鲢鱼糜凝胶及形成机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鲢是我国主要的淡水养殖鱼类,不仅资源丰富,而且价格低廉,是开发生产鱼糜制品的良好原料。但相对海水鱼糜的研究仍处在一般加工条件阶段,报道相对集中的是漂洗条件、加工工艺、外源添加剂对鱼糜凝胶特性的影响及冷冻变性等方面,对凝胶形成的机理则鲜见报道。因此,研究影响鲢鱼糜凝胶形成的因素及形成机理,对有效控制凝胶形成过程、开发高品质鲢鱼糜制品具有重要的理论和实验意义。
     本文旨在研究鲢鱼糜的凝胶化条件及相关基础问题,着重探讨肌球蛋白的聚集行为与构象对鲢鱼糜凝胶形成的影响及添加外源蛋白质(大豆分离蛋白、鸡蛋清蛋白)、MTGase和淀粉及其它亲水性胶体等多糖类物质改善鲢鱼糜凝胶的特性,为淡水鱼糜的研究与开发提供理论依据和实验基础,主要研究结果如下:
     1、鲢鱼糜的凝胶化作用基础研究在确定鲢鱼糜凝胶形成条件的基础上,对鲢鱼糜凝胶形成过程中的蛋白质组成的变化、TGase激活剂与抑制剂对鲢鱼糜凝胶形成的影响进行了研究。在鲢鱼糜凝胶形成过程中,从加盐擂溃开始,因转谷氨酰胺酶催化肌球蛋白重链交联形成更高分子质量蛋白质聚合物,而使盐溶性蛋白含量逐渐减少、不溶性蛋白含量逐渐增加。NEM、EDTA、AC三种转谷氨酰胺酶抑制剂均可显著降低鲢鱼糜的凝胶特性。转谷氨酰胺酶激活剂Ca~(2+)在低浓度(20 mmol/kg)范围内通过激活内源转谷氨酰胺酶促进肌球蛋白重链交联,从而提高鲢鱼糜凝胶特性;而高浓度钙离子(80 mmol/kg)在抑制TGase催化作用的同时,与鱼糜蛋白形成较多的钙桥,引起鲢鱼糜凝胶硬度加大、弹性降低。转谷氨酰胺酶激活剂C~(2+)对鲢鱼糜凝胶特性的影响存在两种不同作用机制。当在鲢鱼糜中添加20 mmol/kg Ca~(2+)时,鲢鱼糜凝胶强度达到最大。
     鲢鱼糜的凝胶化温度和时间显著影响其凝胶特性在鲢鱼糜的适宜凝胶化温度和时间为40℃、60 min的条件下,鲢鱼糜凝胶的破断强度、凹陷深度和凝胶强度分别达到470.50 g、11.32 mm和5331.53 g×mm,分别为凝胶化30 min的1.29倍、1.09倍、1.35倍。但是凝胶化时间过长会导致鱼糜凝胶强度显著下降。鲢鱼糜的凝胶化时间的选择受转谷氨酰胺酶催化的酰基转移反应和蛋白酶对鱼糜蛋白的水解作用的双重制约。鲢鱼糜在凝胶形成过程中,维持蛋白质结构和稳定的各种化学作用力及相应的蛋白质结构均发生了不同变化,这与凝胶化过程和鱼糜凝胶特性密切相关。随着凝胶化进程,氢键、离子键显著减少,而二硫键、疏水相互作用显著增加,并形成非二硫共价键。研究表明,二硫键、非二硫共价键、疏水相互作用是维持鲢鱼糜凝胶网络结构的主要化学作用力。拉曼光谱分析可知,鲢鱼糜经40℃凝胶化60 min和90℃蒸煮30 min后,除了在1653 cm~(-1)处出现表征鱼糜蛋白α-螺旋结构的谱带外,还在1664 cm~(-1)处出现表征无规卷曲结构的谱带;在530 cm~(-1)、540 cm~(-1)处表征二硫键含量的谱带强度增加;表征酪氨酸残基谱带的I_(850/830)强度比由0.98分别增加到1.01、1.05,疏水相互作用增强,这与化学作用力变化结果一致。
     2、鲢肌球蛋白聚集行为、构象及凝胶形成机理采用浊度法、动态流变学、SEM等方法研究了环境因素对肌球蛋白浊度和溶解度的影响及肌球蛋白形成凝胶的条件温度、pH值及焦磷酸钠、三聚磷酸钠、六偏磷酸钠三种磷酸盐均影响肌球蛋白的溶解度。在30℃、40℃,pH6.0~8.0之间,肌球蛋白溶解性较好;0.25~1.0%浓度范围内的三种磷酸盐均可增加肌球蛋白的溶解性。肌球蛋白凝胶形成的条件为:临界蛋白质浓度为10 mg╱mL,凝胶的粘弹性随着肌球蛋白浓度的增加而增加;形成凝胶的最佳pH为7.0,由微观形貌观察可见,过高或过低的pH均导致肌球蛋白凝胶结构变得不致密、均匀;低浓度的Ca~(2+)可以增加肌球蛋白的凝胶形成能力。
     采用CD、DSC和SEM等现代分析手段对鲢肌球蛋白变性、构象变化与鱼糜凝胶化关系进行了研究由CD分析可知,在40℃凝胶化过程中,鲢肌球蛋白的α-螺旋结构含量逐渐减少,由加热前的94.11%(5℃)减少到60 min的27.00%,α-螺旋解旋达67.11%,同时转角和无规卷曲结构含量分别增加至10.40%、62.60%,增加了10.40%、56.71%,α-螺旋结构大部分转变成了无规卷曲结构;再进一步进行90℃高温加热30 min并冷却至4℃处理后,肌球蛋白的α-螺旋、转角、无规卷曲结构含量分别为33.70%、12.40%、53.90%,以无规卷曲为主。在肌球蛋白凝胶形成过程中,肌球蛋白分子充分伸展、转变为有利于肌球蛋白重链交联的无规卷曲结构。同时,化学测试结果表明,在结构转变过程中,肌球蛋白头部的巯基氧化形成二硫键,二硫键含量由0.6 mol/10~6g显著增加到1.7 mol/10~6g;肌球蛋白的表面疏水性(S_0ANS)由8946.78增加到29152.33,增加了2.26倍。由SEM微观形貌观察可见,肌球蛋白经40℃、60 min和90℃、30 min加热后,变性聚集形成有序的聚集体。DSC分析表明,肌球蛋白存在两个相变温度(43.32℃和51.59℃),前者正好与鱼糜凝胶化温度相对应。鲢鱼糜的凝胶化温度实质上是肌球蛋白的第一个变性峰值温度。
     3、MTGase、非肌肉蛋白对鲢鱼糜凝胶形成的影响添加MTGase可显著提高鲢鱼糜制品凝胶强度、持水性能,改善凝胶白度,MTGase的适宜添加量为6-10U/g_(鱼蛋白),当MTGase添加量为10 U/g_(鱼蛋白)时,破断强度、凹陷深度、凝胶强度分别为793.00g、14.21 mm、11867.20 g×mm,比对照样分别增加了1.12倍、0.21倍、1.7倍。但添加过量的MTGase则会降低鱼糜凝胶特性。鲢鱼糜中大豆分离蛋白和鸡蛋清蛋白的适宜添加量分别为3%、10%,均可改善鲢鱼糜的凝胶特性和持水性能。三种外源添加成分中以MTGase的改善效果最好。大豆分离蛋白或鸡蛋清蛋白均会降低MTGase诱导鲢鱼糜的凝胶特性,导致其凝胶特性低于仅添加MTGase。因此,在鱼糜制品的生产中应避免大豆分离蛋白或鸡蛋清蛋白与MTGase同时使用。
     4、淀粉及亲水性胶体对鲢鱼糜凝胶形成的影响为了改善鲢鱼糜凝胶特性和提高适用性,本文还研究了不同来源和不同方法改性的淀粉对鲢鱼糜凝胶形成的影响。结果表明,不同来源淀粉对鲢鱼糜凝胶的影响是不同的,马铃薯、木薯、玉米三种淀粉中,以马铃薯对鱼糜凝胶特性的增强效果最佳,凹陷深度、破断强度、凝胶强度分别比对照增加了0.22倍、0.54倍、0.45倍。在变性淀粉中,交联酯化、醋酸酯化、磷酸酯化、羟丙基化淀粉均可提高鱼糜凝胶特性,而氧化淀粉、微细化淀粉将降低鱼糜凝胶特性。其中羟丙基化淀粉和交联酯化淀粉较适宜鱼糜制品加工。研究还表明,变性淀粉的胶长度越短、溶解度越小、膨胀势越大,鱼糜凝胶特性则愈好。
     卡拉胶、黄原胶、魔芋胶和瓜尔胶等亲水性胶体对鲢鱼糜凝胶特性有不同影响。在鲢鱼糜中,添加0.5%的卡拉胶或0.1%瓜尔胶能明显增加鱼糜凝胶的硬度和凝胶强度,降低粘性和脆性,改善制品色泽。而在鱼糜自然pH下,添加黄原胶和魔芋胶会影响鲢鱼糜凝胶形成,降低其凝胶强度。
In China, Silver carp, one of the main fresh-water fish species, abundant and cheap, is a good material to develop and process surimi-based product. Compared with briny surimi, researches of silver carp surimi focused on influences of washing conditions, processing technics and additives on surimi gel properties and frozen denaturation, but little on the gel-forming mechanism. Thus, studies on affecting factors of silver carp surimi gel forming and gel forming mechanism are very important to promote the formation of surimi gel and develop silver carp surimi-based products with high quality.
     Setting conditions and relative ground works of silver carp surimi, influences of aggregation behavior and confirmation of myosin on the formation of silver carp surimi gel, and effects of soy protein isolate, egg albumin, MTGase, starches and some hydrocolloids on gel properties of silver carp surimi were investigated. The results were as follows:
     1. Studies on the basis of silver carp surimi gelation Based on the gel-forming conditions, the change of silver carp protein composition during gel forming and effects of transglutaminase activator and inhibitors on the forming of silver carp surmi gel were investigated. During the forming of silver carp surimi gel, the content of salt-soluble protein decreased gradually, while the content of insoluble protein increased correspondingly starting from smashing due to myosin heavy chain cross-linking catalyzed by transglutaminase and forming high molecule weight polymer. Three kinds of tmnsglutaminase inhibitors, NEM, EDTA, and AC, decreased gel properties of silver carp surimi. Low Ca~(2+) concentration (20mmol/kg) activated transglutaminase activity and promoted myosin heavy chain cross-linking, leading to improving silver carp surimi gel properties. However, high Ca~(2+) concentration depressed myosin heavy chain cross-linking induced by transglutaminase, and conduced to the formation of Ca-bridge between Ca~(2+) and protein, and also the hardness increased and the elasticity decreased for silver carp surimi gel. Effect of transglutaminase activator Ca~(2+) on gel properties of silver carp surimi had two kinds of mechanism. Gel strength of silver carp surimi was highest when the Ca~(2+) adding dosage was 20 mmol/kg.
     The setting temperature and time affected gel properties of silver carp surimi significantly. The optimum setting temperature and time were 40℃and 60min, respectively. Breaking force, deformation, and gel strength of silver carp surimi gel were 470.50g, 11.32ram and 5331.53g×mm, which were 1.29, 1.09, 1.35 times of that setting for 30min, respectively. But the longer setting time leaded to the decreasing of surimi gel strength. Setting time was decided by acyl-transfer reaction induced by transglutaminase and hydrolysis of surimi protein by endogenous protease. The chemical interactions and protein structures in order to maintain surimi protein structure and stability changed during surimi gel forming, which were correlated closely to gel forming procedure and surimi gel properties, Hydrogen bonds and ion bonds decreased significantly, while disulfide bonds and hydrophobicity increased significantly with surimi gel forming. And non-disulfide covalent bonds were formed. The main chemical interactions to maintain silver carp surimi gel network structure were disulfide bonds, non-disulfide covalent bonds and hydrophobicity. Ramman spectra results of surimi after setting 60min and then cooking 30min also showed that the band at 1664 cm~(-1) indicating random coil also occurred, besides the band at 1653 cm~(-1) indicatingα-helix structure of raw surimi protein; the band density near 530 cm~(-1) and 540 cm~(-1) indicating disulfide bonds increased; I850/830 ratio increased from 0.98 to 1.01 and 1.05, respectively indicating the increasing of hydrophobicity. This result was consistent with the change of chemical interactions.
     2. The aggregation behavior, configure and gel-forming mechanism of myosin from silver carp Effects of environmental factors on turbidity and solubility of myosin and myosin gel-forming conditions were investigated by turbidity method, dynamic rheology, and scanning electron microscope. Temperature, pH value, sodium paraphosphate, sodium tripolyphosphate and sodium hexa-metaphosphate could affect myosin solubility. Myosin had good solubility at 30℃or 40℃, and pH from 6.0 to 8.0. Sodium paraphosphate, sodium tripolyphosphate, and sodium hexa-metaphosphate with the concentration from 0.25% to 1.0% could increase solubility of myosin. The forming conditions of myosin gel, the critical concentration and optimum pH were 10mg/mL and 7.0, respectively. Viscoelasticity of myosin gel increased with myosin concentration being up. Dense and uniform gel structure did not form at pH higher or lower than 7.0. Low Ca~(2+) concentration enhanced gel-forming ability of myosin.
     The correlation among myosin denaturation, conformation change and surimi setting was investigated by CD, DSC, SEM. During setting at 40℃, the ratio ofα-helix structure of myosin reduced gradually and finally decreasing by 67.11%, which was 27.00% when setting for 60min, compared with 94.11% before setting. Meanwhile, the ratio of turn and random coil increased by 10.40% and 56.71% to 10.40% and 62.60%, respectively. A majority ofα-helix structure changed into turn. Further heating at 90℃for 30min and cooling to 4℃, the ratios of a-helix, turn and random coil of myosin were 33.70%, 12.40% and 53.90%, respectively and the main secondary structure was random coil. During the forming of myosin gel, myosin molecules extended and changed into random coil contributed to myosin heavy chain cross-linking. At the same time, the results of chemical measurements showed that -SH in myosin head was oxidized into disulfide bond, the content of which increased from 0.6 mol/10~6g to 1.7 mol/10~6g. And surface hydrophobicity increased from 8946.78 to 29152.33, increased by 2.26 times. Myosin denatured and aggregated into ordered aggregation after heating at 40℃for 60min and 90℃for 30min. DSC analysis showed that myosin had two phase transition temperature 43.32℃and 51.59℃. The former was corresponding to setting temperature of silver carp surimi. Setting temperature of silver carp surimi was actually the first peak temperature of myosin denaturalization..
     3. Effects of MTGase, soy protein isolate, and egg albumin on the formation of silver carp surimi gel MTGase could improve gel strength, water-holding ability, and whiteness of surimi gel. The optimum adding dosage of MTGase was 6-10U/g fish protein. Breaking force, deformation, and gel strength were 793.00g, 14.21mm, 11867.20g×mm, increasing by 1.12, 0.21, 1.7 times, respectively. But higher dosage decreased gel properties. When adding dosage of soy protein isolate and egg albumin were 3% and 10%, respectively, silver carp surimi gel properties and water-holding ability could be improved. However their improving mechanisms were different. Soy protein isolate improved gel properties because it might inhibit protease activity and gel by itself, while egg albumin was due to inhibiting serine protease and promoting myosin heavy chain cross-liking. These two kinds of proteins depressed the formation of MTGase-induced gel, so that gel properties of silver carp surimi were lower than that with MTGase only. Thus, soy protein isolate or egg albumin and MTGase could not use at same time during surmi-based products manufacturing.
     4. Effects of starches and hydrocolloids on the formation of silver carp suimi gel Effects of starches with different sources and modified methods on the gel formation of silver carp surimi were also investigated. Starch of different sources had different influences on surimi gel. Potato starch had the best improving effective among potato starch, tapioca starch, and corn starch. Breaking force, deformation, and gel strength of silver carp surimi gel with potato starch increased by 0.22, 0.54 and 0.45 times than that of control, respectively. Surimi gel properties might be improved through adding cross-linked and esterified starch, acetylated starch, phosphate estered starch, and hydropropylated starch, but were decreased by oxidized starch and micronized starch. Hydropropylated starch and cross-linked and esterified starch were suitable for processing surimi-based products. Better surimi gel properties could be obtained by starch with shorter gel length, lower solubility and bigger swelling power.
     Carrageenan, xanthan gum, konjac flour, and guar gum had different influences on silver carp surimi gel properties. 0.5% carrageenan or 0.1% guar gum obviously increased hardness and gel strength of surimi gel, decreased gumminess and brittleness, and improved color. However, gel strength would decrease when adding xanthan gum and konjac flour to surimi in natural pH.
引文
1.陈申如,刘阳,李燕杰.擂溃条件对鱼糜制品弹性的影响[J].大连轻工业学院学报,2004,23(3):194-197
    2.丁天峰,夏平.马铃薯淀粉特性及其利用研究[J].中国农学通报,2005,21(1):55-58
    3.杜先锋,许时婴,王璋.淀粉糊的透明度及影响凶素的研究[J].农业工程学报,2002,(1):129-131
    4.高嘉安.淀粉及淀粉工艺学[M].北京:中国农业科技出版社,2001:22-55
    5.高建峰.鱼糜制品的加工理论及方法[J].食品科技,1994,(4):22-21
    6.管斌,林洪,王广策.食品蛋白质化学[M].北京:化学工业出版社,2005:312-314
    7.郭维荣.米汤碘兰值作为大米食用品质代用指标的探讨[J].粮油仓储科技通讯,2001,(2):43-44
    8.鸿巢章二,桥本周久.水产利用化学[M].北京:中国农业出版社,1994:
    9.胡飞,陈玲.微细化马铃薯淀粉的理化性质[J].无锡轻工大学学报,2002,21(5):452-455
    10.黄伟坤.食品分析与检验[M].北京:中国轻工业出版社,1993:
    11.惠特斯勒R L,贝密勒J N,帕斯卡尔E F.王雒文,闽大铨,杨家顺,高天舜,张陆等译.淀粉的化学与工艺学[M].北京:中国食品出版社,1987:
    12.姜小清,申双贵,何建湖.淡水鱼冷冻鱼糜的加工渔业现代化,2004,(3):34-36
    13.李来好.传统水产品加工[M].广州:广东科技出版社,2002:31-35
    14.罗永康,沈彗星,潘道东等.鲢鱼鱼糜蛋白质凝胶特性的研究[J].食品与发酵工业,2001,10:23-26
    15.钱世钧.转谷氨酰胺酶在食品工业中的应用[J].肉品卫生,2001,(6):6-10
    16.沈月新.水产食品学[M].北京:中国农业出版社,2001:
    17.宋贤良,陈玲,唐建松.几种木薯变性淀粉凝胶化性质的研究[J].粮食与饲料工业,2005,120:24-26
    18.唐传核,杨晓泉,赵谋明.MTGase聚合大豆蛋白及其改性机理(1)MTG催化大豆蛋白研究[J].中国粮油学报,2004,19(1):43-47
    19.万建荣,洪玉菁,奚印慈,吴光红等编译.水产食品化学分析手册[M].上海:上海科学技术出版社,1993:
    20.汪之和,王慥,胡彩娟,邢青,陶水越.漂洗条件对鲢糜凝胶强度的影响[J].水 利渔业,1999,19(3):46-47
    21.汪之和.水产品加工与利用[M].北京:化学工业出版社,2003:219-299
    22.王靖国.鱼糜制品及加工技术[J].食品工业,1993,(1):14-15
    23.王淼,黄司华.微生物转谷氨酰胺酶对鱼糜制品凝胶性能的影响[J].食品工业科技,2002,24(3):28-31
    24.王锡昌,汪之和主编.鱼糜制品加工技术[M].北京:中国轻工业出版社,1997
    25.魏晶石.马铃薯淀粉的特性及其对粉丝生产性状的影响[J].马铃薯杂志,1990,4(3):167-169
    26.阎欲晓.冷冻鱼糜生产工艺技术及质量控制[J].食品科技,2000,(4):36-37 40
    27.杨龙江,南庆贤.肌肉蛋白质的热诱导凝胶特性及其影响因素[J].肉类工业,2001,2460:39-42
    28.杨庆贤,李来好,周婉君,李刘东.提高鲮鱼鱼糜弹性的方法[J].湛江海洋大学学报,2003,23(4):173-177
    29.俞一夫.优质稻谷胶稠度测定要点及应注意的问题[J].四川粮油科技,2001,18(1):58-59
    30.袁春红,陈舜胜,程裕东.鱼糜制品加工技术及其研究进展[J].渔业现代化,2001,(5):35-39
    31.张俊杰,段蕊.鱼糜的凝胶机理[J].淮海工学院学报,1999,9(3):59-62
    32.张俊杰,曾庆孝.我国淡水鱼鱼糜的研究情况[J].食品与发酵工业,2002,28(9):57-63
    33.张磊,赵占西,朱天宇.鱼糜擂溃(斩拌)过程浅析[J].粮食加工与食品机械,2001,29(9):29-31
    34.张憨,段振华,汤坚.低值淡水鱼加工利用研究进展[J].渔业现代化,2003,(3):30-31
    35.张友松.变性淀粉生产与应用手册[M].北京:中国轻工业出版社,1999:70
    36.中国渔业年鉴[M].北京:中国农业出版社,2005:
    37.周爱梅,黄文华,刘欣,曾庆孝,张志东,刘穗.转谷氨酰胺酶对鳙鱼鱼糜凝胶特性的影响[J].食品与发酵工业,2003,29(8):27-31
    38.周爱梅,曾庆孝,刘欣,Sooawwat Benjakul,潘珂.两种蛋白类添加剂对鳙鱼鱼糜凝胶特性的改良[J].华南理工大学学报(自然科学版),2004a,33(4):87-90
    39.周爱梅,曾庆孝,刘欣,黄文华,陈永泉.鳙鱼鱼糜凝胶特性改良的研究[J].华南理工大学学报(自然科学版),2004b,25(2):104-107
    40.王洪晶,华欲飞.大豆分离蛋白凝胶研究进展[J].粮食与油脂,2005,(2):3-5
    41.梁华民,田少君,周怡.转谷氨酰胺酶对大豆分离蛋白交联聚合作用研究[J].粮食与油脂,2004,20:3-6
    42.江波,周红霞.谷氨酰胺转胺酶对大豆7S蛋白质及肌球蛋白质胶凝性质的影响[J].无锡轻工大学学报,2001,20(2):121-127
    43.徐以明.拉曼光谱及其在结构生物学中的应用[M][J].北京:化学工业出版社,2005:11-13
    44.汪学荣,周维禄.复合磷酸盐对鱼糜制品的保水效果研究[J].食品科技,2002,(9):12-13
    45.孔保华,郑秋鹛.鱼糜功能特性的研究现状[J].食品与机械,1999,(4):12-14
    46.陈艳,丁玉庭,邹礼根,殷亚峰.鱼糜凝胶过程的影响因素分析[J].食品研究与开发,2003,24(3):12-15
    47. Acton J C, Zieger, G K, Burge, D L Functionality of muscle constituents in the processing of comminuted meat products[J]. Critical Reviews in Food Science & Nutrition, 1983, 180: 99-121
    48. AFDF. Ground fish quality chart[M]. Anchorage: AKL Alaska Fisheries Development foundation, 1992:
    49. An H, Peters M Y, and Seymour T A Roles of endogenous enzymes in surimi gelation[J]. Trends in Food Science & Technology, 1996, 70: 321-327
    50. Araki H and Seki N Comparison of reactivity of transglutaminase to various fish actomyosins[J]. Nippon Suidan Gakkaishi, 1993, 590: 711-716
    51. Ashie I N A and Lanier T C Transglutaminase in seafood processing[M]. New York: Marcel Dekker, 2000: 147-166
    52. Benjakul S, ChantarasuwanC, Visessanguan W Effect of medium temperature setting on gelling characteristics of surimi from some tropical fish[J]. Food Chemistry, 2003, 820: 567-574
    53. Benjakul S, Visessanguan W, Chantarasuwan C Effect of high-temperature setting on gelling characteristic of surimi from some tropical fish[J]. International Journal of Food Science and Technology, 2004c, 390: 671-680
    54. Benjakul S, Visessanguan W, IshizakiS, & Tanaka M Differences in gelation characteristics of natural actomyosin from two species of Bigeye snapper, Priacanthus tayenus and Priacanthus macracanthus[J]. Journal of Food Science, 2001b, 66(9): 1311-1318
    55. Benjakul S, Visessanguan W, Peeharat S Suwari gel properties as affected by transglutaminase activator and inhibitors[J]. Food Chemistry, 2004a, 850: 91-99
    56. Benjakul S, Visessanguan W, Sdvilai C Porcine plasma protein as proteinase inhibitor in bigeye sannpper (Priacanthus tayenus) muscle and surimi[J]. Journal of the Science of Food and Agriculture, 2001a, 81(): 1039-1046
    57. Benjakul S, Visessanguan W, Thongkaew C Comparative study on physicochemical changes of muscle proteins from some tropical fish during frozen storage[J]. Food Research International, 2003, 36(): 787-795
    58. Benjakul S, Visessanguan W, Tueksuban J Effect of some protein additives on proteolysis and gel-forming ability of Lizardfish (Sarurida tumbil) [J]. Food Hydrocolloids, 2004b, 18(): 395-401
    59. Benjakul S, Visessanguan W Transglutaminase-mediated setting in bigeye snapper surimi[J]. Food Research International, 2003, 36(): 253-266
    60. Bjorg Egelandsdal, Kristen Fretheim and Kunihiko Samejima Dynamic rheological measurements on heat-induced myosin gels: effect of ionic strength, protein concentration and addition of adenosine triphosphate or pyrophosphate[J]. Journal of the Science of Food and Agriculture, 1986, 37(): 915-926
    61. Careche M, Garca M L, Herrero A Structural properties of aggregates from frozen stored hake muscle proteins. Journal of Food Science, 2002, 67(8): 2827-2832
    62. Chan J K, Gill T A, Paulson A T Cross-linking of myosin heave chains from cod, herring and silver hake during thermal setting[J]. Journal of Food Science, 1992a, 57(): 906-912
    63. Chan J K, Gill T A, Paulson A T The dynamics of thermal denaturation of fish myosins[J]. Food Research International, 1992b, 25(): 117-123
    64. Chan J K, Gill T A, Paulson A T Thermal aggregation of myosin subfragments from cod and herring[J]. Journal of Food Science, 1993, 58(): 1057-1061
    65. Chan J K, Gill T A Thermal aggregation of mixed fish myosins. Journal Agriculture and Food Chemistry, 1994,42(): 2649-2654
    66. Chang-Lee M V, Lampila L E, Crawford D L Yield and composition of surimi from pacific whiting (Meluccius productus) and the effect of various protein additives on gel strength[J]. Journal of Food Science, 1990, 55(1): 83-86
    67. Chawla S P, Venugopal V, Nair P M Gelation of proteins from washed muscle of threadfin bream (Nemipterus japonicas) under mild acidic conditions[J]. Journal of food Science, 1996,61(): 362-366 371
    68. Chung Y C, Richardson L, Morrissey M Effects of pH and NaCl on gel strength of Pacific whiting surimi[J]. Aquatic Food Product Technology, 1993,3(): 19-35
    69. Craig R and Woodhead J L Structure and function of myosin filaments[J]. Current Opinion in Structural Biology, 2006,16(): 204-212
    70. Egelandsdal B, Fretheim K, Samejim K Dyamic rheological measurement on heat-induced myosin gels: effect of ionic strength, protein concentration and addition of adenosine triphosphatee or pyrophosphate[J]. Journal of Food Science and Agriculture, 1986, 37(): 915-926
    71. Eiji Tsujiika, Tsukasa Ehara, Nobuyuki Kanzawa, Satoshi Noguchi, and Takahide Tsuchiya Effects of additives on the thermal gelation of Japanese common squid natural actomyosin[J]. Fisheries Science, 2005, 71(): 688-690
    72. FennemaOR, 王璋等译.食品化学[M]. 北京 : 中国轻工业出版社, 2003
    73. Ferry, J D. Protein gels. Advances in Protein Chemisty, 1948, 4(): 1-78
    74. FoegEding E A, DaytonW R, Allen C E Interaction of myosin fibrinogen to form protein gels. Journal of Food Science, 1986, 51(1): 280-285
    75. Folk J E & Chung S I Molecular and catalytic properties of transglutaminase[J]. Advances in Enzymology, 1973,38():109-191
    76. Funatsu Y, Kato N, and Arai K Gel forming ability and cross-linking ability of myosin heavy chain of salt-ground meat from sardine surimi acidified by lactic acid[J]. Nippon Suidan Gakkaishi, 1993, 59(): 1093-1098
    77. Gill T A, Chan J K, Paulson A T Effect of salt concentration and temperature on heat-induced aggregateion and gelation of fish myosin[J]. Food Research International, 1992, 25(): 333-341
    78. Gomez-Guillen M C, Borderias A J, Montero P Rheological properties of gels made form high- and low-quality sardine mince with added non-muscle proteins[J]. Journal of Agriculture and Food Chemistry., 1996, 4(): 746-750
    79. Gomez-Guillen M C, Borderias A J, Montero P Rheological properties of gels made from high- and low-qualiy sardine mince with added non-muscle proteins[J]. Journal of Agricuture and Food Chemistry, 1996, 44(): 746-750
    80. Goodno C C, Swenson C A Thermal transitions of myosin and its helical fragments. II. solvent-induced variations in conformational stability[J]. Biochemistry, 1975, 14(5): 873-878
    81. Goodno C C, Swenson C A Thermal transitions of myosin and its helical fragments. I .shifts in proton equilibria accompanying unfolding[J]. Biochemistry, 1975,14(5): 867
    82. Haejung An, Margo Y P and Thomas A S Roles of endogenous enzymes in surimi gelation[J]. Trends in Food Science & Technology, 1996, 7(): 321-327
    83. Harrington W F, Himmelfarb S Effect of adenosine di- and triphosphates on the stability of synthetic myosin filaments[J]. Biochemistry, 1972, 11(): 2045-2052
    84. Hemanssan A M Aggregation and denaturation involved in gel formation. Washington: American Chemical Society, 1979: 82-103
    85. Hossain M I, Itoh Y, Morioka K, & Obatake A Contributin of the polymerization of protein by disulfide bonding to increased gel strength of walleye Pollack surimi gel with preheating time[J]. Fisheries Science, 2001, 67(): 710-717
    86. Huxley H E Electron micrograph studies on the structure of natural and synthetic filaments from striated muscle[J]. Journal of Molecule Biology, 1963, 7(): 281-308
    87. Ishioroshi M, Samejima K, and Yasui T Effect of blocking the myosin - actin interaction in heat - induced gelation of myosin in presence of actin[J]. Agric Biol Chem., 1980,44 (9): 2185-2194
    88. Jiang S T, Lan C C, Tsao C Y New approach to improving the quality of minced fish products from freeze thawed Cop and Mackerel [J]. Journal of Food Science, 1986, 51 (2): 310-312
    89. Joseph D, Lanier T C, Hamann D D Temperature and pH affect transglutaminase-catalyzed "setting" of crude fish actomyosin[J]. Journal of Food Science, 1994,59(5): 1018-1023
    90. Kamath G G, Lanier T C, Foegeding E A, and Hamann D D Nondisulfide covalent cross-linking of myosin heavy chain in "setting" of Alaska pollock and Atlantic croaker surimi[J]. Journal of Food Biochemistry, 1992,16(): 151-172
    91. Kim J M and Lee C M Effect of starch of textural properties of surimi gel [J]. Journal of Food Science, 1987, 52(3): 722-725
    92. Kim S H. Carpenter J A, Lanier T C, Wicker, I Setting response of Alaska pollock surimi compared with beef myofibrils[J]. Journal of Food Science, 1993, 58(): 531-534
    93. Kim S, Carpenter J, Lanier T and Wichker L Setting response of Alaska Pollock surimi compared with beef myofibrils[J]. Journal of Food Science, 1993, 58():531-534
    94. Kimura I M, Sugimoto M, Toyoda K, Seki N, Arai K & Fujita I A study on the cross-links reaction of myosin in kamaboko 'suwari'gels[J]. Nippon Suisan Gakkaishi, 1991,57(): 1386-1389
    95. Kishi, H, Nozawa H and Seki N Reactivity of muscle transglutaminase on carp myofibrils and myosin B. Nippon Suisan Gakkaishi, 1991, 57(): 1203-1210
    96. Klesk K, Yongsawatdigul J, Park J W, Viratchakul S and Virulhakul P Gel forming ability of tropical tilapia surmi as compared with Alaska Pollock and Pacific whiting surmi[J]. Journal of Aquatic Food Product Technology, 2000,9(): 91-104
    97. Kong C S, Ogawa H, and Iso N Compresssion properties of fish-meat gel as affected by gelatinization of added starch[J]. Journal of Food Science, 1999, 64 (2): 283-286
    98. Krimm S and Bandekar J Vibrational spectroscopy and conformation of peptides, polypeptides, and proteins[J]. Advances in Protein Chemistry, 1986, 38(): 181-364
    99. Kumazawa Y, Numazawa T, Segro K. & Mootoki M Suppression of surimi gel setting by transglutaminase inhibitors[J]. Journal of Food Science, 1995, 60(): 715-717
    100.Kunihiko S, Makoto I, and Tsutoma Y Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin. Journal of Food Science, 1981, 46():1414-1418
    101.Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriage T4. Nature, 1970, 227(): 680-685
    102.Lanier T C & Lee C M Measurement of surimi compostion and functional properties. In: Surimi and Surimi Technology. New York: Marcel Dekker, Inc, 1992: 123-166
    103.Li J Y and Yeh A I Gelation properties and morphology of heat-induced starch/salt-soluble protein composites[J]. Journal of Food Science, 2003, 68 (2): 571-580
    104.Li-Chan E C Y, Nakai S Raman spectroscopy study of thermally and/or Dithiothreitol induced gelation of lysozyme[J]. Journal of Agricutural and Food Chemistry, 1991, 39(): 1238-1245
    105.Lin T M and Park J W Effective washing conditions reduce water usage for surimi processing. Journal of Aquatic Food Product Technology, 1997,6(2): 65-79
    106.Liu Y M, Lin T S, Lanier T C Thermal denaturation and aggregation of actomyosin from Atlantic croaker[J]. Journal of Food Science, 1982, 59(): 101-105
    107.Lowry O H, Rosebrough NJ, Farr A L and Randall R J Protein measurement with Folin phenol reagent[J]. Journal of Biological Chemistry, 1951,193(): 256-275.
    108.Luo Y K, Pan D D and Ji B P Gel properties of surimi from bighead carp (Aristichthys nobilis): influence of setting and soy protein isolate. Journal of Food Science, 2004,69 (8): E374-E378
    109.McCord A, Smyth A B, & O'Neill E E Disulfide Bonds Influence the Heat-induced Gel Properties of Chicken Breast Muscle Myosin[J]. Journal of Food Science, 1998, 63(4): 584-588
    110.Montejano J G, Hamanr D D, and Lanier T C Final strengths and rheological changes during processing of thermally induced fish muscle gels[J]. Journal of Rheology, 1983,(27): 577
    111.Nauss K M, Kitagawa S, Gergely J Pyrophosphate binding to and adenosine triphosphatase activity of myosin and its proteolytic fragments[J]. Journal of Biology Chemistry, 1969,244(3): 755-765
    112.Lanier T C, Hart K, and Martin R E A manual of standard methods for measuring and specifying the properties of surimi[J]. Washington: National Fisheries Instituete, 1991:
    113.Niwa E, Matsubara Y, and Hamada L Hydrogen and other polar bondings in fish flesh gel and setting gel[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1982,48 (5): 667-673
    114.Niwa E Chemistry of surimi gelation. New York: Marcel Dekker, Inc, 1992: 389-438
    115.Nozawa H, Manogoshi S & Seki N Partial purification and characterization of six transglutaminase from ordinary muscles of various fishes and marine invertebrates[J]. Comparative Biochemistry and Physiology Part B, 1997, 118(): 113-317
    116.Ogawa M, Kanamaru J, Miyashita H, Tamiya T, & Tsuchiya T Alpha-helical structure of fish actomyosin: changes during setting[J]. Journal of Food Science, 1995,60(2): 297-298
    117.Okada M Effect of washing on jelly forming ability of fish meat[J]. Bulletin of the Japanese Society of Scientific Fisheries, 1964, (30): 225-261
    118.Oriel Audit, C, Lake, J.A.; Reister, E Structural changes in synthetic myosin filaments and their dissociation by ATP and pyrophosphate[J]. Biochemistry, 1981, 20(): 679-686
    119.Park J W and Lin T M Surimi: Manufacturing and Evaluation[M]. New York: Taylor & Francis, 2004: 39-40
    120.Park J W, Korhonen R W, and Lanier T C Effects of rigor mortis on gel-forming properties of surimi and unwashed mince prepared from tilapia[J], Journal of Food Science, 1990,55(): 353-355 360
    121.Park J W, Yongsawatdigul J, and Lin T M Rheological behavior and potential cross-linking of Pacific whiting surmi[J]. Jounal of Food Science, 1994, 59(): 773-776
    122.Park J W Functional protein additives in surimi gels[J]. Journal of Food Science, 1994,59(3):525-527
    123.Park J W Surimi and surimi seafood[M]. New York: Macel Dekker Inc, 2004: 1-29 48-95 375-430
    124.Park J W Temperature-tolerant fish protein gels using konjac flour[J]. Journal of Muscle food, 1996, 7(): 165-174
    125.Park J W and Lanier T C Calorimetric changes during development of rigor mortis[J]. Journal of Food Science, 1988, 53(5): 1312-1314 1372
    126.Park S, Cho S, Yoshioka T, Kimura M, Nozawa H & Seki N Influence of endogenous proteases and tranglutaminase on thermal gelation of salted squid muscle paste[J]. Journal of Food Science, 2003, 68(8): 2473-2478
    127.Park, J. W. and Lanier, T. C Scanning calorimetric behavior of Tilapia myosin and action due to processing of muscle and protein purification[J]. Journal of Food Science, 1989, 54(1): 49-51
    128.Ramirez J A, Barrera M, Morales O G, Vazquez M Effect of xanthan and locust bean gums on the gelling properties of myofibrillar protein[J]. Food Hydrolcolloids, 2002,16():11-16
    129.Ramirez-Suarez J C, Xiong Y L Effect of transglutaminase-induced cross-linking on gelation of myofibrillar/soy protein mixtures[J]. Meat Science, 2003, 65(): 899-907
    130.Rawdkuen S, Benjakul S, Visessanguan W Chicken plasma protein affects gelation of surimi protein from Bigeye snapper (Priacanthus tayenus) [J]. Food Hydrocolloids, 2004,18(): 291-294
    131.Relkin P Reversibility of heat-induced conformational changes and surface exposed hydrophobic clusters of β-lactoglobulin: their role in heat-induced sol-gel state transition[J]. International Journal of Biological Macromolecules, 1998,22(): 59-66
    
    132.Roger Echert Muscle and Movement[M]. New York: W H Freeman and Company, 1988: 329-357
    133.Samejima K, Hashimoto Y, Yasui T Heat gelling properties of myosin, actin, actomyosin and myosin-subunits in a saline model system [J]. Journal of Food Science, 1969,34(): 242-250
    134.Samejima K, Ishioroshi M, Yasui T Relative roles of the head and tail portions of the molecule in heat-induced gelation of myosin[J]. Journal of Food Science, 1981, 46(): 1412-1418
    135.Sano T, Noguchi S F, Marsumoto J J, and Tsuchiya T Thermal gelation characteristics of myosin subfragments[J]. Journal of Food Science, 1990, 55(1): 55-58 70
    136.Sano T, Ohno T, Otsuka-Fuchino H, Matsumoto J J, Tsuchiya T Carp natural actomyosin: Thermal denaturation mechanism[J]. Journal of Food Science, 1994, 59(): 1002-1008
    137.Sano T, Satoshi F, Noguchi F Effect of ionic strength on dynamic viscoelastic behavior of myosin during thermal gelation[J]. Journal of Food Science, 1990, 55(): 51-54
    138.SAS Institute. SAS/STAT user's guide[M].New York: SAS Institute, Cary, NC, 1989:
    139.Shaowei N I, Nozawa H, Seki N Effect of pH on the gelation of walleye pollack surimi and carp actomyosin pastes[J]. Fisheries Science, 2001, 67(): 920-927
    140.Shaowei Ni, Hisanori Nozawa and Nobuo Seki Effect of pH on the gelation of walleye Pollack surimi and carp actomyosin pastes[J]. Fisheries Science, 2001, 67(): 920-927
    141.Shimada K, Matsushita S Relationship between thermaocoagulation of proein amino acid compositions[J]. Journal of Agriculture and Food Chemistry, 1980, 28(): 413-417
    142.Siegel D G, Schmid G R Ionic strength, pH, and temperature effects on the binding ability of myosin[J]. Journal of Food Science, 1979,44(): 1686-1689
    143.Sultanbawa Y, Li-Chan E C Y Structural changes in natural actomyosin and surimi from Ling cod (Ophiodon elongates) during frozen storage in the absence or presence of cryoptotectants[J]. Journal of Agriculture and Food Chemistry, 2001, 49(): 4716-4725
    144.Bellwood O, Choat H, and Saxena N Recent Advances in Marine Science and Technology[M]. Australia: James Cook University, 1994:
    145.Taguchi T, Ishizaka H, Tanaka M, Nagashima Y J, and Amano K Protein-protein interaction of fish myosin fragments[J]. Journal of Food Science, 1987, 52(4): 1103-1104
    146.Tein M L and Park J W Extraction of proteins from pacific whiting mince at various washing conditions[J]. Journal of Food Science, 1996,61(2): 432-438
    147.Togashi M, Kakinima M, Nakaya M, Ooi T, and Watanabe S Differential scanning calorimetry and circular dichroism spectrometry of walleye Pollacke myosin and lighet meromyosin[J]. Journal of Agricutural and Food Chemistry, 2000, 50(): 4803-4811
    148.Tsukamasa Y and Shimizu Y Factors affecting the transglutaminase-associated setting phenomenon in fish meat sol[J]. Nippon Suidan Gakkaishi, 1991, 57(): 535-540
    149.Tsukamasa Y and Shimizu Y Setting property of sardine and Pacific mackerel meat[J]. Nippon Suidan Gakkaishi, 1990, 56(): 1105-1112
    150.Tsukamasa Y, Miyake Y, Ando M and Makinodan Y Total activity of transglutaminase at various temperatures in several fish meats[J]. Fisheries Science, 2002, 68(): 929-933
    151 .Tsukamasa Y, Shiizu Y Setting property of sardine and Pacific mackerel meat[J]. Nippon Suisan Gakkaishi, 1990, 56(): 1105-1112
    152.Tu A T. Proteins. Raman spectroscopy in biology: principles and applicatons[M]. New York: Wiley, 1986:65-116
    153.Vesessanguan W, Ogawa M, Nakai S A Physicochemical changes and mechanism of heat-induced gelation of arrowtooth myosin[J]. Journal of Agricutural and Food Chemistry, 2000, 48(): 1016-1023
    154.Visessanguan W, Benjakul S, An H Porcine plasma proteins as a surimi protease inbihitor effects on actomyosin gelation[J]. Journal of Food Science, 2000, 65(): 607-611
    155.Visessanguan W, Ogawa M, Nakai S, and An H Physicochemical changes and mechanism of heat-induced gelation of arrowtooth flounder myosin[J]. Journal of Agricultural and Food Chemistry, 2000,48(): 1016-1083
    156.Wang S F, SmithH D M Gelation of chicken breast muscle actomyosin as influenced by weight ratio of actin to myosin[J]. Journal of Agricutural and Food Chemistry, 1995,43(): 331-3361
    157.Wasson D H, Babbitt J K, and French J S Characterization of a heat stable protease from arrowtooth flounder, Atheresthes stomias[J]. Journal of Aquatic Food product Technology, 1992,(4): 167-182
    158.Weerasingbe V C, Morrissey M T, and Chung Y C. Whey protein concentrate as a protease inhibitor in pacific whiting surimi. Journal of Food Science, 1996, 61 (2): 367-371
    159. Weerasinghe V C, Morrissey M T and An H Characterization of active components in food-grade protease inhibitor for surimi manufacture[J]. Journal of Agriculture and Food Chemistry, 1995,44(): 2584-2590
    160.Wu M C, Akahane T T, Lanier T C, Hamann D D. Thermal transitions of actomyosin and surimi prepared from Atlantic croakeras studied by differential scanning calorimetry[J]. Journal of Food Science, 1985, 50(): 10-14
    161.Xiong L Y, Brekke C J Protein extractability and thermally induced gelation properties of myofibrils isolated from pro- and post-rigor chicken muscles[J]. Journal of Food Science, 1991, 56(): 210-215
    162.Xiong Y L and Blandchard S P Myofibrillar protein gelation: viscoelastic changes related to heating procedures[J]. Journal of Food Science, 1994, 59(): 734-738
    163.Yang H and Park J W Effects of Starch Properties and Thermal-processing conditions on Surimi-Starch Gels[J]. Lebensm.-Wiss. u.-Technol., 1998, 31(): 344-353
    164.Yasui T, Ishioroshi M, Samejima K. Heat-induced gelation of myosin in the presence of actin[J]. Journal of Food Biochemistry, 1980,4(): 61-78
    165.Yongsawatdigul J, Park J W, Worratao A Effect of endogeous transglutaminase on threadfin bream surmi gelation[J]. Journal of Food Science, 2002, 67(): 3258-3263
    166.Yongsawatdigul J and Park J W Thermal denaturation and aggregation of threadfin bream actomyosin[J]. Food Chemistry, 2003, 83(): 409-416
    167.Yongsawatdigul J and Park J W Thermal aggregation and dynamic rheological properties of pacific whiting and Cod myosins as affected by heating rate[J]. Journal of Food Science, 1999,64(4): 679-683
    168.Yoon W B, Kim B Y, Park J W Rheological characteristics of fibrinogen-thrombin solution and its effect on surimi gels[J]. Journal of Food Science, 1999, 64(): 291-294
    169.Yoshinori M Recent advances in the understanding of egg white protein functionality[J]. Trends in Food Science & Technology, 1995, (6): 225-232
    170.Youling L, Xiong and Suzanne P Blanchard. Myofibrillar gelation: viscoelastic changes related to heating procedures[J]. Journal of Food Science, 1994, 59(4): 734-738
    171.Yuwathida K. Improvement of gel quality of surimi from Bigeye Snapper[M]. Songkla: Prince of Songkla University, 2001:

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700