同心集成分层注水技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大庆油田是一个实行“早期内部注水,保持压力采油”开发方式的非均质多油层砂岩油田,单井钻遇油层多的可达百个以上,厚度从0.2米到十几米,纵向上高渗透油层与低渗透油层、厚油层与薄油层交互分布。主力油层与非主力油层物性相差很大,在注水开发过程中,油水分布、运动规律非常复杂,为了减少层间矛盾,控制含水上升率,大庆油田划分了数个开发层系,每个层系单独用一套井网开采。随着细分开采的深入,现在亟需高含水后期细分注水挖潜配套技术,用以提高管柱工作寿命、测调效率、测试精度以及细分程度。同心集成式细分注水技术就是在这种情况下开展研究,该技术的应用使封隔器最小卡距缩小到2m,分层流量及分层压力分别实现了同步测试,消除了层间干扰,测调效率比传统偏心式分注技术提高1倍以上,可以满足薄互层挖潜的需要,同时可以缩短测试周期,更好地满足地质部门对油层动态监控,及时根据驱动情况变化作出调整,减少无效注水循环,对油田高效、节能开发具有重要意义。
     本文通过对同心集成注水工具的分析,应用数值模拟及工程实验等方法对同心集成水嘴的结构特性及流场特性进行了研究,解决了同心水嘴应用标准水嘴模版的问题。数值模拟部分利用流体动力学软件FLUENT,以雷诺平均N-S方程为控制方程,以标准k-ε模型为湍流模型,基于控制体积法,应用SIMPLEC算法,通过对控制方程中相关参数的修正,对同心集成水嘴的内部流场进行了数值计算。通过数值计算得到了同心集成水嘴的速度分布特性、压力分布特性、湍动能及其耗散率分布特性规律。为了验证数值计算结果,对同心集成水嘴进行了实验研究。结果表明,实验结果与数值计算结果吻合较好,表明可以用一定模型的数值计算方法对同心集成水嘴结构特性进行研究。
     经过理论研究和试验验证的结合,证明了在现有的条件下可以采用常规水嘴模版对同心集成水嘴的调配进行指导,对于工具设计和管柱结构定型具有重要意义。为项目的顺利进行奠定了基础,同时对于异性水嘴的研究提出了思路,对异性水嘴结构特性、流场特性及结构优化设计提供一定的理论和经验。对管柱结构的理论分析为现场操作提供了依据,对于同类管柱具有一定的借鉴意义。
The Daqing Oil Field is non-isotropic multireservoir sandstone oil field that has the implementation of early pourswater interior to maintain the extracting pressure .The layer that single Oil well meets may be hundred and more. The layer’sthickness from 0.2 meter to more than 10 meters. The high seepage oil layerand the low seepage oil layer, the thick oil layer and the oil layer alternately distributes. on the longitudinal Main force difference from non- main force oillayer In the water-injection development process, The distribution of water and oil and the movement rule is extremely complex, in order to reduce the contradiction of the level and the climbing rate of water The Daqing Oil Field has divided several developmented formations, each formation uses single set of well patterns alone. In order to enhances the tube column working life and the test precision as well as subdivides the degree.
     We must do many for this. The concentric integrated type subdivides pours water thetechnology is carries out in this kind of situation, this technical application caused the most small card distance of packer toreduce to 2m, the efficiency of measuredadjusts is one time to the tradition allowed to meet the needs of thin interbed dug dives and reduce the test cycle in orderto satisfied the geological departmen ,which has the vital significance to reduced the circulation of invalid pours water and development to the oil field more energy
     This paper through analysis of poured water‘s tool, application simulation method and project experiment do theresearch of concentric integrated tapstruc ture characteristic and the flow fieldcharacteristic,Which solved the concentric tap application standard tap pattern plate problem.Value simulation partial uses hydrodynamics software FLUENT, take Reynold the average N-S equation as the governing equation, take the standard k-εepsilon model as the rapids model, based on the controlvolumetric method, applies the SIMPLEC algorithm, through the parameter revision to the governing equation, we computated the concentric integrated tap internal flowfield. Obtained distributioncharacteristic, the pressure distribution characteristic, the rapidskinetic energy and its the diffusion rate distributed characteristicrule. The result indicated that, the experimentalresult and the value computed result tallies well,so we may usethe the value computational method to conduct theresearch to the concentric integrated tap structure characteristic.
     The confirmationunion of fundamental research and the experimental proven we can use the conventional condition to instruction the work t Which has the vital significance in regarding the tool design and the tube column structure ,all that do more foundation to the theproject, simultaneously provided the certain theory and experience to the other research such as tapstructure characteristic, the flow field characteristic and optimization design. And provided the basis of the tube column structure theoretical analysis for the operation, has the certain l significance regarding to the similar tube column.
引文
[1] 张继芬等.提高石油采收率基础[J]..北京:石油工业出版社,1997
    [2] 周望,李志等.大庆油田分层开采技术的发展与应用[J].大庆石油地质与开发,1998,17(1):36~39.
    [3] 周雪漪.计算水力学[M].北京:清华大学出版社,1995:102~154.
    [4] 王福军.计算流体动力学分析-CFD 软件原理与应用[M].北京:清华大学出版社,2004:1~4.
    [5] 王玉普等.大型砂岩油田高效开采技术[M].石油工业出版社,2006.76~104
    [6] 王鸿勋、张琪.采油工艺原理[M].石油工业出版社,1981.87~99
    [7] 张伯年,李海金,刘章节,郑锭.封隔器理论基础与应用[M].北京:石油工业出版社,1983.1~5
    [8] 吴熙.应用弹性力学[M]. 同济大学出版社”,1989.381~393
    [9] 铁摩辛柯、古地尔.弹性理论[M].高等教育出版社,1990.98~113
    [10] 西田正孝主编.应力集中[M].机械工业出版社,1986.56~68
    [11] 国家发展和改革委员会.石油钻采机械产品型号编制方法[M].北京:石油工业出版社.2005.11~13
    [12] 油田用封隔器及井下工具手册编写组.油田用封隔器及井下工具手册[M].北京:石油工业出版社,1981.3~68
    [13] 李晶等.GDY445 型封隔器的研制与应用[J].石油矿场机械,2001,30(6):38~40
    [14] 胡风涛.Y441E 型液压封隔器[J].石油机械,2002,30(1):12~13,24
    [15] 陈宁.Y241-114 封隔器研究与应用[J].钻采工艺,2003,26(1):50~51,67
    [16] 代理震.可钻可取式注水封隔器的研究[J].石油机械,2002,30(5):28~3058
    [17] 代理震,康宜华.可钻可取式注水封隔器的研究[J].石油机械,2002,30(5):28~30
    [18] 高斌等.Y341-100 型液压封隔器的研制[J].油气井测试,2006,15(1):58~59
    [19] 单晶, 王志清,雷雨田.液力可取式桥塞堵水装置[J].石油机械,2000,28(5):31~33
    [20] Mark E.Plante, Robert D.Lockhart . Advantages to Remedial Operations of Coiled-Tubing-Enables Under-balanced Removal of Latest-Generation Composite Bridge Plugs[J].SPE 60718
    [21] 万仁溥主编.采油工程手册[M].石油工业出版社,2008.255~262
    [22] 陈榕林.机械设计应用手册[M].科学技术文献出版社,1995
    [23] 阿切尔康.机械零件(计算与设计资料汇编).机械工业出版社,1956.74~149
    [24] 邓刚,王绮,高哲.桥式偏心分层注水及测试新技术[J].油气井测试,2006,11(3):45~48.
    [25] Robert E etc.High pressure well completions[J].World oil,1979,188(2):51~56
    [26] D.J.Hammerlindl.Movement. Forces. and Stresses Associated with Combination Tubing Strings Sealed in Packers[J].SPE5143
    [27] Mitchell R F . Buckling behavior of well tubing:the packer effect[J].SPEJ,1982,(3):616~624
    [28] H.K. Versteeg, W. Malalasekera, an Introduction to Computational Fluid Dynamics[J].The Finite Volume Method. Wiley, New York, 1995.
    [29]M.B. Abbott, D.R. Basco, Computational Fliud Dynamics-An Introduction for Engineers[J].Longman Scientific&Technical, Harlow, England, 1989.
    [30] 黄志明,齐庆元,王景东等.分层注水井流动测试技术[J].钻采工艺,2004,27(1):36~39.
    [31] 路明,孙西欢等.湍流数值模拟方法及其特点分析[J].河北建筑科技学院学报,2006,6(23):45~51.
    [32] 贺成才.偏心圆柱塞状管流的数值模拟[J].应用力学学报,2004,21(2):56~59.
    [33] 高应才.数学物理方程及其数值解法[M],北京:高等教育出版社,1983:166~194.
    [34] 孙爱军等.注水管柱的受力分析与计算[J].钻采机械.2003,26(3) :55~57
    [35] 刘凤梧等.封隔器对油管螺旋屈曲的影响分析[J].清华大学学报自然科学版.1999,39 (8):104~107
    [36] 李钦道等.井内有流体时管柱弯曲临界力分析[J].钻采工艺.2001,24(4):44~46
    [37] 李钦道等.自由移动封隔器管柱变形量计算分析[J].钻采工艺,2002,25(1):60~64
    [38] 李钦道等.不能移动封隔器管柱变形受力分析[J].钻采工艺,2002,25(2):53~57
    [39] 窦益华,胡宏涛等.井下工具零件应力分析[J].石油矿场机械,1995,24(2):32~37
    [40] T.C.皮隆科林.复杂应力状态下材料变形与强度[M].科学出版社,1988 年
    [41]C.A.J. Fletcher, Computational Techniques for Fluid Dynamics[J] . Vol.I and II. SpringerVerlag, Berlin. 1990.
    [42]OTWELL R S,The effect of elbow translation on pressure transient analysis of piping systems[J].ASME PVP(Pressure Vessels and Piping),1982,64:127~136.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700