连续油管低周疲劳寿命预测及屈曲分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
连续油管相对于常规螺纹连接油管而言,具有起下作业无需上扣、卸扣等优点,在钻井和修井、压裂和酸化作业中得到广泛应用,但其工作寿命低、使用成本高以及轴向加压困难是连续油管井下作业中面临的关键技术问题。本文采用理论分析、数值模拟和实验方法对无损伤及有损伤连续油管起下作业寿命预测、井筒内轴向受压屈曲行为开展了系统和深入的研究。
     根据连续油管的失效形式和原因,归纳定义了描述连续油管损伤的几何参数为:壁厚减薄量Δ t、椭圆度Φ,凹陷深度H,局部表面机械损伤长度x、宽度w、深度h。针对连续油管工作状态采用电子万能拉伸实验机CMT5105为加载机构,研制了专用的加压设备、拉弯和拉直工装等实验装置。选取工程上常用的23''8和11''4连续油管为试件,开展了无损伤及椭圆度、壁厚、凹坑等有损伤连续油管的拉弯和拉直疲劳寿命及累积损伤实验,取得了大量实验数据,经数据分析及回归处理,得到了连续油管椭圆度、壁厚及损伤参数随循环次数变化的计算公式。
     根据连续油管的工作状态,分析了连续油管通过注入头、导向架、滚筒及在井筒内的力学行为,建立了地面及井筒内连续油管非线性有限元分析方法,得到注入头处、导向架、滚筒及在井筒内连续油管危险截面的广义应力(轴向应力、环向应力以及径向应力)及应变计算公式。根据连续油管的损伤形式,采用数值模拟及数学回归方法得到了凹坑和凹陷对连续油管产生的应力集中系数计算公式;采用弹性力学理论,推导了椭圆度损伤连续油管均布内外压力、注入头连续油管局部挤压力下的环向和径向应力计算公式;采用能量法建立了无损及有损伤连续油管的疲劳寿命预测计算方法,经室内实验和现场试验验证,其理论预测的疲劳寿命以及损伤几何参数误差均小于20%。
     选取直井、斜直井、弯曲井中的连续油管为研究对象,基于能量法推导了井筒内连续油管在井底轴向压力作用下,沿径向和圆周方向发生正弦屈曲、螺旋屈曲的多次失稳临界载荷计算公式。根据受压管柱发生正弦或螺旋屈曲的几何形状,综合考虑井眼轨道曲率和井斜、屈曲后连续油管与井筒的接触摩擦状态,采用拉格朗日乘数法描述井筒的滑动位移边界条件,推导了直井、斜直井、弯曲井中受压连续油管与井筒的接触力、摩阻力及变形计算公式。针对井筒内连续油管发生正弦或螺旋屈曲问题,研制了专用的管柱后屈曲实验装置,得出管柱试件在不同载荷作用下发生正弦、螺旋屈曲的失稳临界载荷、摩阻力变化规律,其实验结果与理论计算结果基本一致,为连续油管钻修作业提供了理论依据。
Compared with the conventional threaded tubing, coiled tubing had the advantagesof no buckling, no shackling in the roundtrip. It was widely used in drilling, workover,fracturing, acidizing operations. However, it had been a key technical problem aboutcoiled tubing drilling operation that its low working life, high cost and difficulty axialcompression. This paper which adopted theoretical analysis, numerical simulation andexperimental method aimed at the life prediction of coiled tubing roundtrip operation,within the well casing axial compression buckling behavior to carry out the research.
     According to the failure forms and reasons of the coiled tubing, the geometryparameter of describing the damage of coiled tubing was defined: wall thicknessthinning amount Δt, ovality Φ, depth of pip H, local surface mechanical damagelength x, width w, depth h. Adopt existing electronic universal tensile testing machineCMT5105, develop the special pressure equipment, stretch bending and straighteningequipment, etc. Choose the23''8and11''4coiled tubing which commonly used inengineering as the test specimens, carry out no damage and damage including ovality,wall thickness, depth of pip, etc coiled tubing fatigue life bent and straight cumulativedamage experiment. A lot of experimental data were obtained. Through data analysisand the regression process, the coiled tubing ovality, wall thickness, and calculationformula of damage parameters changing with cycles were obtained.
     According to the working state of the coiled tubing, coiled tubing was analyzedthrough the injection head, guide frame, roller and mechanical behavior in the wellcasing. The coiled tubing in the ground and well casing non-linear finite elementanalysis method were established. The site, guide frame, cylinder head and coiledtubing within the well casing dangerous section of generalized stress (axial stress,circular stress) and radial stress and strain calculation formula were obtained. Accordingto the damage form of coiled tubing, using the numerical simulation and mathematicalregression method, the pits and sag calculation formula of the stress concentration factorin coiled tubing were obtained. Using elastic mechanics theory, with the hoop stress of coiled tubing ovality damage calculation formula was deduced. A nondestructive anddamage calculation method of the coiled tubing fatigue life prediction was established.Through indoor experiment and field test, its theory to predict the fatigue life ofgeometric parameters and damage error were less than20%.
     Select the coiled tubing in the vertical wells, slant wells and curved wells as theresearch object, coiled tubing within the well casing based on energy method in bottomhole pressure under the action of the sinusoidal and spiral buckling instability criticalload formula were deduced. According to sinusoidal or helical buckling compressionstring geometry, considering well casing trajectory (curvature and hole deviation),coiled tubing sinusoidal buckling, spiral deformation after contacting with well casingstatus, bring in the coiled tubing gravity and the friction resistance along the axial workitem to Lagrange multiplier method. The vertical wells and slant wells, bendingcompression coiled tubing in the well with well casing contact force, friction anddeformation calculation formula were obtained. Aimed at coiled tubing in well casingpost-buckling occurred sinusoidal or helical deformation problems, special roof boltspost-buckling experiment device was developed. Draw roof bolt’s change law underdifferent load in the sinusoidal and helical buckling instability critical load and friction.Its experimental results were basically identical with the theoretical calculation results,provided a theoretical basis for coiled tubing drilling and repairing work.
引文
[1]贺会群.连续管技术与装备发展综述[J].石油机械,2006,34(1):1-6.
    [2]赵昆.国外连续油管作业机研究进展及国内现状[J].石油矿场机械,2012,41(2):78-82.
    [3]朱永凯,庞涛涛.连续油管设备在海上作业优势探究[J].中国石油和化工标准与质量,2013,(12):85.
    [4] WRIGHT,RUSSELL.Coiled tubing equipment and applications are still evolving[J].World Oil,2012,233(10):133.
    [5] John Misselbrook.Coiled Tubing Applications[J].JPT,2013,6:70.
    [6]施志辉,范佳,许立等.连续油管在滚筒上缠绕的力学研究[J].大连交大学学报,2011,32(5):50-52.
    [7]车传睿,李德忠,顾国利等.张福涛连续管作业注入头夹持机理研究[J].石油机械,2012,40(11):43-47.
    [8] Rodolfo Pineda, Lindsey B.J, Michael Taggart, etc. A Chronological Review of ConcentricCoiled Tubing Vacuum Technology: Past, Present and Future[C].SPE163637,2013:491-510.
    [9] Guntis M.S. Coiled tubing use expands[J]. Oil&Gas Journal.2011,109(13):16.
    [10] Wainstein J, Perez I. J.Fracture Toughness of HSLA Coiled Tubing Used in Oil WellsOperations[J]. Journal of Pressure Vessel Technology,2011,134(1):011403.
    [11] Jan E.R, Leif B.J. Well Development by Jetting Using Coiled Tubing and SimultaneousPumping[J]. Ground water,2009,47(6):816-821.
    [12] Stanley R.K, Development of and results from a new coiled tubing inspection system[J].Insight-Non-Destructive Testing and Condition Monitoring,2009,51(12):676-679.
    [13] Ingram S. R., Nguyen P. D. Proppant flowback stopped with coiled-tubingintervention[J].2008,229(2):14.
    [14]许素莉,张永忠.用连续油管修井作业修复水平井[J].国外石油机械,1998,9(1):18-23.
    [15]韩中普.连续油管作业应用技术研究[J].中国石油和化工标准与质量,2013(4):46.
    [16]王峻乔.连续油管技术分析与研究[J].石油矿场机械,2005,34(5):34-36.
    [17]马连山,赵威,谢梅.连续油管技术的应用与发展[J].石油机械,2000,2(9):57-60.
    [18]王海涛,李相方,连续油管技术在井下作业中的应用现状及思考[J].石油钻采工艺,2008,30(6):120-123.
    [19]张育华,高勇,姚传高.连续油管在冲砂工艺技术中的优势[J].内蒙古石油化工.2013,6(11):106-108.
    [20] Loveland K.R. Recent applications of coiled tubing in remedial wellwork at PrudhoeBay[C]. SPE Ann. Tech. Conf. Exhib.1996, SPE35587.
    [21]蔡景超,李伟,陈得裕等.连续油管压裂的工艺技术分析[J].中国石油和化工标准与质量,2013,6(12):62.
    [22] Kostol P. Completion and workover of horizontal and extended-reach wells in theStatfjord field[J]. SPE Drilling and completion,1995,10(4):211-218.
    [23] First Offshore Coiled Tubing Drilling with Ultra Slim BHA in Matured Malay Basin[C].SPE163934,2013:465-472.
    [24] Analytical Model to Estimate the Drag Forces for Microhole Coiled Tubing Drilling [C].SPE163480,2013:839-849.
    [25]朱丽华,陈新,黄焰.连续油管开窗侧钻水平井技术[J].钻采工艺,2002,25(3):19-23.
    [26]唐志军.连续油管钻井技术综述[J].天然气工业,2006,25(8):73-75.
    [27]陈会年,张国龙,胡清.连续油管钻井技术的发展及应用[J].石油钻探技术,2000,28(2):20-21.
    [28] Larry J. lelsing. Coiled tubing drilling [R]. SPE109146.2009.
    [29]陈立人,张永泽,龚惠娟.连续油管钻井技术与装备的应用及其新进展[J].石油机械,2006,34(2):95-99.
    [30]李斌.连续油管失效的机理与原因分析[J].石油机械,2007,35(12):73-76,78.
    [31]王优强,张嗣伟,方爱国.连续油管的失效形式与原因概述[J]. oil filed equipment.1999,28(4):15-18.
    [32] Willem P. van Adrichem, Henrik Aslak Larsen. Coiled-Tubing Failure Statistics Used ToDevelop CT Performance Indicators[C]. SPE Drilling and Completion,2010,17(3):159-163.
    [33] Maldonado, Julio G, Cayard,Michael, S.Pitting tensile overloading produce mostcoiled-tubing failures.[J]. Oil and Gas Journal,2000,98(26):48.
    [34] Tomas B.E. Fatigue life of coiled tubing with external mechanical damage[R]. SPE107113.2007.
    [35] Hisham A. N. Saudi A. and Arthur S. M. Workovers in Sour Environments: How Do WeAvoid Coiled Tubing (CT) Failures[R]. SPE Production&Operations,2008,23(2):112-118.
    [36] Tavernelli J F, Coffin L F. Experimental Support for Generalized Equation PredictingLow Cycle Fatigue. Transactions of the ASME[J], Journal of Basic Engineering,1952,84(4):533~537.
    [37]薛景川.工程结构的疲劳寿命估算方法和许用强度确定[D].北京:清华大学出版社,1988.
    [38]韩兴,康宜华.连续油管累积损伤疲劳分析[J].石油机械,2000,28(增刊):88-90.
    [39] Collins J A. Failure of Materials in Mechanical Design [C]. Analysis PredictionPrevention. New York:J Wiley,1981.629-633.
    [40] Avakov V A, Foster J C, Smith E J. Coiled Tubing Life Prediction [C]. OTC7325.25thAnnual SPE et al Offshore Technology Conference, Houston,1993.627-634.
    [41] Wu J. Coiled Tubing Working Life Prediction [R]. Oklahoma: SPE29461SPE Prod OperSymp Proc.1995.181-87.
    [42] Newman K R.Determining the Working Life of a Coiled Tubing String [J]. OffshoreIncorporating Oilman(INT Ed),1991,51(12):31-36.
    [43] Newman K R, New burnt D A. Coiled Tubing Life Modeling [C]. Dallas TX: SPE22820SPE Annual Technical Conference and Exhibition, Proceedings.1991.
    [44] Tipton S M, Neuharth L G,Sorem J R.Influence of Prior Cycling on Fatigue DamageCaused By in Coiled Tubing [R]. SPE100199,2006.
    [45]王优强,张嗣伟.连续油管可靠性研究的进展[J].石油机械,1998,27(6):50-53.
    [46]王优强,张嗣伟.连续油管疲劳寿命预测模型的建立[J].青岛建筑工程学院学报,2001,22(1):15.
    [47]朱小平.连续油管卷绕弯曲寿命分析[J].钻采工艺.2000,23(6):51-53.
    [48]朱小平.连续油管在弯曲和内压共同作用下的疲劳寿命分析[J].钻采工艺.2000,27(4):73-78.
    [49]宋生印.连续管疲劳寿命预测[J].煤田地质与勘探,2006,34(6):73-76.
    [50]王海涛,李相方.连续油管卷曲低周疲劳寿命预测[J].石油机械,2008,36(11):25-27.
    [51]李子丰,李雪娇,王鹏.预弯曲连续油管及其疲劳寿命预测[J].石油学报.2012,33(4):706-710.
    [52]高霞,肖国章.连续油管低周疲劳分析[J].应用与开发.2012,35(4):31-35.
    [53]张运翘.连续油管的应力和寿命分析[J].油矿场机械,1995,24(1):21-25.
    [54]李海波,王海涛.现场连续油管伤害与使用寿命研究[J].内蒙古石油化工,2008,20:11-13.
    [55]李小影,石凯.连续管失效及疲劳寿命的研究现状[J].内蒙古石油化工,2008,20(6):7-11.
    [56]董志华.影响连续油管寿命的因素[J].国外石油机械,1995,6(3):43-47.
    [57]徐艳丽.提高连续油管使用寿命的方法[J].石油机械,2002,30(11):43-45.
    [58]高霞,上官丰收,宋生印.连续管低周疲劳实验装置方案分析[J].石油矿场机械,2007,36(11):63-67.
    [59]毕宗岳,张晓峰,张万鹏等.连续油管疲劳实验机设计与疲劳寿命实验[J].理化检验(物理分册),2012,48(2):79-82.
    [60]郭兆光.连续油管疲劳的力学实验分析[J].油气井测试,2012,21(5):15-18.
    [61] Headrick D.C,Rosine R.S. Full-Scale Coiled Tubing Fatigue Tests With Tubing Pressuresto15000psi[R]. SPE54482,1999.
    [62] Yang Y S, Gao C.Developmentof a CT diameteral growth model[J]. SPE55624-MS,1999.
    [63] Steven,Tipton.Surface Characteristics of Coiled Tubing and Effect s on Fatigue Behavior
    [R]. SPE38411,1997.
    [64]韩兴,康宜华,李雪辉.连续管椭圆度恒磁检测技术及装置研究[J].石油机械,2000,28(10):17-19.
    [65]武新军,康宜华,吴义峰等.连续管椭圆度在线磁性检测原理与方法[J].石油机械,2001,30(6):12-14.
    [66]吴义峰,武新军,康宜华.连续管直径的恒磁测量方法及装置[J].自动化与仪表,2000,15(3):7-10.
    [67] Lubinski A A. Study of the buckling of rotary drilling string. Drill AndProd.Proe.API(1953)178-214.
    [68] Paslay P.R and Bogy D.B. The stability of a cireular rod laterally constrained To be incontact with an inclined circular cylinder. ASME Jounral Applied Mechanics,1964,31:605-610.
    [69] Hammerlindl,D.J. Movement,Forces and Stresses Associated with Combination TubingStrings Sealed in Packers[J]. J. Pet. Teeh,1977,29(l):195~208.
    [70] Mitchell R. F. New Concepts for Helical Buckling. SPE15470.1986.
    [71] Mitchell R. F. Buckling Analysis in Ddeviated Wells: A Practical Method SPE36761,SPE Annual Technical Conference and Exhibition[C].1996:871~883.
    [72] Salies J.B. etc. Experimental and Mathematical Modeling of Helical Buckling ofTubulars in Directional Wellbores[C]. SPE28713,1994:433~443.
    [73]高国华,李琪,李淑芳.管柱在水平井眼中的屈曲分析[J].石油学报,1996,17(3):123-129.
    [74]高国华,李琪,张健仁.管柱在垂直井眼中的屈曲分析[J].西安石油学院学报,1996,11(1):33-35.
    [75]高国华,李天太,李琪等.杆柱在水平井眼中的正旋屈曲[J].西安石油学院学报,1994,9(2):37-40.
    [76]高国华,李天太,李琪.考虑摩擦时水平井钻柱的稳定性分析[J].西安石油学院学报,1995,10(3):31-33.
    [77]高国华,张福祥,王宇等.水平井眼中管柱的屈曲和分叉[J].石油学报,2001,22(1):95-99.
    [78]刘凤梧,徐秉业,高德利.受横向约束的细长无重管柱在压扭组合作用下的后屈曲分析[J].工程力学,1998,15(4):18-23.
    [79]刘凤梧,徐秉业,高德利.水平圆管中受压扭作用管柱屈曲后的解析解[J].力学学报,1999,31(2):238-241.
    [80]刘凤梧,徐秉业,高德利.封隔器对油管螺旋屈曲的影响分析[J].清华大学学报(自然科学版),1999,39(8):107-108.
    [81] Weiyong Qiu. Theoretical and experimental study of buckling behavior of coiled tubingand axial force transfer modeling in coiled tubing drilling[D]. The university of Tulsa.1997,50-88.
    [82]高德利,刘凤梧,徐秉业.油气井管柱的屈曲行为研究[J].自然科学进展,2001,11(9):976-980.
    [83] Mitchell R.F.Lateral Buekling of Pipe With Conneetors in Curved Wellbores.SPE67727.2001
    [84] Mitchell, R.F.New buckling Solutions for Extended Wells.SPE74566,2002.Robert F. Mitchell. Lateral Buckling of pipe with connectors in curved wellbores[R].SPE81819,2003:21-33.
    [85] Tan M L, Wang X W, Gan L F. Buckling of a spatial elastic thin rod under torque. Chin JComput Phys,2006,23(4):447~450
    [86]申波,邓长根.柔性套管约束下轴心受压杆件的屈曲分析[J].力学与实践,2006,28(6):43-46.
    [87] Munteanu M. Gh, Barraco A. Post-buckling behaviour of a slender beam in a circulartube, under axial load[J].WIT Transactions on Modelling and Simulation, Vol46,2007WIT Press.
    [88] Tan M.L, Gan L.F, Wang X.W. Nonlinear helical buckling of drillstring in inclinedwell-bore. Eng Mech,2007,24(S2):199-202.
    [89] Wicks N, Wardle B L, Pafitis D. Horizontal cylinder-in-cylinder buckling undercompression and torsion: Review and application to composite drill pipe. Int J Mech Sci,2008,50(3):538-549.
    [90]刘听,练章华,罗宇灿等.井壁接触应力影响下的连续油管屈载荷计算方法[J].西部探矿工程,2009,4:116-118.
    [91]李子丰,马兴瑞,黄文虎.水平管中受压扭细长杆管柱的线性弯曲[J].哈尔滨工业大学学报,1994,26(1):96-100.
    [92]李子丰,马兴瑞,黄文虎.水平管中受压扭细长杆管柱的几何非线性屈曲[J].力学与实践,1994,16(3):16-18.
    [93]武秀根,郑百林,贺鹏飞.限制失稳杆的后屈曲分析[J].同济大学学报,2009,37(1):26-31.
    [94]刘巨保,王秀文,黄金波等.受压油管屈曲变形与内外层杆管接触分析[J].力学与实践,2011,33(3):25-29.
    [95] TAN MeiLan, GAN LiFei. Equilibrium equations for nonlinear buckling analysis ofdrill-strings in3D curved well-bores[J], Sci China Ser E-Tech Sci,2009,52(3):590-595.
    [96] Mitchell R.F.Tubing Buckling-The state of the art.SPE104267,2006.
    [97] Guohua Gao, Stefan Miska. Effects of Friction on Post-Buckling Behavior and Axialload Transfer in a Horizontal well [R]. SPE120084,2010:1100-1122.
    [98] Guohua Gao, Qinfeng Di, Stefan Miska. Stability analysis of pipe with connectors inhorizontal wells[[R]. SPE146959,2011:1-21.
    [99] Robert F. Mitchell, Halliburton, Tore Weltzin, Lateral buckling-The key to lockup[R].SPE139824,2011:436-450.
    [100] Robert F. Mitchell, Halliburton. Buckling of tubing inside casing[R]. SPE150613,2012:1-13.
    [101]扬可帧,程光蕴,李仲生等.机械设计基础[M].北京:高等教育出版社,2006,206-207.
    [102]刘巨保,岳欠杯,李治淼等.石油钻采管柱力学[M].北京:石油工业出版社.2011,78-155.
    [103]郭兆光.连续油管疲劳的力学实验分析[J].油气井测试,2012,21(5):15-17.
    [104]黄永章.连续油管在内压和反复弯曲共同作用下的变形行为研究[D].西安石油大学,2010.5.
    [105]那顺桑,李杰,艾立群编著.金属材料的力学性能[M].北京:高等教育出版社,2011,101.
    [106] ASME B31.8-2003,气体输送和分配管道系统[S].102-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700