基于LTCC技术的60-GHz频段圆极化天线研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
60-GHz技术是挑战无线视频和数据传输速度的技术,它有许多优点,例如,频谱可用性60GHz可达到7GHz,而802.11n和UWB只达到0.66GHz和1.5GHz~7.5GHz。此外,60-GHz原始数据的最高速度达到25000Mbps,而802.11n标准和UWB只能分别实现600Mbps和480Mbps的传输速度。
     对于60-GHz天线研究,目前的主要研究工作集中在线极化上。圆极化对于线极化有明显的降低极化失配的优势,因此60-GHz圆极化天线的研究还有待提高。
     针对以上研究背景,本文建立了以多层LTCC工艺为基础,研究和发展适用于60-GHz频段圆极化天线阵列。
     主要内容为:
     第一章为绪论,主要概述了本文研究工作的背景。介绍60-GHz通信的发展现状、应用的领域;当前60-GHz天线的主要研究内容;并说明了本文的主要工作。
     第二章给出了宽带、圆极化螺旋天线的相关理论。
     第三章介绍本文的主要工作,设计基于LTCC技术,适用于60-GHz频段无线局域网的新型宽带集成天线,以及加工后实物的相关测试参数。
     第四章基于LTCC技术,利用差分馈电设计一种简单形式的60-GHz圆极化天线。
     第五章结束语,总结本文的主要工作和不足之处。
60-GHz technology is the challenge of wireless video technology and data transfer speed. It has a lot of advantages like wide frequency bandwidth about 7 GHz, while 802.11n and UWB can only get 0.66GHz and 1.5GHz~7.5GHz. The maximum raw data rate of 60-GHz is up to 25000Mbps, while 802.11n and UWB standard can only up to 600Mbps and 480Mbps, respectively.
     For 60-GHz antenna research, current research focused on the line polarization. For linear polarization circular polarization has the significant advantages of reducing polarization mismatch, and the research of 60-GHz circularly polarized antenna can be improved.
     As for the background from above, this paper established a multi-layer LTCC technology, based on research and development for 60-GHz-band circularly polarized antenna array.
     The main contents of the paper are:
     Chapter I is an introduction, an overview of the research progress and development trend of 60-GHz integrated antennas and packaging technology. And describe the main work of this paper.
     Chapter II gives related theories of the wideband circularly polarized helical antenna technology.
     Chapter III describes the design of integrated helical antenna array based on LTCC for 60-GHz short-range wireless communication,giving the detailed design process and measurement results of the proposed antennas in this paper.
     Chapter IV based on LTCC technology, design a simple structure of 60-GHz circularly polarized antenna using differential feed technology.
     Chapter V presents full summary.
引文
[1] Y.P. Zhang and D. Liu. Antenna-on-chip and antenna-in-package solutions to highly integrated millimeter-wave devices for wireless communications. IEEE Trans. Antennas and Propagat., 2009, 57(10): 2830–2841.
    [2] R. Suga, H. Nakano, Y. Hirachi, et al. Cost-Effective 60-GHz Antenna Package with End-Fire Radiation for Wireless File-Transfer System. IEEE Trans. Microw. Theory Tech., 2010, 58(8): 3989–3995.
    [3] R.C. Daniels, J.N. Murdock, T.S. Rappaport, R.W. Heath. 60-GHz Wireless: Up Close and Personal. IEEE Microwave Magazine, 2010, 11(7):44–50.
    [4] X.P. Chen, K. Wu, L. Han, and F.F. He. Low-Cost High Gain Planar Antenna Array for 60-GHz Band Applications. IEEE Trans. Antennas Propagat., 2010,58(6): 2126–2129.
    [5] X.Y. Wu, P.S. Hall. Substrate integrated waveguide Yagi-Uda antenna. Electronics Letters, 2010, 46(23): 1541–1542.
    [6] M. Ohira, A. Miura, and M. Ueba. 60-GHz Wideband Substrate-Integrated-Waveguide Slot Array Using Closely Spaced Elements for Planar Multisector Antenna. IEEE Trans. Antennas Propagat. 2010, 58(3): 993–998.
    [7] W.F. Moulder, W. Khalil, W.; J.L. Volakis. 60-GHz Two-Dimensionally Scanning Array Employing Wideband Planar Switched Beam Network. IEEE Antennas and Wireless Propagation Letters. 2010, 9: 818– 821.
    [8] L. Pazin and Y. Leviatan. A Compact 60-GHz Tapered Slot Antenna Printed on LCP Substrate for WPAN Applications. IEEE Antennas Wireless Propag. Lett. 2010, 9: 272–275.
    [9] S.J. Franson, R.W. Ziolkowski. Gigabit per Second Data Transfer in High-Gain Metamaterial Structures at 60 GHz. IEEE Trans. Antennas Propagat. 2009, 57(10): 2913–2925.
    [10] A.E.I. Lamminen, A.R. Vimpari, and J. S?ily. UC-EBG on LTCC for 60-GHz Frequency Band Antenna Applications. IEEE Trans. Antennas Propagat. 2009,57(10): 2904–2912.
    [11] J.A.G. Akkermans, M.H.A.J. Herben, and M.C.V. Beurden. Balanced-Fed Planar Antenna for Millimeter-Wave Transceivers. IEEE Trans. Antennas Propagat. 2009, 57(10): 2871–2881.
    [12] Y. P. Zhang, M. Sun, K. M. Chua, et al. Antenna-in-Package Design for Wirebond Interconnection to Highly Integrated 60-GHz Radios. IEEE Trans. Antennas Propagat. 2009,57(10): 2840–2852.
    [13] F. Gutierrez Jr., S. Agarwal, K. Parrish, T.S. Rappaport. On-Chip Integrated Antenna Structures in CMOS for 60 GHz WPAN Systems. IEEE Trans. Antennas Propagat. 2009, 57(10):1367–1378.
    [14] H. Vettikalladi, O. Lafond, and M. Himdi. High-Efficient and High-Gain Superstrate Antenna for 60-GHz Indoor Communication. IEEE Antennas Wireless Propag. Lett. 2009, 8:1422–1425.
    [15] B. Pan, Y. Li, G.E. Ponchak, J. Papapolymerou, and M.M. Tentzeris. A 60-GHz CPW-Fed High-Gain and Broadband Integrated Horn Antenna. IEEE Trans. Antennas Propagat. 2009, 57(4) : 1050–1056.
    [16] N. Celik, M.F. Iskander, R. Emrick, S.J. Franson, and J. Holmes. Implementation and Experimental Verification of a Smart Antenna System Operating at 60 GHz Band. IEEE Trans. Antennas Propagat. 2008,56(9):2790–2800.
    [17] A.E..I. Lamminen, J. S?ily, and A.R. Vimpari. 60-GHz Patch Antennas and Arrays on LTCC with Embedded-Cavity Substrates. IEEE Trans. Antennas Propagat. 2008, 56(9):2865–2874.
    [18] M. Sun, Y. P. Zhang, K. M. Chua, L. L. Wai, D. Liu, and B. P. Gaucher. Integration of Yagi Antenna in LTCC Package for Differential 60-GHz Radio. IEEE Trans. Antennas Propagat. 2008, 56(8): 2780–2783.
    [19] T. Zwick, D. Liu and B.P. Gaucher. Broadband Planar Superstrate Antenna for Integrated Millimeterwave Transceivers. IEEE Trans. Antennas Propagat. 2006,54(10): 2790–2796.
    [20] M. Sironen, Y.X. Qian,and T. Itoh. A Subharmonic Self-Oscillating Mixer with Integrated Antenna for 60-GHz Wireless Applications. IEEE Trans. Microw. Theory Tech. 2001, 49(3): 442–450.
    [21] Q.H. Lai, C. Fumeaux, W. Hong, and R. Vahldieck. 60 GHz Aperture-Coupled Dielectric Resonator Antennas Fed by a Half-Mode Substrate Integrated Waveguide. IEEE Trans. Antennas Propagat. 2010, 58(6):1856–1864.
    [22] M.Sun, Y.X. Guo, M.F. Karim, L.C. Ong. Integrated 60-GHz LTCC Circularly Polarized Antenna Array. IEEE International Symposium on Radio-Frequency Integration Technology. 2009, 178–181.
    [23] A.R. Weily, Y.J. Guo. Circularly Polarized Ellipse-Loaded Circular Slot Array for Millimeter-Wave WPAN Applications. IEEE Trans. Antennas Propagat. 2009, 57(10):2862–2870.
    [24] S. Pinel, II.K. Kim, K. Yang, and J. Laskar. 60 GHz Linear and Circularly Polarized Antenna Arrays on Liquis Crystal Polymer Substrate. 36th European Microwave Conference. 2006, 858–861.
    [25] R.R. Tummala, M. Swaminathan, M.M. Tentzeris, J. Laskar, et al. The SOP for miniaturized, mixed-signal computing, communication, and consumer systems of the next decade. IEEE Trans. Advanced Packaging., 2004,27(2): 250–267.
    [26] H. Nakano, H. Takeda, T. Honma, H. Mimaki, and J. Yamauchi. Extremely low-profile helix radiating a circularly polarized wave. IEEE Trans. Antennas Propagat., 1991, 39: 754–757.
    [27] J. M. Tranquilla and S. R. Best. A study of the quadrifilar helix antenna for Global Positioning System applications. IEEE Trans. Antennas Propagat., 1990, 38: 1545–1550.
    [28] J. C. Cardoso and A. Safaai-Jazi. Spherical helical antenna with a circular polarization over a broad beam. Electron. Lett., 1993, 29: 325–326.
    [29] H. T. Hui, K.Y. Chan, E. K. N.Yung, and X. Q. Sheng. The coaxial-feed axial mode hemispherical helical antenna. Electron. Lett., 1999, 35:1982–1983.
    [30] H. T. Hui, K. Y. Chan, and E. K. N. Yung. The Low-Profile emispherical Helical Antenna With Circular Polarization Radiation Over a Wide Angular Range. IEEE Trans. Antennas Propagat., 2003, 51: 1415–1418.
    [31] Y.Y. Du, F.L. Liu. A Novel Broadband Circularly Polarized Microstrip Helical Antenna. 8th International Symposium on Antennas, Propagation and EM Theory. 2008, 374–376.
    [32] C.A. Balanis, Antenna Theory (third edition). Hoboken, NJ: Wiley, 2005, 568–571.
    [33] D.M. Pozar. Considerations for Millimeter Wave Printed Antennas. IEEE Trans. Antennas Propagat., 1983, 31(5):740–747.
    [34] P. Park, L. Chen, H-K. Yu, C. Patrick Yue. A Fully Integrated Transmitter with Embedded Antenna for On-Wafer Wireless Testing. IEEE Trans. Microw. Theory Tech., 2010, 58(5):1456–1463.
    [35] Quan Xu, Xiu Yin Zhang, and Ching-Hong K. Chin. A Novel Differential-Fed Patch Antenna. IEEE Antennas Wireless Propag. Lett., 2006,5: 471–474.
    [36] Ching-Hong K. Chin, Quan Xue, and Hang Wong. Broadband Patch Antenna with a Folded Plate Pair as a Differential Feeding Scheme. IEEE Trans. Antennas Propagat., 2007, 55(9):2461–2467.
    [37] Yue Ping Zhang. Design and Experiment on Differentially-Driven Microstrip Antennas. IEEE Trans. Antennas Propagat., 2007, 55(10):2701–2708.
    [38] Y. P. Zhang and J. J. Wang. Theory and Analysis of Differentially-Driven Microstrip Antennas. IEEE Trans. Antennas Propagat., 2006, 54(4):1092–1099.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700