螺杆加工中编程误差分析方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,截面包络法数控加工螺旋面时刀触点和刀位轨迹的计算方法已取得一定成就,但缺少对现有算法和工艺的精度分析和研究。本文在最小有向距离算法的基础上,对无瞬心截面包络法数控加工螺杆时的误差分析方法进行了探讨,并对影响误差的主要因素进行了分析。
     从理论上,阐述了无瞬心包络法加工原理和最小有向距离算法的基本理论。在利用最小有向距离算法获得无干涉刀位轨迹的前提下,根据螺旋面的特性,提出已知刀具表面和刀位轨迹,计算实际加工螺旋面的包络面仿真算法。并针对复杂螺杆应从啮合精度来衡量加工精度的要求,提出实际加工表面法向误差分析模型和算法。在法向误差算法中,为寻找过理论点的法线与实际螺旋面的交点,采用切平面投影分析方法,提出象限搜索算法。在C语言环境下对上述算法进行编程,通过实例进行了具体的误差分析。针对螺杆加工中编程点之间刀具的实际运动轨迹为阿基米德螺线的事实,分析了阿基米德螺线插补对加工精度的影响,并在此基础上讨论编程点之间的步长、刀尖圆弧半径和刀具安装角度等因素对加工误差的影响,得出由于阿基米德螺线插补而影响螺杆加工精度的主要因素为工件端截面廓形和编程点之间的步长的结论。采用包络面仿真算法,分析了刀具安装高度误差对螺杆加工精度的影响,提出对于此项误差进行相位补偿和相位补偿角度的概念,将经过相位补偿后的法向误差作为刀具安装高度对加工精度影响的分析依据,总结出误差规律;通过分析认为这些误差产生的根本原因是实际加工的刀位轨迹与计算刀位轨迹不一致,仍属于数控编程误差,为此提出了软件补偿措施。
     经过误差分析方法的研究和误差规律的总结,得出影响螺杆加工误差的主要因素,提出提高螺杆加工精度的措施,进一步验证了最小有向距离算法的正确性,完善了复杂表面无瞬心包络加工理论,具有较强的实践指导意义。
At present, the calculative method of cutter-contact points and cutter-path when machining helicoids with section envelope principle has been succeeded to a certain extent, but there is lack of the study and method for such arithmetic and technics. So on the basis of the algorithm of seeking minimal orientation-distance, this paper probe into error analysis method for machining spiral rod by non-instantaneous section envelope principle and make analysis for primary influencing factors.
    Non-instantaneous section envelope machining principle and the algorithm of seeking minimal orientation-distance are expounded theoretically. Non-interference cutter path is gained after the use of the algorithm of seeking minimal orientation-distance. According to the characteristic of helical surface, "the envelope surface simulation algorithm" for calculating actual machining helicoids is put forward at the presupposition of cutter surface and cutter path. Error analysis model and algorithm in the normal direction for factual machining curved surface is set forth in allusion to the demand that for complicated spiral rod machining precision should be scaled from mesh precision. In this algorithm, for seeking the point of intersection between the normal line passed the academic point and the factual machining curved surface, projection analysis method in the tangent plane is used, the quadrant seeking algorithm is brought forward and algorithm is programmed by the programming language C, detailed error analysis with example is done. The influence of Archimedes spiral curve interpolation on machining precision is analyzed, for the fact that the actual cutter path among the programmed points in the machining of spiral rod is Archimedes spiral curve. On the basis of that, the factors such as the step among the programmed points ,the radius of cutter cirque and the fixed angle of cutter are discussed, the primary factors of influencing machining precision are the section profile
    
    
    
    of work-piece and the step among the programmed points. Using envelope surface simulation algorithm, the influence of the cutter fixed height on the machining precision of spiral rod is analyzed; the concept of compensatory phase angle and compensation for such error on phase are advanced. The normal error after phase compensation is considered as the analysis gist, the rule of error is summarized. By the analysis, the essential reason for error is the non-consistence between the factual machining path and the calculative cutter one. Such error belong to NC programming error, so the compensational measure form software is set forth.
    By the study on error analysis method and the summarizing of error rule, the primary factors of influencing machining precision of spiral rod are gained, the measure for improving machining precision is elicited. Thus, the correctness of the algorithm of seeking minimal orientation-distance is proved again, the theory of non-instantaneous envelope machining is perfected, the practice guidance is acted on.
引文
[1] 谢竹庄.单螺杆马达的普通线型.石油学报,1997,18(2):98-103
    [2] Robbins & Mtors. Inc.,Moyn Oil field products. World oil, 1996, 217(1): 108-119
    [3] 尤德崑.我国螺杆加工技术现状及水平.石油机械,1993,21(5):5-10
    [4] 易先中等.螺旋曲面数控加工的前置处理研究.石油机械,1999,27(7):1-3
    [5] 易先忠等.螺旋曲面用盘形铣刀廓形设计的向量矩阵法.江汉石油学院学报,1997,19(3):78-82
    [6] 孟平德.加工螺旋面用盘形刀具廓形的理论计算.石油机械,1994,22(9):18-24
    [7] 王可等.异形螺杆加工所用无瞬心包络法原理与实践.制造技术与机床,1999(2):37-38
    [8] 杨向红.螺旋曲面数控加工刀具运动轨迹计算方法研究.沈阳工业大学硕士学位论文,2000
    [9] 韩立.螺旋面数控加工中刀具轨迹计算及干涉检验.沈阳工业大学硕士学位论文,2001
    [10] 张辉等.异形螺杆的数控加工.塑料,1993,28(3):32
    [11] 孙新.螺旋面加工截面包络理论及数控编程算法.沈阳工业大学硕士论文,1999
    [12] 乐美豪.我国螺杆制造技术的发展趋势.制造技术与机床,1999(9):16
    [13] 刘智敏.误差与数据处理.原子能出版社,1979:1-2
    [14] 蔡光起等.机械制造工艺学.东北大学出版社,1994(8):186-240
    [15] 周艳红.自由曲面三坐标加工走刀步长的确定.华中理工大学学报,1998,8,26(8):20-21
    [16] 潘宝俊等.数控机床加工程序编制及设计制造一体化.中国标准出版社,1998(12):23-25
    [17] 赵文珍等.圆柱螺旋面包络法加工误差分析.组合机床与自动化加工技
    
    术,1999(12):32-34
    [18] 王可等.无瞬心包络法加工螺杆的精度分析.组合机床与自动化加工技术,1999(1):25-27
    [19] 赵文珍等.数控加工中刀触点轨迹的连续性及其应用.沈阳工业大学学报,2001(1):1-3
    [20] 谈理等.椭圆轮廓数控铣削方法及精度分析.现代制造工程,2001(10):18
    [21] 王可等.无瞬心包络法加工螺杆的精度分析.组合机床与自动化加工技术,1999(1):26
    [22] 吴序堂著.齿轮啮合原理.机械工业出版社,1982:93-122
    [23] 呼咏.螺杆铣削过程模拟及加工精度分析研究.沈阳工业大学硕士论文,1999(6)
    [24] 王可等.涡旋盘数控加工方法研究.压缩机技术,2000(6):22-23
    [25] 宁亭等.四轴数控加工中心工件点轨迹计算分析.机械工业自动化,1994,12,16(4):37-39
    [26] 聂秋根等.不规则螺旋槽的数控加工.制造技术与机床,1996(7):13
    [27] 张建伟.单螺杆泵的空间啮合原理.石油机械,199l,10,19(10):1-5
    [28] 王永青等.火箭喷管等倾角螺旋槽铣削加工中刀具干涉分析.大连理工大学学报,2001,9,41(5):595-597
    [29] 周艳红等.五坐标数控加工的理论误差分析与控制.机械工程学报,1999,35(5):15-16
    [30] 周艳红等.自由曲面CNC高速高精加工.华中理工大学学报,1996,12,24(12):21-23
    [31] 李吉平等.基于曲面离散技术的加工精度检验方法的研究现状.机械研究与应用,2000,6,13(2):7
    [32] 张朝蔚.刀尖圆弧半径对数控车床加工精度的影响周艳红等.机械制造,1999(11):25-26
    [33] 陈丽萍等.一种高效的自由曲面求交算法.西安交通大学学报,2000(3):4-8
    [34] 贺子杏等.等距型面加工误差的预测及控制.矿山机械,1998(6):
    
    59-61
    [35] 李存绪.第一届全国螺杆设计制造技术会议评述.压缩机技术,2000(1)15-17
    [36] 林旭群.螺杆的加工工艺.农机与食品机械,1999(3):30-31
    [37] 吴志坚等.数控车削法加工双线螺杆的理论与实践.石油机械,1999,27(8):44-46
    [38] 田秀萍.螺旋转子共轭铣刀曲面的理论分析及计算机绘制.太原理工大学学报,1998,7,29(4):393-395
    [39] 宫兴祯等.异形螺杆包络加工的误差分析与补偿.制造技术与机床,1999(11):35-36
    [40] 赵文珍等.包络法数控加工螺杆的刀具轨迹计算方法.组合机床与自动化加工技术,2000(1):23-25
    [41] 赵文珍等.圆柱螺旋面包络法加工误差分析.组合机床与自动化加工技术,1999(12):32-34
    [42] 吴光琳等.曲面实时插补无干涉刀轨的生成方法.机械工程学报,2001,5,37(5):93-95
    [43] 冉瑞江等.用投影方法进行数控加工干涉检查与修正.机械工程学报,1996.12.32(6):1
    [44] B.M. Imani. An improved process simulation system for ball-end milling of sculptured surfaces. International Journal of Machine Tools & Manufacture, 1998(38):1089-1100
    [45] Yean-Ren Hwang. Cutting Errors Analysis for Spindle-Tilting Type 5-Axis NC Machines. The International Journal of Advanced Manufacturing Technology, 1998(14):399-455
    [46] Suk-Hwan Suh. Error-Modelling and Measurement for the Rotary Table of Five-axis Machine Tools. The International Journal of Advanced Manufacturing Technology, 1998(14):656-663
    [47] Kwangsoo Kim. A PATH GENERATION METHOD FOE SCULPTURED SURFACE MANUFACTURE. Computers ind. Engng, 1998,14(2):95-101
    [48] RONG-SHEAN LEE. TOOL PATH GENERATION AND ERROR CONTROL METHOD
    
    FOR MULTI-AXIS NC MACHINING OF SPATIAL CAM. International Journal of Machine Tools & Manufacture, 1998,38(4):277-290
    [49] Kwangsoo Kim. AN INTEGRATED APPROACH TO SCULPTURED SURFACE DESIGN AND MANUFACTURE. Computers ind. Engng, 1998, 14(3): 271-280
    [50] Mahbubur Rahman. Modeling,measurement and error compensation of multi-axis machine tools. Part I:theory. International Journal of Machine Tools & Manufacture, 2000(40): 1535-1546

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700