离散奇异卷积法-基本原理及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离散奇异卷积法是一种相对新型的数值计算方法,该法同时具有全域方法的精确性和局部方法的适应性,在许多工程问题分析中被证明是有效的。离散奇异卷积法能够处理复杂的几何,并被成功地用于求解一些有挑战性的问题,例如,具有不规则内部支持的板的自由振动问题和高模态的振动问题。
     离散奇异卷积法成功应用的一个关键是如何利用边界条件消除区域外的虚节点。但是,如果有自由边界的情况,则在应用离散奇异卷积法时目前仍然存在一些困难,所以,文献中报道的成功应用绝大部分只涉及简支或者固支边界。论文的主要目的就是通过研究提出一种能够有效处理自由边界条件的方法,并采用发展了的离散奇异卷积法来求解含各种边界包括自由边界的线性和非线性问题,拓展离散奇异卷积法在工程分析中的应用范围。
     本文的内容包括:一开始先对离散奇异卷积法及其应用的进展情况作一综述,根据其在应用方面存在的问题确定本文的研究内容。然后,为了论文的完整性简要介绍离散奇异卷积法的基本原理,提出一种施加自由边界条件的新方法--基于泰勒级数展开法,同时将离散奇异卷积法与微分求积法进行了比较。接着是各种各样的应用,包括:静力和屈曲分析、自由振动和波的传播分析、非线性分析,重点放在含应力边界或自由边界、几何和载荷不连续变化的结构元件的力学分析。论文给出了详细的公式推导和求解过程,并将采用离散奇异卷积法获得的结果与解析解、文献中有报道的数值解或者采用有限元法和微分求积法得到的结果进行了比较。最后,对全文的工作进行了总结,给出了一些结论和论文的创新点,同时,还给出了一些需要进一步研究的内容。
The discrete singular convolution (DSC) is a relatively new numerical method. The methodpossesses both the accuracy of the global method and the flexibility of the local method, and has beenproved efficient for analyzing many engineering problems. The DSC can handle complex geometry,and has been successfully used in solving some challenge problems, such as the free vibration ofplates with irregular internal supports, and vibrating at higher-order modes.
     One of the key issues for successfully applying the DSC algorithm is the elimination of thefictitious points outside the real structural domains by using the boundary conditions. It is observed,however, that there still exist some difficulties in using DSC if the free boundary is encountered.Therefore, most reported research work in using DSC only involved the simply supported or/andclamped edges. The main objectives of this dissertation are to investigate an efficient way forapplying the free boundary conditions, use the developed DSC algorithm for solutions of linear andnonlinear problems with various boundary conditions, including the free boundary conditions, andextend the application range of the DSC algorithm in engineering analysis.
     The contents of the dissertation are as follows. Firstly, the research development on the DSCalgorithm and its applications is summarized. Based on the existing shortage in applications of theDSC algorithm, the research contents are presented. Then the basic principle of the DSC algorithm isbriefly presented for completeness considerations. A new way to applying the free boundaryconditions, called Taylor series expansion based method, is proposed. Comparisons are made with thedifferential quadrature method (DQM). After that, various applications in using the DSC algorithmare presented, including static and buckling analysis, free vibration and wave propagation analysis,and nonlinear analysis. Emphasize has been paid to the structural components with stress boundaryconditions or free boundary conditions, with geometric discontinuity, as well as load discontinuity.Detained formulations and solution procedures are presented. The DSC results are compared to eithertheoretical solutions, or existing numerical results or results obtained by using finite element methodor by the DQM. Finally, the research work is briefly summarized. A few conclusions are drawn andthe innovations are pointed out. Some research topics are given for future investigations.
引文
[1] O.C. Zienkiewicz, R.L. Taylor. The Finite Element Method, Fifth edition, McGraw-HillInternational Inc.,2000.
    [2] C.A. Brebbia, J.C.F. Tells, L.C. Wrobel, Boundary Elements Techniques, Springer, Berlin,1984.
    [3] J. Orkisz, Finite Difference Method (Part III). Handbook of Computational Solid Mechanics,Springer, Berlin,1998.
    [4]徐次达.固体力学加权残数法.上海:同济大学出版社,1987.
    [5] C.W. Bert, M. Malik. Differential quadrature method in computational mechanics: A review.Appl. Mech. Rev.49(1996)1-28.
    [6]王鑫伟.微分求解法在结构力学中的应用.力学进展,25(1995)232-239.
    [7] C. Shu, B.E. Richards. Application of generalized differential quadrature to solve two-dimensionalincompressible Navier-Stokes equations, Int. J. Numer. Methods Fluids,15(1992)791-798.
    [8] X. Wang, Y.L. Wang, Y. Zhou. Application of a new differential quadrature element method forfree vibrational analysis of beams and frame structures, Journal of Sound&Vibration269(2004)1133-1141.
    [9]王永亮.微分求积法和微分求积单元法,[博士学位论文].南京:南京航空航天大学,2001.
    [10] G.W. Wei. Discrete singular convolution for the solution of the Fokker–Planck equations. Journalof Chemical Physics,110(1999)8930–8942.
    [11] G.W. Wei. Wavelets generated by using discrete singular convolution kernels, J. Phys. A: Math.General,33(2000)8577–8596.
    [12] G.W. Wei. Solving quantum eigenvalue problems by discrete singular convolution. Journal ofPhysics B: Atomic, Molecular and Optical Physics,33(2000)343-352.
    [13] G.W. Wei. A new algorithm for solving some mechanical problems. Computer Methods inApplied Mechanics and Engineering,190(2001)2017-2030.
    [14] G.W. Wei. Discrete singular convolution for the sine-Gordon equation. Physica D: NonlinearPhenomena,137(2000)247-259.
    [15] G.W. Wei. Discrete singular convolution for beam analysis. Engineering Structures,23(2001)1045-1053.
    [16] G.W. Wei, Y.B. Zhao, Y. Xiang. Discrete singular convolution and its application to the analysisof plate with internal supports. Part1: Theory and algorithm. Int. J. Numer. Meth. Engng.55(2002)913-946.
    [17] Y. Xiang, Y. B. Zhao, G.W. Wei. Discrete singular convolution and its application to the analysisof plates with internal supports. Part2: Applications. International Journal for NumericalMethods in Engineering,55(2001)947-971.
    [18] G.W. Wei, Y.B. Zhao, Y. Xiang. The determination of natural frequencies of rectangular plateswith mixed boundary conditions by discrete singular convolution. International Journal ofMechanical Sciences,43(2001)1731-1746.
    [19] G.W. Wei. Plate vibration by discrete singular convolution. Journal of Sound and Vibration,244(2001)535-553.
    [20] Y.B. Zhao, G.W. Wei. DSC analysis of rectangular plates with non-uniform boundary conditions.Journal of Sound and Vibration,255(2002)203-228.
    [21] Y. B. Zhao, G.W. Wei. Xiang Y. Plate vibration under irregular internal supports. InternationalJournal of Solids and Structures,39(2002)1361-1383.
    [22] Y.B. Zhao, G.W. Wei, Xiang Y. Discrete singular convolution for the prediction of high frequencyvibration of plates. International Journal of Solids and Structures,39(2002)65-88.
    [23] G.W. Wei, Y.B. Zhao, Y. Xiang, A novel approach for the analysis of high-frequency vibrations, J.Sound Vib.257(2002)207–246.
    [24] C.W. Lim, Z.R. Li, G.W. Wei, DSC-Ritz method for the high frequency mode analysis of thickshallow shells, Int. J. Numer. Methods Engrg.62(2005)205–232.
    [25] C.H.W. Ng, Y.B. Zhao, G.W. Wei. Comparison of discrete singular convolution and generalizeddifferential quadrature for the vibration analysis of rectangular plates[J]. Comput. Methods Appl.Mech. Engrg,193(2004)2483-2506.
    [26]徐素明,王鑫伟,于殿君.离散奇异卷积法结构分析.南京航空航天大学学报,41(2009)704-708.
    [27]. Civalek, M. H. Acar. Discrete singular convolution method for the analysis of Mindlin plateson elastic foundations. International Journal of Pressure Vessels and Piping,84(2007)527-535.
    [28]. Civalek. Free vibration analysis of symmetrically laminated composite plates with first-ordershear deformation theory (FSDT) by discrete singular convolution method. Finite Elements inAnalysis and Design,44(2008)725-731.
    [29]. Civalek. Fundamental frequency of isotropic and orthotropic rectangular plates with linearlyvarying thickness by discrete singular convolution method. Applied Mathematical Modelling,33(2009)3825-3835.
    [30]. Civalek. A four-node discrete singular convolution for geometric transformation and itsapplication to numerical solution of vibration problem of arbitrary straight-sided quadrilateralplate. Applied Mathematical Modelling,33(2009)300-314.
    [31]. Civalek. Free vibration and buckling analyses of composite plates with straight-sidedquadrilateral domain based on DSC approach. Finite Elements in Analysis and Design,43(2007)1013-1022.
    [32]. Civalek, Discrete singular convolution methodology for free vibration and stability analysesof arbitrary straight-sided quadrilateral plates, Commun. Numer. Methods Engrg.24(2008)1475–1495.
    [33]. Civalek. Eigenvalues of membranes having skew and rhombic geometry using discretesingular convolution algorithm. Communications in Nonlinear Science and NumericalSimulation,14(2009)4003-4009.
    [34]. Civalek. Numerical analysis of free vibrations of laminated composite conical and cylindricalshells: Discrete singular convolution (DSC) approach. Journal of Computational and AppliedMathematics,205(2007)251-271.
    [35]. Civalek. An efficient method for free vibration analysis of rotating truncated conical shells.International Journal of Pressure Vessels and Piping,83(2006)1-12.
    [36]. Civalek, M. Gürses. Free vibration analysis of rotating cylindrical shells using discretesingular convolution technique. International Journal of Pressure Vessels and Piping,86(2009)677-683.
    [37]. Civalek. A parametric study of the free vibration analysis of rotating laminated cylindricalshells using the method of discrete singular convolution. Thin-Walled Structures,45(2007)692-698.
    [38]. Civalek, A. Korkmaz,. Demir. Discrete singular convolution approach for buckling analysisof rectangular Kirchhoff plates subjected to compressive loads on two-opposite edges. Advancesin Engineering Software,41(2010)557-560.
    [39]. Civalek, O. Kiracioglu. Free vibration analysis of Timoshenko beams by DSC method, Int JNumer Meth Biomed Engng.26(2010)1890-1898.
    [40]. Civalek. Nonlinear analysis of thin rectangular plates on Winkler–Pasternak elasticfoundations by DSC–HDQ methods. Applied Mathematical Modelling,31(2007)606-624.
    [41] A. K. Baltac oglu, B. Akg z,. Civalek. Nonlinear static response of laminated composite platesby discrete singular convolution method. Composite Structures,93(2010)153-161.
    [42] A. K. Baltac oglu,. Civalek, B. Akg z, et al. Large deflection analysis of laminated compositeplates resting on nonlinear elastic foundations by the method of discrete singular convolution.International Journal of Pressure Vessels and Piping,88(2011)290-300.
    [43] S.K. Lai,L. Zhou, Y.Y. Zhang, et al. Application of the DSC-Element method to flexuralvibration of skew plates with continuous and discontinuous boundaries. Thin-Walled Structures,49(2011)1080-1090.
    [44] S. Zhao, G.W. Wei, Y. Xiang. DSC analysis of free-edged beams by an iteratively matchedboundary method. Journal of Sound and Vibration,284(2005)487-493.
    [45] S.N. Yu, Y. Xiang, G.W. Wei. Matched interface and boundary (MIB) method for the vibrationanalysis of plates. Communications in Numerical Methods in Engineering,25(2009)923–950.
    [46]朱钦.具有不同奇异核的离散奇异卷积法的比较研究,[学士学位论文].南京:南京航空航天大学,2008.
    [47]陈生潭,郭宝龙,李学武等.信号与系统.西安:西安电子科技大学出版社,2003.
    [48]朱钦.离散奇异卷积法在结构分析中的应用研究,[硕士学位论文].南京:南京航空航天大学,2011.
    [49] Q. Zhu, X. Wang, Free vibration analysis of thin isotropic and anisotropic rectangular plates bythe discrete singular convolution algorithm, Int. J. Numer. Methods Engrg.86(2011)782-800.
    [50] B. He, X. Wang, Error analysis in differential quadrature method, Trans. NUAA11(2)(1994)194-200.
    [51] M. Malik, C.W. Bert, Implementing multiple boundary conditions in the DQ solution ofhigher-order PDE's: application to free vibration of plates, International Journal for NumericalMethods in Engineering,39(1996)1237-1258.
    [52] X. Wang, F. Liu, X.F. Wang, et al. New approaches in application of differential quadraturemethod for fourth-order differential equations. Communications in Numerical Methods inEngineering,21(2005)61-71.
    [53]徐芝纶.弹性力学.北京:高等教育出版社,2007.
    [54] C.W. Bert, K.K. Devarakonda. Buckling of rectangular plates subjected to nonlinearly distributedin-plane loading. International Journal of Solids&Structures,40(2003)4097-4106.
    [55] P. Jana, K. Bhaskar. Stability analysis of simply-supported rectangular plates under non-uniformuniaxial compression using rigorous and approximate plane stress solution. Thin-WalledStructures,44(2006)507-516.
    [56] X. Wang, X.F. Wang, X.D. Shi. Differential qudrature buckling analyses of rectangular platessubjected to non-uniform distributed in-plane loadings. Thin-Walled Structures,44(2006)837-843.
    [57]丁锡洪主编.结构力学.北京,航空工业出版社,1991.
    [58]徐素明,王鑫伟.基于离散奇异卷积法的梁和薄板弯曲分析,第19届全国结构工程学术会议论文集,第1册,(2010)387-393.
    [59]张纯,仲政.基于小波微分求积法的薄板弯曲分析[J].计算力学学报,25(2008)864-867.
    [60]铁摩辛柯著,张福范译.弹性稳定理论,北京:科学出版社,1958.
    [61] A.A.Jafari, S.A.Eftekhari. An efficient mixed methodology for free vibration and bucklinganalysis of orthotropic rectangular plates. Applied Mathematics and Computation,218(2011)2670–2692.
    [62]沈观林,胡更开.复合材料力学.北京:清华大学出版社,2006.
    [63] S. Timoshenko. Vibration Problems in Engineering. Wiley, New York,1974.
    [64] A.W. Leissa. The free vibration of rectangular plates, Journal of Sound and Vibration,31(1973)257-293.
    [65] A.W. Leissa, Vibration of Plates (NASA SP160), US Government Printing Office, Washington,DC,1969
    [66] C.L. Dolph. On the Timoshenko theory of transverse beam vibrations. Quart Appl Math.12(1954)175–187.
    [67] S. Timoshenko. On the correction of shear of the differential equation for transverse vibrations ofprismatic bars, Phil. Mag.,41(1921)744-746.
    [68] J.F. Doyle, Wave Propagation in Structures, Springer, New York,1997.
    [69] X. Wang, S.M. Xu. Free vibration analysis of beams and rectangular plates with free edges by thediscrete singular convolution. Journal of Sound and Vibration,329(2010)1780-1792.
    [70] S.M. Xu, X. Wang. Free vibration analyses of Timoshenko beams with free edges by using thediscrete singular convolution. Advances Engineering software,42(2011)797-806.
    [71] X. Wang, C. L. Xu, S.M. Xu. The discrete singular convolution for analyses of elastic wavepropagations in one-dimensional structures. Applied Mathematical Modeling,2010,34(11)3493-3508.
    [72] Y. Wang, X. Wang, Y. Zhou, Static and free vibration analyses of rectangular plates by the newversion of differential quadrature element method. International Journal for Numerical Methodsin Engineering,59(2004)1207-1226.
    [73] X. Wang, A.G. Striz, C.W. Bert. Free vibration analysis of annular plates by the DQ method.Journal of Sound and Vibration,164(1993)173–175.
    [74] X. Wang, Y Wang, Re-analysis of free vibration of annular plates by the new version ofdifferential quadrature method, J. Sound&Vibration,278(2004)685-689.
    [75] H.A. Larrondo, V. Topalian, D.R. Avalos, et al. Comments on ‘‘Free vibration analysis of annularplates by the DQ method’’. Journal of Sound and Vibration,177(1994)137–139.
    [76] D.R. Avalos, H.A. Larrondo, V. Sonzogni, et al. General approximate solution of the problem offree vibrations of annular plates of non-uniform thickness. Institute of Applied Mechanics, BahiBianca, Argentina, Publication No.96-7,1995.
    [77] J. Lee, W.W. Schultz. Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlinplates by the pseudospectral method. Journal of Sound and Vibration,269(2004)609–621.
    [78] S.S. Lee, J.S. Koo, J.M. Choi. Variational formulation for Timoshenko beam element byseparation of deformation mode. Commun. Numer. Meth. Engng.10(1994)599–610.
    [79] AJM Ferreira, G.E. Fasshauer. Computation of natural frequencies of shear deformable beamsand plates by an RBF-pseudospectral method. Comput. Meth. Appl. Mech. Engng.,196(2006)134–146.
    [80] M. Endo, N. Kimura. An alternative formulation of boundary value problem for the Timoshenkobeam and Mindlin plate. Journal of Sound and Vibration,301(2007)355–373.
    [81] J. Thomas, B.A.H. Abbas. Finite element model for dynamic analysis of Timoshenko beams.Journal of Sound and Vibration,41(1975)291–299.
    [82] M. Eisenberger. Dynamics stiffness matrix for variable cross-section Timoshenko beams.Commun. Numer. Meth. Engng.,11(1995)507–513.
    [83] P.A.A. Laura, R.H. Gutierrez. Analysis of vibrating Timoshenko beams using the method ofdifferential quadrature. Shock Vib.,1(1993)89–93.
    [84] C.M. Wang, V.B.C. Tan, T.Y. Zhang. Timoshenko beam model for vibration analysis ofmulti-walled carbon nanotubes, J. Sound Vib.,294(2006)1060–1072.
    [85]. Civalek. Application of differential quadrature (DQ) and harmonic differential quadrature(HDQ) for buckling analysis of thin isotropic plates and elastic columns, Engng. Struct.,26(2004)171-186.
    [86]. Civalek. Flexural and axial vibration analysis of beams with different support conditionsusing artificial neural networks, Int. J. Struct. Engng. Mech.,18(2004)303-314.
    [87] M. im ek, T. Kocatürk. Free vibration analysis of beams by using a third order sheardeformation theory. Sadhana-Academy Proc. Engng. Sci.,32(2007)167-179.
    [88] P.P. Delsanto, R.B. Mignogna, A spring model for the simulation of the ultrasonic pulses throughimperfect contact interfaces, J. Acoust. Soc. Amer.104(1998)1–8.
    [89] A.T. Patera, A spectral element method for fluid dynamics: laminar flow in a channel expansion,J. Comput. Phys.54(1984)468–488.
    [90] D. Komatitsch, C.H. Barnes, J. Tromp, Simulation of anisotropic wave propagation based upon aspectral element method, Geophys.4(2000)1251–1260.
    [91] H. Igawa, K. Komatsu, I. Yamaguchi, et al. Wave propagation analysis of frame structures usingthe spectral element method. Journal of Sound and Vibration,277(2004)1071–1081.
    [92] M. Palacz, M. Krawczuk, W. Ostachowicz, The spectral finite element model for analysis offlexural-shear coupled wave propagation, Part1: Laminated multilayer composite, Compos.Struct.68(2005)37–44.
    [93] P. Kudelaa, M. Krawczuk, W. Ostachowicz, Wave propagation modeling in1D structures usingspectral finite elements, J. Sound Vib.300(2007)88–100.
    [94] J. Yoon, C.Q. Ru, A. Mioduchowski, Timoshenko-beam effects on transverse wave propagationin carbon nanotubes, Compos.: Part B35(2004)87–93.
    [95] K. Subbaraj, M.A. Dokainish, A survey of direct time-integration method in computationalstructural dynamic-I. explicit methods, Comput. Struct.32(6)(1989)1371-1386.
    [96]韩海涛,张铮,卢子兴.不连续问题的微分求积(DQ)法.机械强度,32(2010)333-337.
    [97] N. Wicks, B.L. Wardle, D. Pafitis, Horizontal cylinder-in-cylinder buckling under compressionand torsion: Review and application to composite drill pipe, Int. J. Mech. Sci.50(2008)538-549.
    [98] R.F. Mitchell, Effects of well deviation on helical buckling, SPE Drilling&Completion, SPE29462, March (1997)63-69
    [99] R.F. Mitchell, New buckling solutions for extend reach wells, IADC/SPE74566, IADC/SPEDrilling Conference, Dallas, Texas, February (2002)26-28.
    [100] F. Liu and X. Wang, Nonlinear buckling analysis of tubing in deviated wells by the finiteelement method, Transac. NUAA.21(2004)36-42.
    [101]刘峰.定向井中钻柱非线性稳定性分析,[博士学位论文].南京:南京航空航天大学,2005.
    [102] M. G. Munteanu, A. Barraco, Post buckling behavior of a slender beam constrained to acylindrical tube and subjected to compression and torsion, XXXVII Convegno Nazionale,10-13September2008
    [103] A. Barraco, M.Gh, Munteanu, A special finite element for static and dynamic study ofmechanical systems under large motion, part1, Revue européenne des éléments finis,11(2002)773-790.
    [104]袁张贤,王鑫伟.斜直圆筒内细长杆基于Euler-Rodrigues参数的螺旋屈曲研究.2011年江苏省力学学会青年论坛,南京,10月27日-28日,2011
    [105]甘立飞,王鑫伟,谈梅兰.应用DQE增量迭代法分析斜直井内管柱的非线性屈曲.计算物理,26(2009)129-134.
    [106]甘立飞.直井和曲井内管柱非线性稳定性分析,[博士学位论文].南京:南京航空航天大学,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700