两工位实心轮胎一步法注射成型硫化机组的设计研究与三维过程模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代化建设的日益加快,人民生活水平的不断提高,我国对实心轮胎的需求量越来越大,质量的要求也越来越高,高质量的实心轮胎则需要由高品质的橡胶成型硫化设备来保证。因此,一个企业能否高效率的生产出高质量的实心轮胎在很大程度上取决于实心轮胎成型硫化设备的水平。目前国内外成型实心轮胎的方法主要有传统的模压法、缠绕法、离心浇注法和注射法等。但这些成型方法和设备存在如下问题:一是模压法和缠绕法都属于一种将预先得到的胶片进行贴合的工艺,其制造工艺复杂、使用设备多、消耗能量大,且胶层之间致密性差,容易出现脱层现象;二是因分子结构特性的因素聚氨酯实心轮胎内生热现象比较严重,并且其动态性能和抗滑性能差以及原材料成本高等,这些不利因素阻碍了聚氨酯实心轮胎的推广。
     为了适应市场对实心轮胎成型硫化设备的需求,解决对制品“高效、高质、低耗、低成本”的要求,本文在深入研究了各种实心轮胎成型硫化设备的特点和性能的基础上,全新设计了两工位实心轮胎一步法注射成型硫化机组。本论文的
     主要成果如下:
     (1)首次采用一步法注射技术成型实心轮胎,提高了实心轮胎的质量和生产效率。
     (2)注射成型硫化机具有两工位整体式结构,整机不仅生产效率高,而且整体受力合理、变形小、工作精度高,同时结构紧凑,占地面积小,可用于大、中、小型容量制品的注射成型硫化。一套注射装置进行两工位的依次注射,每个工位的锁模和脱模装置独立工作,完成制品的保压硫化以及脱模,具有操作自动化和生产连续化的特点。
     (3)设计了弹簧缓冲装置和开放式轴承座,提高了压力传感器控制精度和可靠性,解决了螺旋锁模机构偶发卡死时无法卸荷的难题。
     (4)注射胶料口的下移解决了传统注射过程中流道受力不均产生漏胶的问题。
     (5)压合装置丝杠的轴线与注射装置螺杆的轴线在同一直线上,使注射机无偏心力矩,提高了注射机的对中性能。
     (6)电磁离合器和滚珠丝杠的配合使用巧妙提供了清理流道内胶料的空间,提高了自动化操作水平。
     (7)设计中运用了先进的数字传感技术,以实施对机头压力、锁模力和压合力的检测,实现胶料的信息定量和压合装置的数字操作,使设备运行安全可靠,易于实现自动化。
     (8)运用传统设计、有限元分析、三维造型设计和三维过程模拟相结合的设计手段,充分体现了设计与制造同步的现代设计理念。
     综上所述,两工位实心轮胎一步法注射成型硫化机组具有现有成型实心轮胎设备所不具备的诸多优点,具有明显的创新性。
With rapid development of modernization and the continuous improvement of people's living standards, Chinese demand for solid tire is growing, and so are the quality requirements. High-quality solid tire should be guaranteed by the high-quality rubber vulcanization molding equipment. As a result, that if a highly efficient enterprise can produce high-quality solid tire depends largely on the level of solid tire vulcanization molding equipment. Up to now, forming solid tire at home and abroad mainly use the traditional method of molding, winding, centrifugal casting method and the injection method, which, however, exist the following problems by varying degrees: firstly, both molding and winding methods are process that the rubber sheets will be carried out prior for attaching. Their manufacturing process is complex, the use of equipment and energy consumptions are too much, the compactness between rubber layers is bad, and the layers can fall off easily. Second, because of the molecular structure, the internal heat generation of polyurethane solid tire is quite serious. The poor dynamic performance, poor anti-slide performance and high prices of raw material hinder the promotion of polyurethane solid tire.
     In order to adapt to the market needs for the solid tire vulcanization molding equipment and satisfy the requirements for "highly efficiency, high quality, low power consumption, low cost", this paper newly designed two station solid tire one-step injection molding vulcanization set basing on the study of a variety of solid tire vulcanization molding equipments and performance characteristics. In this paper, the main results are as follows:
     (1) For the first time one-step injection molding technique is applied to the production of solid tire, which improves the quality and production efficiency of solid tire.
     (2) Owning to the two-station integral structure, injection molding curing press, which can be used for large, medium and small capacity injection molding products vulcanization, not only has high efficiency and overall reasonable force, small deformation, highly precision work, but also has compact structure and small occupation area. A set of injection devices inject with two stations in order, each of which mode-locking and demoulding device work independently, and complete the vulcanization and demoulding,which has continuous automation characteristics。
     (3) The design of the spring buffer and open bearing chock increase the pressure sensor’s control precision and the reliability, and solve the problem of unable unloading when the spiral clamping device is jammed accidentally.
     (4) The downward movement of rubber injection entrance resolves the rubber leakage caused by the non-uniform flow channel stress in traditional injection process.
     (5) Centerlines of the lead screw in pressing device and the screw in injection device are of coincidence. This structure makes the injection have no eccentric torque and improves the alignment performance.
     (6) Electromagnetic clutch and the ball screw provide ingeniously the place for cleaning the trash in the channels, which increase the operational automation level.
     (7) The machine uses advanced digital sensing technology to detect the nose pressure, clamp force and axial force, which achieve compound quantitative information and digital operation of installations of pressure, so that the operation of equipment is safer and more reliable, in addition, it’s easy to realize automation.
     (8) The paper uses traditional design method, Finite Element Analysis Method, three-dimensional forming design and three-dimensional process simulation together, which fully reflects the synchronous design with manufacture of modern design concept.
     In summary, the two-station solid tire one-step injection molding vulcanization set has a lot of advantages that the existing solid tire molding equipments do not own, and obviously, it is innovative.
引文
[1]焦冬梅.实芯轮酸生产方法探讨,橡胶技术与装备,2007(5):17~21
    [2]苏超,臧汝义,刘亮权等.实芯轮胎缠绕法成型工艺和设备,橡胶技术与装备,2000(1):13~16
    [3]刘少兵,贾林才,赵彦生.聚氨酯实心轮胎的研究进展,轮胎工业,2006(5):259~262
    [4] Walt Smith著梁务玲译姚岐轩校,用聚氨酯橡胶制造实心工业轮胎,1989(4):23~26
    [5]杨顺根,白仲元主编.橡胶工业手册(修订版)第九分册(上册),化学工业出版社,北京, 1992
    [6]杨顺根,白仲元主编.橡胶工业手册第七分册(上册),化学工业出版社,北京, 1982
    [7]凸.M.巴尔斯科夫主编.化学工业部橡胶工业研究设计院译,橡胶机械[M],化学工业出版社,北京, 1982
    [8]杨顺根,白仲元.橡胶工业手册第九分册.北京.化学工业出版社,1994:861~866
    [9]唐国俊,李健镔.橡胶机械设计,化学工业出版社,北京:1984;403~408
    [10]杨顺根.橡胶机械发展现状,橡胶技术与装备,1988(2):13~30
    [11]吕柏源.橡胶螺杆旋转注射成型方法与设备,发明专利,99110355.3
    [12]吕柏源.橡胶螺杆旋转注射成型方法与设备,实用新型专利,98221876.1
    [13]吕柏源.橡胶旋转(一步法)注射成型技术研究的进展,橡塑技术与装备.2002:(12)
    [14]焦冬梅.螺杆泵橡胶定子一步法注射成型技术及设备的设计与研究,青岛科技大学硕士论文,2004
    [15]吕柏源.螺旋式轮胎定型硫化机获国际认证,橡胶技术与装备.
    [16]陈维芳. RIB双模轮胎定型硫化机特点浅谈,橡胶技术与装备, 1992,18(3):21~22
    [17]朱复华,挤出理论及应用,北京,中国轻工业出版社,2001:70~80
    [18] A .Cox,R .Fenner.Polymer.1975,(20):56
    [19]朱复华.挤出理论及应用,北京,中国轻工业出版社,2001
    [20] A .Cox,R .Fenner.Polymer.1975,(20):56
    [21]吕柏源,唐跃,赵永仙.挤出成型与制品应用.北京:化学工业出版社.2002:150~152
    [22] B .Martin. Non-Liner Mech. 1969,(2):285
    [23] R. C. Donovan.Polym.Eng.Sci.1971,(11):247
    [24] R. S. Rowell & D,F,finlayson, screw viscosity pumps, 1922
    [25] Darnell W H, Mol E A J.SPE, 1959,12:20
    [26]柳和生吕柏源.啮合型异向旋转双螺杆熔体输送特性研究,青岛化工学院学报,17(3):220~224
    [27] T. Sastrohartono, Y. Jaluria, and M. V. Karwe. Numerical Simulation of Fluid and Heat Transfer in Twin-screw Extruders for Non-Newtonian Materials[J].Polym Eng Sci,1995,35(15):1213.
    [28] D. Goffart, D. J. Van Der Wal, E. M. Klomp,H. W.Hoogstraten,L.P.B.M.Janssen,L.Breysse,and Y.Trolez. Three- Dimension at Flow Modeling of a Self-Wiping Corotating Twin- Screw Extruder. Part I:The Transporting Section[J].Polym Eng Sci,1996,36(7):901.
    [29] AttallaG, Podio-Guidugli P. On modeling the solids conveying zone of a plasticating extruder. Polym Eng Sci, 1980, 20(11):709
    [30]毛海涛,于文松,吴开琮.轮胎硫化机的结构简介,橡胶技术与装备,1995, 21(1):24~30
    [31]李东平,陈维芳. 1145(Z)子午线轮胎定型硫化机的开发,橡胶技术与装备, 1998, 24(1):20~22
    [32] Bill L.Rose,Kobelco Stewart bolling,蔡洪元译.适应未来需求的新型轮胎硫化机的设计,橡胶技术与装备, 1994, 20(4):33~36
    [33]陈维芳,方耀辉,刘福文. 1310RIB垂直升降式轮胎定型硫化机的研制,轮胎工业,2001, 21(3):179
    [34]郑志峰,王义行,柴邦衡.链传动,北京,机械工业出版社,1984
    [35]王义行,陈洪海.导轨链传动的技术特性及工程应用,吉林工业大学学报.1995;(4)
    [36]隋学民,闰相和.滚子传动链承载能力的确定,机械传动,1994,(1)
    [37]王义行.链传动结构型式的发展与应用,新技术新工艺,1995,(5)
    [38] Sutherlang G H. Fixed Track Chain Drive. U. S. Patent,1985,4:49889
    [39] Sutherlang G G. The Guided Chain. ASME Feehnical Paper. 1986 86—DET 160
    [40]濮良贵,纪名刚.机械设计,高等教育出版社,2002
    [41] BarmagAG. Technical Information EX 75/2,Remscheid.
    [42]黄志东,任继文.滑动螺旋传动中螺牙应力和工作压力的研究,锻压技术,2004,(2)
    [43]周彦豪,陈福林.橡胶挤出技术的新进展,中国橡胶.2004,20(2).19~21
    [44] G.Nijman,黄元昌.几种不同的橡胶挤出机螺杆、机筒设计方案(下)——应用方法,橡塑技术与装备.2002,28(6).37~44
    [45]国旭明,张艳.挤出机机筒等离子喷焊工艺的研究,兵器材料科学与工程.1996,19(5).19~31
    [46] B .Martin. Non-Liner Mech. 1969,(2):285
    [47] R. C. Donovan.Polym.Eng.Sci.1971,(11):247
    [48] R. S. Rowell & D,F,finlayson, screw viscosity pumps, 1922
    [49]张友根.橡胶注射成型机的开发,橡胶工业,1995年第42卷:548~550
    [50]吕柏源.螺杆构型影响冷喂料挤出过程的初步研究,橡胶工业,1984:(9)
    [51]金华开发区精工电机有限公司.电机样本
    [52]沈世德.机械原理,北京,机械工业出版社,2002
    [53]常州市南江减速机有限公司.减速机样本
    [54]奚永生.橡胶成型模具设计手册,中国轻工业出版社,2000
    [55]王旭,黄伟民译,苏德成校.最新塑料模具手册,上海科学技术文献出版社
    [56]瞿金平,黄汉雄,吴舜英主编.塑料工业手册,化学工业出版社
    [57]李雨,戴福来.注射成型机,现代橡塑, 2004,16(9):22
    [58]天津华盛昌.减速机样本
    [59] Yu. I. Larin. Machinery for injection molding of plastics, Chemical and Petroleum Engineering, 1971,7(8):740~743
    [60] N. I. Basov, Yu. V. Kazankov .Comparative estimate of the molding capacities of injection molding machines with plunger and screw plastication, Mechanics of Composite Materials,1970,6(2) :318~321
    [61]成大先.机械设计手册(第二卷),北京,化学工业出版社,1993
    [62]徐灏.机械设计手册(第三卷),北京,机械工业出版社,1991
    [63]丘宣怀主编.机械设计,高等教育出版社,北京,1997
    [64]刘鸿文主编.材料力学下册(第三版),高等教育出版社,北京,1992:148~190
    [65]王勋成,邵敏.有限单元法基本原理与数值方法,清华大学出版社,1988
    [66]刘涛,杨凤鹏.精通ANSYS,清华大学出版社
    [67]雷晓燕.有限元法[M]1北京:中国铁道出版社,2000.10
    [68]龙驭球.有限单元法概论,高等教育出版社,1991
    [69]郝文化. ANSYS 7.0,清华大学出版社2004
    [70]陈晓霞主编. ANSYS 7.0机械工业出版社2004
    [71]刘涛,杨凤鹏.精通ANSYS,清华大学出版社
    [72] F.Injection Moulding Machines.Macmillan Publishing Co,Inc,New York,1982:99~120
    [73] Walter Michaeli .Extrusion Dies for Plastics and Rubber:Design and Engineering Computations,Hanser Gardner,2003
    [74] H.MAVRIDIS,R.N.SHROFF .Multilayer Extrusion: Experiments and Computer Simulation. Polymer Engineering and Science,1994:34(7):559~569
    [75]王兴天.注塑成型技术.化学工业出版社,北京,1989,500~512
    [76] N.Burtnyk and M.Wein:“Computer Generated Key Frame Animation”,SMPTE 80,pp.149~153(1979)
    [77] W.Reeve:“Inbetweening for Computer Animation Uilizing”,Comput.Graph. (SIGGRAPH),15,3,pp.263~269(1981)
    [78] N.Burtnyk and M.Wein:“Interactive Skelton Techniques for Enhancing Motion Dynamics in key Frame Animation”,ACM Commun.1~19,10,pp.564~596(1976)
    [79] A.R.Smith:“Planar 2-Pass Texture Mapping and Warping”, Comput.Graph. (SIGGRAPH),21,4,pp.263~272(1987)
    [80]于鹏,陈欣主编.入门与提高,清华大学出版社,北京,2003
    [81]陈尚春主编. 3ds max 5动画制作专家之路,清华大学出版社,北京,2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700