三工位实心轮胎注射成型及硫化装置的设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在汽车轮胎中可分为空气轮胎和实心轮胎两大类。轮胎工业在国民经济中具有重大的作用,而且与人民生活息息相关,因此,近代社会十分重视轮胎工业的发展,尤其在充气轮胎工业中发展十分迅速,在我国的轮胎产量已超过了4亿条。但在另一方面,实心轮胎工业在国内却一直没有得到应有的发展,其产量也不过几万条,这里面有观念问题,也有生产技术问题。在欧美国家,实心轮胎应用领域相当广泛,只要在行驶速度不超过80km/h的车辆轮胎都普遍使用实心轮胎,它不需要充气,也无爆胎之忧,而且直径比较小,承压能力高,使用寿命长,维修比较方便。
     现在,实心轮胎成型仍采用传统的模压法、缠绕法、离心浇注法,这些方法使用设备多、工艺复杂、能耗大,而且轮胎制品成品率低,轮胎质量差,无法满足对实心轮胎数量和质量的需求。为了实心轮胎注射成型的发展,在此背景下,我们对三工位一步法注射实心轮胎技术与设备进行了设计研究。
     在《三工位实心轮胎注射成型及硫化装置的设计研究》课题中,做了相关的工作和获得以下成果:
     1.在国内外首次设计了三工位一步法注射实心轮胎成套全套设备,其可一次注射20,000g的主战坦克负载实心轮胎;
     2.在国内首次设计了实心轮胎电动脱模装置,本装置运用了现代工业高精度的滚珠丝杠的非自锁工作原理结合电磁离合器的特点,成功地设计了电动脱模装置,并对按本设计制造出来的装置,通过实验完全达到了设计的预期效果;
     3.本设计对一步法注射机的合模移动装置的压力传感机构进行了改进,把原来刚性的传输路线改为弹性的传输路线,解决了压力传感器发出信号与显示仪表产生滞后的问题,保证了压力控制的稳定性,进而保证整机工作的可靠性;
     4.在没有参考材料的条件下,在国内首次设计了一步法注射实心轮胎的模具,它同时考虑了模具的排气问题、注射流道系统问题和脱模问题,为一步法注射实心轮胎奠定了基础;
     5.首次设计了三工位整体式注射成型硫化结构。整个装置生产效率高,受力合理,变形小,而且工作可靠,可以实现自动化和连续化生产。
     6.采用下注法为模具系统设计了流道板,将注射胶料口下移避免了因流道受力不均产生的漏胶现象。
     7.设计时运用了有限元法分析软件。设计中对重要部件进行了有限元法分析,对不同方案的结构进行分析,并对有限元法计算得出的变形值进行比较,再对各个方案作出评价进行优化设计,使结构更加合理可靠。
     8.对设计进行了参数化三维造型设计和动态过程模拟。利用整机的运动仿真,来发现设计中存在的不合理、干涉等现象,以实现优化设计,提高了设计水平。
Tires can be divided into two major categories,solid tires and pneumatic tires. Tire industry has a significant role in the national economy, and it is closely related to people's lives. Thus, this country attaches great importance to the development of the tire industry in modern society. Especially in the pneumatic tire industry there was a rapid development. At present, tire production in China has exceeded 400 million each year. On the other hand, solid tire industry in China has never been properly developed, whose production is only tens of thousands eacn year. Cause problems are not only ideas but also the production technology. Solid tires have a wide range of applications in the USA and European countries. As long as the speed is not more than 80km / h they are commonly used in vehicle tires. Solid tires do not require inflation, and do not worry for puncture. And they have high pressure capability, for they have a relatively small diameter. They also have long life and maintenance more convenient.
     Now, the solid tire is still using the traditional molding, winding method and centrifugal casting method. These methods use more equipment, complex process, energy consumption, and low tire finished products, poor quality tires etc. They can not meet the demand for quantity and quality of solid tires. For the development of solid tire injection molding, we conducted a design study for three-station one-step injection of solid tire technology and equipment.
     In this issue, we have done related work and got the following results:
     1. Design the three-station one-step injection of solid tires equipment at home and abroad for the first time. This equipment can inject 200,000 g's main battle tank load solid tire one time .
     2. Design solid tires electric ejection device for the first time in China. The devices use a modern industrial high-precision ball screw principle of non-self-locking, combining of the characteristics of electromagnetic clutch. Successfully designed electric ejection equipment. Though the experiments on devices by the design, it fully achieved the expected result of the design.
     3. Improve the one-step injection machine mold pressure sensor body mobile devices. This institution changed original rigid transmission line to a flexible transmission line. It solved the phenomenon of the lag between pressure sensor signal and display instrument. And guaranteed the stability of pressure control .And then ensured the reliability of machine work.
     4. Design a one-step injection solid tires mold at home for the first time, in the absence of reference material conditions. It considered the issue of mold exhaust, flow injection system problems and stripping problems. It established the foundation of the one-step injection solid tires.
     5. Design the overall structure of the three-station injection molding and curing. The whole equipment has high productivity, reasonable force, small deformation and reliable working. It can be automated and continuous production.
     6. Design the flow channel plate for the mold which use BET method. The rubber injection port due to flow down to avoid leakage generated by uneven forces the flow suffered.
     7. Using finite element analysis software in design. We carried out finite element analysis for important components. The structure of the analysis of different options had been analyzed. The deformation calculated with finite element method were compared. And then made evaluation of various options for optimization. Make the structure more reasonable and reliable.
     8. Make parameterized three-dimensional shape design and dynamic process simulation. Using motion simulation of the machinec, we discovered and solved the existence of irrational design and finterference phenomena. To achieve the optimal design and improve the design level.
引文
[1]焦冬梅.实芯轮酸生产方法探讨[J].橡胶技术与装备,2007,(5):17~21.
    [2]苏平.烟台中策公司特太实心轮胎问世[J].中国橡胶, 2009,25(14):44.
    [3]叶文钦.实心轮胎浅析[J].中国轮胎资源综合利用,2009,(6):38~39.
    [4]苏超,臧汝义,刘亮权,等.实芯轮胎缠绕法成型工艺和设备[J].橡胶技术与装备,2000,(1):13~16.
    [5]刘少兵,贾林才,赵彦生.聚氨酯实心轮胎的研究进展[J].轮胎工业,2006,(5):259~262.
    [6] Krishnan R M.Solid polyurethane tire/wheel assembly[P].USA:USP 4095637, 1978-06-20.
    [7] Ride D.PUS attract rubber. tyres markets[J].European Rubber Journal, 1991, 173(5):8.
    [8]刘锦春,郝立新,刘宝成.聚氨酯微孔弹性体实心轮胎的制造方法[J].轮胎工业,1997 ,17(8):451~455.
    [9]郝立新,刘锦春,刘宝成.聚氮酯浇注轮胎的开发和研究进展[J].轮胎工业,1996,16(11):643~649.
    [10]杨顺根,白仲元主编.橡胶工业手册(修订版)第九分册(上册)[M].北京:化学工业出版社,1992:175~182.
    [11]吕柏源.橡胶注射成型机发展历程[J].中国橡胶,2000,4:24~25.
    [12]吕柏源.全电动螺杆旋转(一步法)橡胶注射成型技术的研究与开发[J].中国橡胶,2005,21:48.
    [13]吕柏源.橡胶旋转(一步法)注射成型技术研究的进展[J].橡塑技术与装备,2002,28(12):7~12
    [14]吕柏源.橡胶螺杆旋转注射成型方法与设备[P].中国:99110355.3
    [15]吕柏源.橡胶螺杆旋转注射成型方法与设备[P].中国:98221876.1,
    [16]焦冬梅.螺杆泵橡胶定子一步法注射成型技术及设备的设计与研究[D].青岛:青岛科技大学,2004:10~20.
    [17]智庆东,申煜亮,吴频.新型杆式螺杆泵的研制与应用[J].石油机械,2009,37(7):40~41.
    [18] Darnell W H, Mol E A J.SPE, 1959,12:20.
    [19]朱复华.挤出理论及应用[M].北京:中国轻工业出版社,2001:70~80.
    [20] A .Cox,R .Fenner.Polymer.1975,(20):56.
    [21]吕柏源,唐跃,赵永仙.挤出成型与制品应用[M].北京:化学工业出版社,2002:150~152.
    [22]吕柏源.强化冷喂料挤出机生产能力的途径[J[.橡塑技术与装备,1990,(2)2~6.
    [23]唐跃,吕柏源,刘明洁.橡胶冷喂料挤出机螺杆参数与生产能力实用数学模型的初步研究[J] .橡胶技术与装备,1994,(4):4~6.
    [24]吕柏源.橡胶冷喂料挤出机螺杆构型分析[J].橡塑技术与装备,1986,(4):3~4.
    [25]唐跃,吕柏源,刘明洁.橡胶冷喂料挤出机螺杆参数与消耗功率实用数学模型的研究[J].橡胶技术与装备,1995,(2):17~20.
    [26]唐跃,吕柏源,高鉴明.橡胶冷喂料挤出机螺杆参数与机头压力使用数学模型的研究[J].特种橡胶制品,1994,(9):7~11.
    [27]吴崇周.单螺杆挤出机挤出参数的计算[J].挤出设备,2003,(12):15~20
    [28]吕柏源.螺杆构型影响冷喂料过程的初步研究.橡胶工业[J]. 1984. 9.
    [29]机械设计手册.北京:机械工业出版社,1988,3:77~114
    [30]郑志峰,王义行,柴邦衡.链传动[M].北京:机械工业出版社,1984:34~52.
    [31]王义行,陈洪海.导轨链传动的技术特性及工程应用[J].吉林工业大学学报,1995,(4):85~90.
    [32]隋学民,闰相和.滚子传动链承载能力的确定,机械传动,1994,(1):7~9
    [33]王义行.链传动结构型式的发展与应用,新技术新工艺,1995,(5):17~18.
    [34]唐国俊,李健镔.橡胶机械设计(上)[M].北京:化学工业出版社,1981:376~398
    [35]巫静安,李木松.橡胶加工机械[M].北京:化学工业出版社,2006:352~354.
    [36]吕柏源.螺旋式轮胎定型硫化机获国际认证,橡胶技术与装备.
    [37]陈维芳. RIB双模轮胎定型硫化机特点浅谈[J].橡胶技术与装备,1992,18(3):21~22.
    [38]郝为建.两工位实心轮胎一步法注射成型硫化机组的设计研究与三维过程模拟[D].青岛:青岛科技大学,2008:23~26
    [39]高明健.全电动多工位立式一步法注射成型机的设计研究与三维动态过程模拟[D].青岛:青岛科技大学,2006:24~39
    [40]李壮,黄晓严,范洪艳.浅谈滚珠丝杠在机床设计中的选用[J].世界制造技术与装备市场,2009(2):113~115.
    [41]陈耀东,屈力刚,辛斌.湿式多片电磁离合器的应用[J].沈阳航空工业学院学报,2004,21(1):63~64.
    [42]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2002
    [43] BarmagAG. Technical Information EX 75/2,Remscheid.
    [44]王新荣,陈永波.有限元法基础及ANSYS应用[M].北京:科学出版社,2008:75~88
    [45]王勋成,邵敏.有限单元法基本原理与数值方法[M].北京:清华大学出版社,1988:35~43.
    [46]雷晓燕.有限元法[M].北京:中国铁道出版社,2000:44~66
    [47]龙驭球.有限单元法概论[M].北京:高等教育出版社,1991:15~30
    [48]黄志东,任继文.滑动螺旋传动中螺牙应力和工作压力的研究[J].锻压技术,2004,(2):10~16.
    [49]周彦豪,陈福林.橡胶挤出技术的新进展[J].中国橡胶,2004,20(2):19~21.
    [50] G.Nijman,黄元昌.几种不同的橡胶挤出机螺杆、机筒设计方案(下)—应用方法[J].橡塑技术与装备,2002,28(6):37~44.
    [51]张友根.注塑机简外径设计的分析研究[J].橡塑技术与装备,2009,35(11):26~36.
    [52]林广义,吕柏源.橡胶冷喂料挤出机喂料装置的性能分析[J].橡胶技术与装备,2002,28(7):7~9.
    [53]范盈盈,孙凯,吕柏源.冷喂料挤出机螺旋啮合喂料装置的性能分析与研究[J].世界橡胶工业,2009,36(7):19~21.
    [54] B .Martin. Non-Liner Mech. 1969,(2):285.
    [55] R. S. Rowell, D,F,finlayson, screw viscosity pumps, 1922.
    [56]吕柏源.螺杆构型影响冷喂料挤出过程的初步研究[J].橡胶工业,1984:(9).
    [57]金华开发区精工电机有限公司.电机样本.
    [58]沈世德.机械原理[M].北京:机械工业出版社,2002.
    [59]愚福荣,橡胶模具设计制造与设用[M].北京:机械工业出版社,2002:187~205.
    [60]奚永生.橡胶成型模具设计手册[M].北京:中国轻工业出版社,2000:155~170.
    [61]天津华盛昌.减速机样本.
    [62] Yu. I. Larin. Machinery for injection molding of plastics[J]. Chemical and Petroleum Engineering, 1971, 7(8): 740~743 .
    [63] N. I. Basov, Yu. V. Kazankov. Comparative estimate of the molding capacities of injection molding machines with plunger and screw plastication[J]. Mechanics of Composite Materials, 1970, 6(2): 318~321.
    [64]成大先.机械设计手册(第二卷) [M].北京:化学工业出版社,1993.
    [65]徐灏.机械设计手册(第三卷) [M].北京:机械工业出版社,1991.
    [66]刘鸿文.材料力学[M].北京:高等教育出版社,2003:300~303.
    [67]詹友刚,洪亮. Pro/Engingeer中文野火版2.0产品设计通用教程[M].北京:清华大学出版社,2005:10~20.
    [68]白晶,陶春生,张云杰. Pro/Engingeer Wildfire零件设计基础篇[M].北京:清华大学出版社, 2005:3~8.
    [69]胡仁喜,董永进,郑娟等. Inventor9中文版机械设计高级应用实例[M].北京:机械工业出版社,2005.
    [70] [美]Solidworks著.生信实维编译. Solidworks官方认证培训教程[M].北京:清华大学出版社,2003.
    [71]陈尚春. 3ds max 5动画制作专家之路[M].北京:清华大学出版社,2003.
    [72] Cat Woods. 3ds max 4从入门到精通[M].北京:中国电力出版社,2002.
    [73]吴起. 3ds max5动画技术与艺术[M].北京:中国电力出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700