路面融雪化冰及太阳辐射吸热研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热流体循环融雪化冰系统是一种新型路面冰雪热融除冰技术,在寒冷的冬季,利用夏季储存的热量来融化道路上的冰雪,从而提高道路安全性,此外,在炎热的夏季,路面还可以太阳辐射吸热,与热量地下储存集成,实现热量的跨季节利用。因此,该新型技术不仅可再生能源季节性利用,有效地降低炎热夏季路面温度,减少路面热蚀破坏,提高道路寿命。
     路面作为热流体循环融雪化冰系统的基本构造体,担负着冬季融雪化冰热力过程和夏季太阳辐射吸热过程,即释热和集热基本传热过程。本研究以路面冬季融雪化冰和夏季太阳辐射吸热为研究重点,通过实验研究与数值计算分析相结合,探索融雪化冰过程中传热传质特征,路面状况变化特征及时变规律,揭示路面融雪化冰和太阳能辐射吸热过程中传热机理和变化规律,推动路面融雪化冰新技术的发展和科技进步。
     研究工作主要包括循环热流动路面融雪化冰过程分析、特征研究和仿真计算,以及太阳辐射吸热过程研究。其一,系统研究了基于路面不同降融雪过程基本热特征,并结合客观融雪方式,提出静态融雪、非预热式降融同步、预热式降融同步等基本过程,揭示其内在的温变规律、能量特性,以及相关的热特征和影响作用差异;其二,系统研究了基于路面冰融过程融冰热力特性,以可变负荷加热面实验为基础,探讨融冰特性和影响作用因素关系,获得负荷特征关系;其三,系统开展了路面融雪化冰基本传热分析,在客观解析融雪化冰单元过程的基础上,提出表征基本热现象的传热控制方程,并基于MATLAB—Simulink,建立了路面融雪模型,形成基本组合模块,由此进一步分析融雪化冰过程的路面温度特征和能源特性,同时为面融雪化冰集成系统及其控制策略研究提供了基本手段,并依此进行了路面融雪化冰集成系统仿真分析,进一步研究路面融雪系统可采取的各种主动融雪方式;其四,针对道路夏季吸热过程,利用热力分析和光谱分析,进行了不同道路材料和不同道路表面形态下的太阳辐射热吸收性,以及循环热流体太阳辐射集热性能的研究。
     融雪过程分为静态融雪和动态融雪过程,动态融雪过程又有提前预热和非提前预热之分。因此,本文以可控电加热方式代替实际工程中热泵加热装置,建立了一套冬季路面融雪实验装置和实验系统,研究此三种不同降融雪过程。根据路面状况和路面温度评估路面融雪能力,根据融雪耗能特征评估融雪过程中能量的利用效能和热交换能力。从而为路面融雪化冰系统的设计提供重要的依据。
     冬季路面结冰而使道路表面摩擦力大大降低,研究路面融冰特性很有必要。本文采用可控电加热碳纤维管加热方式,以及采用缩小比例的模拟道路,建立了一套寒冷环境下模拟路面融冰实验装置,研究路面融冰过程中的融冰特性,以及传热传质特性规律。根据融冰率的变化和冰层温度的变化来反映融冰特性,同时分析冰层厚度、冰融水流动、加热管节距以及埋管布置形式对冰层热融过程的影响。从而为路面融冰设计提供重要的指导。
     冬季路面融雪化冰系统是一个复杂的传热传质和有相变发生的过程,通过编写S函数自建各种仿真模块,包括路面融雪化冰模块、热泵模块、循环水泵模块、地下换热器模块和控制器模块等,从而组建完整的冬季路面融雪化冰集成系统。通过单次融雪过程和单个冬季融雪过程,对衡量系统能力的特征参数表面无雪率和路面温度做了详细分析,提出系统经济性指标热泵性能系数和能耗指标,通过对比不同降雪量、不同室外空气温度和不同地下初始温度,分别对系统经济性做了评价。研究结果表明提高地下土壤初始温度可以有效增强系统性能,而适当提高地下土壤温度,可以通过夏季路面集热蓄能来实现。因此,太阳辐射集热研究显得很有必要。
     路面太阳辐射集热对冬季路面融雪化冰具有重要的意义。然而,不同材料道路和不同表面形态道路对太阳辐射集热具有不同的吸热性和集热性能。因此,本文分别对不同材料道路和不同表面形态道路下的太阳辐射吸热做了详细分析。从温度和辐射反射光谱的角度,重点分析太阳辐射的热吸收性,探索其间的温变特性和导热能力。同时,针对不同路面形态的道路,研究其太阳辐射集热性能的变化规律,分析单位面积集热量和集热效率的变化,进一步指导工程应用。
Hydronic Ice-Snow Melting (HISM) system is a new kind of Hot Melting De-Icing technology, by using the heat collecting in summer to melt the snow and ice on the road in winter, which can improve road safety. While in the hot summer, it uses the road to absorb solar radiation and stores it to the ground for winter use. This technology not only can realize the seasonal application of renewable energy, but also can effectively reduce the pavement surface temperature in hot summer, reduce the rate of heat corrosion and extend the life of the pavement adequately.
     Road surface, as a basic structure in HISM system, bears the thermodynamic process of winter ice-snow melting and heat absorption process of summer solar radiation, which is the basic heat transfer process of heat release and heat collection. Therefore, this paper will focus on road ice-snow melting in winter and slab solar collection in summer by combining with experimental investigation and analog simulation, to explore the heat transfer and mass transfer characteristic in ice-snow melting and variation of surface condition and time-varying feature of underground soil, to discover the mechanism of heat transfer and mass transfer in road ice-snow melting process and slab solar collection for technological improvement of road ice-snow melting.
     The main works of this paper are consisted of the analysis of the process, characteristics researches and simulation of HISM system and the study of heat absorption process of solar radiation. At first, based on different snow falling and melting process on road, the basic heating characteristics was studied systematically, and presented basic processes of static snow melting, dynamic snow melting and preheating snow melting process, to reveal their inside variation rules of temperature, energy character, relative heat character and the difference of influences; At second, depending on the experiment of variable load heating surface, the ice melting characteristic in the process of surface ice melting was studied systematically, to discuss the ice melting characteristics and impacts for getting the relation of load character; At third, basic heat transfer analysis was carried out systematically on HISM system, on the base of resolving the process of HISM unit objectively, heat transfer control equations presenting the basic thermal phenomena was brought up, and based on MATLAB-Simulink, a model of HISM was built to form a fundamental module of the integrated system, and from this module, surface temperature and energy characteristics in the process of HISM were analyzed further, so it provided a powerful method for the research of integrated HISM system and its control strategy, and an analog simulation of this integrated system was taken for a further research of HISM system with several dynamic snow melting method available; At fourth, as to heat absorption of solar radiation on road in summer, by using thermodynamic analysis and spectral analysis, heat absorption experiments with different road materials and different road morphology and heat collection experiment of solar radiation were carried out.
     The snow melting process can be divided into static melting and dynamic melting, and the latter one can be divided into preheating melting and non preheating melting. Therefore, a set of experimental system of road snow melting was built by using electric heating hot fluid with controlled temperature, instead of heat pump heating devices in practical engineering to study the three processes with different snowfalling characteristics. Depending on surface condition and surface temperature, the ability of road snow melting was evaluated, and depending on energy consumption of snow melting, the utilization efficiency of energy and heat exchange capacity was evaluated. So, it provides an important basis of the design of HISM system.
     Because of the icy road, that will heavily reduce the surface friction, it becomes necessary to study the characteristics of road ice melting. In this paper, by using a scaled down stimulant, a set of experimental facility was built, which used controllable electric heating carbon fiber, for the study on the characteristics of ice melting and heat transfer and mass transfer characteristic. Depending on ice melting rate and the variation of ice-layer temperature, ice melting characteristics was analyzed. Meanwhile, the effect of heating load, thickness of ice-layer, ice water flowing, spacing of heating pipe and arrangement of pipe on ice melting were analyzed. So, it provides an important guidance to the design of ice melting system.
     Road ice-snow melting system of winter is a complex heat and mass transfer process with phase transformation. By writing S function to build various simulation modules by myself, including road ice-snow melting module, heat pump module, circulating pump module, GLHE module and controller module, etc, an integrated HISM system was set up. Snow free area ratio and surface temperature that are feature parameters to measure the system capacity were analyzed through single snow melting process and whole winter process. And meanwhile, two economic indicators of the system, COP of heat pump and energy consumption, were presented. By comparing different snowfall, different outdoor air temperatures and different initial underground temperature, an anlysis were done on the economic evaluation of the system. The results indicated that raising the temperature of underground soil can effectively improve the performance of the system. And the way to raise the temperature of underground soil can be realized by heat collection in summer. Therefore, the study on slab solar collection seems to be necessary.
     It is important of slab solar radiation collection to road ice-snow melting of winter. However, different absorbability of solar radiation and heat collecting performance are arisen on different material slabs and different configuration slabs. Therefore, in this paper, these two kinds of slabs were studied. From the view of temperature and reflection spectrum, the absorbability of solar radiation was analyzed mainly to explore the characteristic of temperature variation and the capacity of heat transmission. Meanwhile, for different configuration slabs, the performance of heat collection under solar radiation was studied, and the characteristic of heat quantity per unit area and heat collecting efficiency were analyzed for further application of practical engineering.
引文
[1]姜丕军.交通运输促进经济增长的机制探析[J].北京交通大学学报(社会科学版). 2010.9(2):1-7
    [2]姜华平.道路交通事故社会经济损失评价理论研究[D].博士学位论文,吉林大学. 2005.4
    [3]王正国.新世纪道路交通事故的发生趋势[J]..中华创伤杂志. 2002,18(6):325-328
    [4]王岩.公路交通事故危险性与事故原因的灰色关联分析[J].中国安全生产科学技术. 2006,2(4):56-60
    [5]公安部交通管理局.中华人民共和国道路交通事故统计年报(2004年度)[R]. 2005.3
    [6]杨忠敏.我国已进入道路交通事故的高发期[J].交通运输,2004.4:49-52.
    [7]徐丽丽,张兴强.道路交通事故中道路条件因素影响分析[J].道路交通与安全,2005.1:35-38.
    [8] Jaros?aw Pytka. Determination of snow stresses under vehicle loads [J]. Cold Regions Science and Technology 60 (2010) : 137–145
    [9]张炳臣,刘淑敏.冬季道路除雪方式的探讨[J].山东交通科技,2004,1:76-77.
    [10]靳长征,白晨.浅谈道路结冰的清除[J].河南交通科技,1996.5:45-46.
    [11] Jelisejevs B.. Alternative methods of de-icing on highways[J]. Motorways, 2001.3:31-34.
    [12]任园园.冰雪条件下城市道路交通流特性及管理对策研究[D].硕士学位论文,吉林大学. 2008.5
    [13]王振.国内除雪除冰机械现状刍议[J].工程机械,2002.7:46-47.
    [14]程钢.融雪剂概况及存在的问题[J].山西交通科技,2004.167(5):45-46.
    [15] ASHRAE Handbook-Fundamentals [M].Atlanta, GA:American Society of Heating Refrigerating and Air-conditioning Engineers Inc,1993.
    [16]洪乃丰.融雪剂及其对基础设施的腐蚀危害[J].建筑技术. 2004,35(4):256-258
    [17]代琳琳,赵晓明.融雪剂的环境污染与控制对策[J].安全与环境工程,2004,11(4):29-31
    [18] Gerardo W. Flintsch.Assessment of the Performance of Several Roadway Mixes under Rain, Snow, And Winter Maintenance Activities[R].Final Contract Report VTRC 04-CR18, Department of Civil and Environmental Engineering Virginia Polytechnic Institute & State University, Feb. 2004.
    [19]管数园.电缆加热系统进行融雪的数值分析研究[D].硕士学位论文,上海交通大学. 2008.2
    [20] P.J. Tumidajski, P. Xie, M. Arnott, J.J. Beaudoin.Overlay current in a conductive concrete snow melting system[J].Cement and Concrete Research, 2003,33(11):1807-1809
    [21] Benjamin T. Green1 and Kerop D. Janoyan.Use of electrically conductive concrete overlays for passive control of snow and ice on roads[C].International Conference on Energy, Environment and Disasters , Charlotte, NC, USA, July 24-30, 2005
    [22] George G. Koenig, Charles C. Ryerson. An investigation of infrared deicing through experimentation [J]. Cold Regions Science and Technology. 2010. In Press.
    [23] X. Xiao.Modeling Of Hydronic And Electric-Cable Snow-Melting Systems For Pavements And Bridge Decks [D].Oklahoma State University, 2002
    [24]李炎锋,武海琴,王贯明,朱滨,石勃伟.发热电缆用于路面融雪化冰的实验研究[J].北京工业大学学报,2006,32(3):217-222
    [25] N. Sugawara, K. Hokari, T. Watanabe, H. Sugawara. Energy saving characteristics of a new type of road-heating system[C]. Atmospheric Research 46(1998):113–122
    [26] RAFFERTY NR, BAEN P, BROWN D O, et al. Considerations for application of mineral insulated electrical resistance heating cable[C]. Proceddings of IEEE Industry Application Society the 52nd Annual Petroleum and Chermical Industry Conference, Denver, Colorado, USA, 12-14 Sep. 2005:103-111
    [27]武海琴.发热电缆用于路面融雪化冰的技术研究[D].硕士学位论文,北京工业大学. 2005.5
    [28]车广杰.碳纤维发热线用于路面融雪化冰的技术研究[D].硕士学位论文,大连理工大学. 2008.12
    [29] Yehia, S., and C. Y. Tuan. Conductive Concrete for Bridge Deck Anti-icing. 7th Annual International Conference on Composite Engineering, Denver, Colorado, July2-8, 2000
    [30] Yehia, S., and C.Y. Tuan. Conductive concrete for bridge deck deicing and antiicing, First International Structural Engineering and Construction Conference, Hawaii, Honolulu, January 24-26, 2001
    [31] D. Derwin, P. Booth and P. Zaleski, W. Marsey, W. Flood Jr. Snowfree?? Heated Pavement System to Eliminate Icy Runways[C]. SAE Technical Paper Series 2003-01-2145
    [32] Sherif Yehia, Christopher Y Tuan. Conductive Concrete Overlay for Bridge Deck Deicing [J]. ACI Materials Journal, 1999,96(3):382-390
    [33] Sherif Yehia, Christopher Y Tuan, David Ferdonetal. Conductive Concrete Overlay for Bridge Deck Deicing: Mixture Proportioning Optimization and Properties [J]. ACI Materials Journal, 2000, 97(2):172-181
    [34] Christopher Y Tuan. .Electrical Resistance Heating of Conductive Concrete Containing Steel Fibers and Shavings[J]. ACI Materials Journal,2004, 101(1):65-71
    [35] Christopher Y Tuan, Sherif Yehia. Evaluation of Electrically Conductive Concrete Containing Carbon Products for Deicing[J]. ACI Materials Journal, 2004, 101(4):287-293.
    [36]唐祖全,李卓球,侯作富,徐东亮.导电混凝土电热层布置对路面除冰效果的影响[J].武汉理工大学学报,2002,24(2):45-48
    [37]李丹,董发勤,沈刚.钢纤维石墨导电混凝土在路面除冰雪中的应用研究[J].建筑门窗与金属建材. 2004:61-64
    [38]谭宏斌,冯小明,郭从盛,马小玲.不锈钢纤维石墨导电混凝土的研究[J].混凝土. 2006,9:35-37
    [39] Banthia N, Djeridane S, Pigeon M. Electrical Resistivity of Carbon and Steel Micro-Fiber Reinforced Cements[J]. Cement and Concrete Research.1992,22(5):804-814
    [40]侯作富,李卓球,王建军.碳纤维导电混凝土融雪化冰的实验研究[J].混凝土与水泥制品. 2004.5:42-44
    [41]侯作富,李卓球,杨唐胜.碳纤维导电混凝土融雪化冰的智能控制研究[J].武汉理工大学学报(交通科学与工程版),2005,29(1):64-67
    [42]王小英,孙明清,侯作富,龙曦,李卓球.纳米炭黑水泥砂浆的导电性与电热特性研究[J].功能材料. 2006,11:1841-1843
    [43] FAA, 2005. Advisory Circular: Ground Deicing Using Infrared Energy[R]. AC No 120-89. Federal Aviation Administration, Washing, DC.
    [44] Henry W. Hessing, PE. Infrared Aircraft Deicing System[C]. Proceedings of the 10th Biennial International Conference on Engineering, Construction, and Operations in Challenging Environments (Earth & Space 2006) and 2nd NASA/ARO/ASCE Workshop on Granular Materials in Lunar and Martian Exploration; League City/Houston, Texas; USA; 5-8 Mar. 2006.
    [45] Lee, R,C. Bridge Heating Using Ground Source Heat Pipes[J]. Transportation Research. 1998,1:51-57
    [46]高青,于鸣,刘小兵.基于蓄能的道路热融雪化冰技术及其分析[J].公路,2007,5 :170-175
    [47] J W Lund. Reconstruction of a pavement geothermal deicing system[J]. Geo-Heat Center Quarterly Bulletin, 1999.20(1):14-17.
    [48] Tonya L. Boyd. New Snow Melt Projects in Klamath Falls, OR[J]. Geo-Heat Center Quarterly Bulletin. 2003: 12-15.
    [49] Oregon Department of Transportation. Grading, structure and paving“a”canal bridges (Klamathfalls) section,Wall Street and Eberlein Avenue, Klamath County[R]. Contract No.12745, 2003.
    [50] John W Lund. Pavement Snow Melting [R]. Bulletin of Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR, 2000
    [51] Chiasson A D,J DSpitler,S J Rees,M Dsmith.A Model for simulating thePerformance of a Pavement Heating System as a Supplemental Heat Rejecter With C1osed-Loop Ground-Source Heat Pump systems [J].ASME Journal of Solar Energy Engineering,2000,122(4) : 183-19
    [52] Rees S J,J D Spitler,X Xiao.Transient Analysis of Snow-melting System Performance[J].ASHRAE Transactions,2002,108(2): 406-423.
    [53] Federal Highway Administration. Heated bridge technology[R]. DOT,1999.
    [54] Arni Ragnarsson. Utilization of geothermal energy in Iceland[C]. International Geothermal Conference Session #10, Reykjavik, Iceland, Sep, 2003
    [55] Walter J Eugster, Jürg Schatzmann. Harnessing Solar Energy for Winter Road Clearing on Heavily Loaded Expressways [C]. Proceeding of XIth PIARC International Winter Road Congress, Sapporo, Japan, January, 2002
    [56] Katarzyna Zwarycz. Snow melting and heating systems based on geothermal heat pumps at Goleniow airport, Porland[R]. Geothermal Training Programme, 2002.
    [57] Kinya Iwamoto, Shigeyuki Nagasaka. Prospects of snow melting systems using underground thermal energy storage in JAPAN[C].Proceedings of Annual Conference of The Society of Heating,Air-Conditioning and Sanitary Engineers of Japan,2000.
    [58] Koji Morita, Makoto Tago. Operational Characteristics of the GAIA Snow-Melting System in Ninohe, Iwate, Japan[J], GHC BULLETIN, 2000:5-11
    [59] Morita K., M.Tago. Development of the downhole coaxial heat exchanger system: potential for fully utilizing geothermal resources[J]. GRC Bulletin, 1995.24(3):83-92.
    [60] W.P.Chapman. Design of Snow Melting Systems[J] Heating and Ventilating. 1952,49(4):96-102
    [61] W.P.Chapman. Calculating the heat requirements of a snow melting system[J]. Heating and Ventilating, 1952,49(11):88-95
    [62] Schnurr N.M., D.B. Rogers. Transient Analysis of Snow Melting Systems[J]. ASHRAE Transactions, 1970.77, Part 2:159-166.
    [63] Kilkis, I.B., Enhancement of heat pump performance using radiant floor heating systems[J]. ASME AES, 1992. 28: 119-127.
    [64] Kilkis, I.B., Design of Embedded Snow Melting Systems: Part 1, Heat Requirements– An Overall Assessment and Recommendations[J]. ASHRAE Transaction, 1994. 100(1): 423-433.
    [65] Kilkis, I.B., Design of Embedded Snow Melting Systems: Part 2, Heat Transfer in the Slab– A Simplified Model[J]. ASHRAE Transactions, 1994. 100(1): 434-441.
    [66] Williams, G.P. Design heat requirements for embedded snow-melting systems in cold climates[J]. Transportation Research Record, 1976.576: 20-32.
    [67] Leal, M. and P.L. Miller. An Analysis of the Transient Temperature Distribution in Pavement Heating Installations[J]. ASHRAE Transactions, 1972.78(2): 61-66.
    [68] Schnurr, N.M. and M.W. Falk. Transient Analysis of Snow Melting Systems[J]. ASHRAE Transactions, 1973. 79(2): 159-166.
    [69] Chiasson, A.D., J.D. Spitler, S.J. Rees, M.D. Smith. A Model for Simulating the Performance of a Pavement Heating System as a Supplemental Heat Rejecter with Closed-loop Ground-Source Heat Pump Systems[J]. ASME Journal of Solar Energy Engineering, 2000. 122:183-191.
    [70] Rees, S.J., J.D. Spitler and X. Xiao. Transient Analysis of Snow-melting System Performance[J]. ASHRAE Transactions, 2002.108(2): 406-423.
    [71] Xiaobing Liu, Simon J. Rees, Jeffrey D. Spitler. Modeling snow melting on heated pavement surfaces. Part I: Model development[J]. Applied Thermal Engineering, 2007,.27(5-6):1115-1124
    [72]王华军.流体加热道路融雪传热传质特性研究[D].博士学位论文,天津大学,2007.12
    [73]胡文举,姜益强,姚杨,马最良.桥面热力融雪模型研究与分析[J].哈尔滨工业大学学报.39(12),2007:1895-1899
    [74]王庆艳.太阳能-土壤蓄热融雪系统路基得热和融雪机理研究[D].硕士研究生学位论文,大连理工大学,2007.12
    [75] K.Moriyama, H.Baba and T. Hayashi, Misawa Architectural Technology Co., Ltd.(1997) Using the Deep Layer Underground Heat, and the Rocks with Heat StorageProceedings of MEGASTOCK’97.
    [76] Shigeyuki Nagasaka, Kiyoshi Ochifuji, et. al.(1996) Study on Snow Melting System Utilizing Natural Energy Sources - Part 3 Experiment on Collecting Solar Heat by Using Snow Melting Panels in Summer Proceedings of Annual Conference of The Society of Heating, Air-Conditioning and Sanitary Engineers of Japan. STORAGE (UTES) IN JAPAN
    [77] Sullivan, C.G., De Bondt, A., Rob Jansen, Henk Verweijmeren. Energy from asphalt pavements [C]. International Conference on Sustainable Construction Materials and Technologies, Supplementary proceedings :102-109, 11-13 June 2007 Coventry, UK
    [78] Carder D R, Barker K, Hewitt M G, Ritter D and Kiff A. Performance of an interseasonal heat transfer facility for collection, storage, and re-use of solar heat from the road surface [R]. TRL's Published Project Report PPR302. 2008.3.
    [79] Wendel, Ion L. Paving and Solar Energy System and Method. United States Patent, 4132074, 1979-01-02.
    [80] P.B.L. Chaurasia. Solar water heaters based on concrete collectors [J]. Energy.25 (2000) 703–716.
    [81] Mallick et al. Capturing Solar Energy from Asphalt Pavements [C]. IASP 2008 August.
    [82] E. BILGEN, M.-A. RICHARD.Horizontal concrete slabs as passive solar collectors [J]. Solar Energy. 2002,72(5):405–413
    [83]高一平.利用太阳能的路面融雪系统[J].国外公路,1(4),1997:P53-55
    [84]林密.地下蓄能和太阳能复合系统工程应用分析[D].硕士研究生学位论文,吉林大学,2007.6
    [85]李波.导热沥青混凝土及其性能研究[D].硕士研究生学位论文,武汉理工大学,2008.6
    [86]韩丽艳,施增宁.热电偶标定实验的动态演示[J].实验室研究与探索. 1999(6), 61-63
    [87] R.C. Gonzalez, Digital image processing using Matlab [M], Pearson/Prentice Hall, Saddle River, NJ, 2003.
    [88]秦健,孙立军.沥青路面温度场的分布规律[J],公路交通科技. 2006, 23(8):18-21.
    [89]杨文娟,顾海荣,单永体.路面温度对城市热岛的影响[J].公路交通科技. 2008, 25(3):147-152.
    [90] Liu, X. and J.D. Spitler. Simulation Based Investigation on the Design of Hydronic Snow Melting System. Proceedings of the Transportation Research Board 83rd Annual Meeting. Washington, D.C. January 11-15, 2004:5-6.
    [91] Jordan R.E., J.P. Hardy, F.E.Perron, D.J.Fisk.. Air permeability and capillary rise as measures of the pore structure in snow:an experimental and theoretical study[J]. Hydrological Processes, 1999. 17: 1733-1753.
    [92] Incropera, F.P. and D.P. Dewitt. Introduction to Heat Transfer[J], New York: Wiley & Sons 1996: 332-334.
    [93]刘森元,黄远峰.天空有效温度的探讨[J].太阳能学报,1983,4(1).
    [94]杨世铭,陶文铨.传热学第三版[M].高等教育出版社,1998.
    [95] Gnielinski V. New equations for heat and mass transfer in turbulent pipe and channel flows[J]. Int Chem Eng, 1976, 16:359-368.
    [96]章熙民,任泽霈,梅飞鸣等.传热学第四版[M]。中国建筑工业出版社,2001.
    [97]黄晓明,张国忠,徐春梅.基于S函数的时变系统仿真[J].计算机仿真. 2004,21(5):89-91
    [98]张志涌.精通MATLAB6.5版[M].北京航空航天大学出版社,2003.3
    [99]薛定宇,陈阳泉.基于MATLAB\ Simulink的系统仿真技术与仿真[M].北京:清华大学出版社, 2002. 350- 366
    [100] Brian Kelly Callihan. A Control System Framework for a Bridge Deck Heated By a Geothermal Heat Pump System[D]. Master thesis. December, 2000
    [101] Stephen Christopher Jenks. A Model Predictive Control Strategy for a Bridge Deck Heated By a Geothermal Heat Pump System[D]. Master thesis. December, 2001.
    [102] Feng Xie. Application of Model Predictive Control To A Geothermally Heated Bridge Deck. Master Thesis. December, 2004.
    [103]郁永章.热泵原理与技术[M].机械工业出版社. 1993.
    [104]中国建筑热环境分析专用气象数据集[M].中国气象局气象信息中心气象资料室,清华大学建筑技术科学系.
    [105]朱百发.基于热泵蓄补能复合系统能效特性分析[D].吉林大学硕士学位论文,2007.6
    [106] Xiaobing Liu. DEVELOPMENT AND EXPERIMENTAL VALIDATION OF SIMULATION OF HYDRONIC SNOW MELTING SYSTEMS FOR BRIDGES[D], PhD Dissertation of Oklahoma State University. 2005.6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700