.
    [90]Holman J P. Heat Transfer [M]. New York:McGraw-Hill,1976.
    [91]黄方谷,韩凤华.工程热力学与传热学[M].北京:北京航空航天大学出版社出版,1993.
    [92]翁中杰,程惠尔,戴华淦.传热学[M].上海:上海交通大学出版社,1987.
    [93]Crank J. Free and Moving Boundary Problems [M]. Oxford:Clarendon Press,1984.
    [94]张仁元.相变材料与相变储能技术[M].北京:科学出版社,2009.
    [95]张寅平,胡汉平,孔祥东等.相变储能-理论和应用[M].合肥:中国科学技术大学出版社,1996.
    [96]Carslaw H S, Jaegor J C. Conduction Heat in Solids [M]. Oxford:Clarendon Press,1959.
    [97]Tien R H, Geiger G E. A heat-transfer analysis of the solidification of a linary eutectic system[J]. Journal of Heat Transfer,1967,(89):230-234.
    [98]奥齐西克MN.热传导[M].俞昌铭译.北京:高等教育出版社,1983.
    [99]Colbeck S.Theory of metamorphism of wet snow[R]. U. S. Army Cold Regions Research & Engineering Laboratory Report.1973.
    [100]Colbeck S. An overview of seasonal snow metamorphism[J]. Reviews of Geophysics and Space Physics,1982,20(1):45-61.
    [101]Colbeck S. Theory of metamorphism of dry snow [J]. Journal of Geophysical Research,1983,88: 5475-5482.
    [102]Colbeck S. Classification of seasonal snow cover crystals [J].Water Resources Research,1986,22(9): 59-70.
    [103]Pitman D, Zuckerman B. Effective thermal conductivity of snow at-88℃,-27℃and -5℃[R]. SAO Special Report#267,1968.
    [104]Colbeck S, Akitaya E, Armstrong R, et al. International classification for seasonal snow on the ground [S]. Int.Comm.Snow and Ice (IAHS), World Data Center A for Glaciology, U.of Colorado, Boulder, CO.1990.
    [105]Adlam T N. Snow melting [M]. New York:The Industrial Press,1950.
    [106]王华军.流体加热道路融雪传热传质特性研究[D].博士学位论文.天津:天津大学,2007.
    [107]Abels H. Observations on the daily course of snow temperatures and the determination of the thermalconductivity of snow as a function of its density[J]. Meteorol,1982,(16):1-53.
    [108]Yen Y. Review of intrinsic thermophysical properties of snow, ice, sea ice and frost[J]. Northern Engineer,1991,23(1):187-218.
    [109]Sturm M. Snow and climate [C]. Annual meeting of OLCG. Fairbanks, Nov.2003.
    [110]Wang Huajun, Zhao Jun. Experimental investigation of ice and snow melting process on pavement utilizing geothermal tail water[J]. Energy Conversion and Management,2008,49(6):1538-1546.
    [111]Boone A. Modelisation des processus hydrologiques dans le schema de surface ISBA:inclusion d'un reservoir hydrologique, du gel et de la modelisation de la neige (modeling hydrological processes in the land surface scheme ISBA:inclusion of a hydrological reservoir, ice and a snow model) [D]. Ph.D. Thesis. Toulouse, France, Paul Sabatier Univ.,2000.
    [112]Molders N, Walsh J E. Atmospheric response to soil-frost and snow in Alaska in March[J]. Theor. Appl. Climatol.,2004,(77):77-105.
    [113]Thomas D, Dieckmann G S. Sea ice-an introduction to its physics, biology, chemistry and geology [M], London:Blackwell Science,2003.
    [114]刘昌明,傅国斌.今日水世界[M].广州:暨南大学出版社,2000.
    [115]Weng Fuzhong. Advances in radiative transfer modeling in support of satellite data assimilation [C]. Hyperspectral Imaging and Sensing of the Environment (HISensE), Hyperspectral Applications (HWD),Vancouver, Canada,2009.
    [116]Kaya J E, Gillespiea A R, Hansenb G B. Spatial relationships between snow contaminant content, grain size, and surface temperature from multispectral images of Mt.Rainier, Washington (USA) [J]. Remote Sensing of Environment,2003,(86):216-231.
    [117]Warren S G. Optical properties of snow [J]. Reviews of Geophysics and Space Physics,1982,20(2): 67-89.
    [118]Marshall S, Warren S G. Parameterization of snow albedo for climate models [R]. Snow Watch'85. Glaciological Data Report GD-18,1986:215-223.
    [119]Klein A G, Stroeve J. Development and validation of a snow albedo algorithm for the MODIS instrument [J]. Annals of Glaciology,2002,34(1):45-52.
    [120]Roesch A, Gilgen H, Wild M, et al. Assessment of GCM simulated snow albedo using direct observations [J]. Journal Climate Dynamics,1999,15(6):405-418.
    [121]Curry J A, Schramm J L, Perovich D, et al. Applications of SHEBA/FIRE data to evaluation of snow/ice albedo parameterizations[J]. Journal of Geophysical Research,2001,(15):345-355.
    [122]Habib U, Ramazan D, Remzi S, et al. The effects of different cement dosages, slumps, and pumice aggregate ratios on the thermal conductivity and density of concrete[J]. Cement and Concrete Research,2004,34(5):845-848.
    [123]Harmathy T Z. Thermal properties of concrete at elevated temperatures [J]. Journal of Materials, 1970,(5):47-74.
    [124]Marshall A L. The thermal properties of concrete[J]. Building Science,1972,(7):167-74.
    [125]Khan M I, Bhattacharjee B. Relationship between thermal conductivities of aggregate and concrete [C]. Civil engineering materials and structures. Osmania University Hyderabad, India.1995.
    [126]Khan M I. Factors affecting the thermal properties of concrete and applicability of its prediction models[J]. Building and Environment,2002, (37):607-614.
    [127]Thermal properties of concrete[R]. Boulder Canyon Project Report, Final Report by USBR, Bulletin No.l, PartVll,1940.
    [128]刘兴法.混凝土结构的温度应力分析[M].北京:人民交通出版社,1991.
    [129]吴赣昌.半刚性路面温度应力分析[M].北京:科学出版社,1995.
    [130]朱伯芳.大体积混凝土温度应力与温度控制[M].北京:中国电力出版社,1999.
    [131]董毓利.混凝土结构的火安全设计[M].北京:科学出版社,2001.
    [132]张枫,肖建庄,宋志文.混凝土导热系数的理论模型及其应用[J].商品混凝土,2009,(2):23-25.
    [133]Campbell A D, Thorne C P. The thermal conductivity of concrete[J]. Magazine of Concrete Research, 1963,15(43):39-48.
    [134]Hamilton R L, Crosser 0 K. Thermal conductivity of heterogeneous two-component systems [J]. Industrial and Engineering Chemistry Fundamentals, American Chemical Society,1962,(1):187-191.
    [135]Gorring R L. Thermal conductivity of heterogeneous materials[J]. Chemical Engineering Process, 1961,(57):53-59.
    [136]Kingery W D. Introduction to Ceramics[M]. New York:John Wiley and Sons Inc.,1960.
    [137]D.A. de Vries. The thermal conductivity of granular materials[J]. Bulletin Institute International du Froid. Annexe,1952,(32):115-131.
    [138]Harmathy T Z. Thermal properties of concrete at elevated temperatures [J]. Journal of Material, 1970,(5):47-74.
    [139]Kim K H, Jeon S E, Kim J K, et al. An experimental study on thermal conductivity of concrete[J]. Cement and Concrete Research,2003, (33):363-371.
    [140]绝热材料稳态热阻即有关特性的测定,防护热板法[S].GB10294-1988.
    [141]绝热材料稳态热阻及有关特性的测定,热流计法[S].中国建筑材料联合会,GB/T 10295-2008,2008-6-30.
    [142]轻集料混凝土技术规程[S].中国建筑科学研究院,JGJ51-2002.
    [143]Schleiermacher A. Ueber die warmeleitung der gase[J]. Ann. Physik. Chem,1888,(34):623-625.
    [144]Vander H, Van D. A method of measuring the thermal conductivity of liquids[J].Physies,1950,(15): 309.
    [145]Blaekwell J H. A transient-flow method of determination of thermal constant of insulating materials in bulk[J]. Journal of Applied Physics,1954,(25):137-144.
    [146]Carslaw H S, Jeager J C. Conduction of Heat in Soil[M]. Oxford:Oxford Univ.Press,1959.
    [147]非金属固体材料导热系数的测定方法热线法[S].GB10297-98.
    [148]唐兴伦,范群波,张朝晖.ANSYS工程应用教程(热与电磁篇)[M].北京:中国铁道出版社,2003.
    [149]侯作富.融雪化冰用碳纤维导电混凝土的研制及应用研究[D].博士学位论文.武汉:武汉理工大学,2003.
    [150]武海琴.发热电缆用于路面融雪化冰的技术研究[D].硕士学位论文.北京:北京工业大学,2005.
    [151]张朝晖,范群波,贵大勇.ANSYS 8.0热分析教程与实例解析[M].北京:中国铁道出版社,2005.
    [152]成大先.机械设计手册[M].北京:化工工业出版社,2005.
    [153]中华人民共和国国家计量检定规程JJG-229[S].国家质量技术监督局,中国计量出版社出版,2000,(2).
    [154]潘圣铭,茆冠华.温度计量[M].北京:中国计量出版社,1994.
    [155]樊玲.结冰融冰过程的数值模拟[D].硕士学位论文.南京:南京航空航天大学,2005.
    [156]Feistel R, Wagner W. A new equation of state for H2O ice Ih[J]. Journal of Physical and Chemical Reference Data,2006,35(2):1021-1047.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700