同轴加载圆波导慢波系统的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现代军事技术的需求为高功率微波的发展提供了良好的环境,高功率微波源作为高功率微波的重要研究领域也迅速发展起来。而高功率微波源的核心部件是电子注与波进行互作用的场所,对行波管而言即为慢波系统,它的优劣直接影响高功率微波源的性能。全金属慢波结构因其尺寸大、热耗散能力强、整体性能好等优点被广泛应用于宽带、大功率行波管和相对论行波管中,而膜片周期加载慢波系统正是全金属结构中最重要、应用最广泛的一大类结构。本文在传统膜片加载慢波系统的基础上,提出了一类新型的同轴膜片周期加载慢波结构,从理论分析、数值模拟及实验验证几个方面对其进行了全面深入的研究。本论文主要的工作成果为:
     一、首次提出一类同轴阶梯形膜片加载慢波系统,利用严格的场匹配法,推导出色散方程和耦合阻抗的表达式。色散方程表达式可以作为一种通用形式用来研究同轴或非同轴的脊加载和普通膜片加载结构。通过数值计算,不仅比较了不同形式加载结构的色散特性差别,还详细研究了结构参数对色散特性和耦合阻抗的影响。和同轴脊加载以及普通膜片加载结构相比,同轴阶梯形加载结构的带宽最宽。
     二、利用具有环形电子注的平衡态模型,通过场匹配法,建立了同轴阶梯形膜片加载慢波系统的注波互作用自洽场理论,得到了此结构在小信号条件下的热色散方程。数值分析了结构参数和电子注参数对增益和色散的影响,该结构的3dB带宽可达30%,从而为相对论行波管发现了一种新型的宽带大功率慢波结构。
     三、提出了分析任意槽形膜片加载慢波结构的一种普遍分析方法,它用一系列矩形阶梯来近似槽区的边界。这一方法适合于分析任何膜片边界或膜片间的槽边界光滑或有较大突变的结构,因此也可用来分析同轴阶梯形膜片加载波导。利用此法获得了同轴任意槽形膜片加载结构的普遍色散方程和耦合阻抗表达式。通过数值运算得到了系统结构参数对色散特性和耦合阻抗的影响,并比较了五种特殊形状槽形膜片加载结构的高频特性,相同尺寸下三角形槽的带宽最宽,但耦合阻抗最低。
     四、分析了同轴任意槽形膜片加载圆波导的注波互作用的线性理论,得到了
The demand of the modern military science and technology provides a favorable environment for the high power microwave technology to develop. As one of the important field of the high power microwave, the high power microwave source technology also make great progress these years. The key component of a high-power microwave device is the RF structure in which the beam and wave interact. To Traveling Wave Tube (TWT), it is the slow-wave structure(SWS) which basically determine the performance of the TWT. Owing to having the advantages of large size, good thermal conductivity, high precision of manufacturing and assembling, the all-metal slow-wave structures are widely used in the wide-band, high power TWT and relativistic TWT. Furthermore, the disc-loaded cylindrical waveguide is one of the most important slow-wave structures in the all-metal SWS. In this dissertation, we have made detailed theoretical study, numerical simulation and experiment study on some new types of the coaxial disc-loaded SWS. The major achievements are listed as the followings:
    1. For the first time, a coaxial step-disc-loaded system is presented. By using the field-matching method, the dispersion equations and the coupling impedance of this structure are obtained. The dispersion equation can be used to analyze the coaxial or non-coaxial ridged and disc-loaded structures as the unified expression. The differences in the characteristics of the variant type of the coaxial step-disc-loaded structures are compared, moreover, the influence of various circuit dimensions on the dispersion relation and the coupling impedance are discussed. Compared with the coaxial disc-loaded and ridged-disc-loaded structures, the pass-band of coaxial step-disc-loaded structure is the broadest.
    2. The dispersion of the coaxial step-disc-loaded slow-wave structure with an annular electron beam is obtained according to the self-consistent filed theory. The computation results of the hot dispersion equation indicate the influence of the circuit dimensions and the electron beam parameters on the small signal gain. The 3dB bandwidth of this tube can reach 30%.
引文
1. Liao Fujiang, Li Hongfu, Yang Zhonghai and Xie Wenkai, Technical progress in vacuum microwave electronics. The 3th international conference on microwave and millimeter wave technology proceedings, August 2002, pp17-22
    2.廖复疆,大功率微波电子注器件及其发展。真空电子技术,1999,No.1,pp1-7
    3.彭自安,冯进军,1995年真空微电子学的进展评述。真空电子技术,1996,Vol.1,pp33-37
    4. R. K. Parker, R.H. Abrams and B. Danly, et al. Vacuum electronics, IEEE Trans. on MTT, 2002, Vol. 50, No. 3:pp835-845
    5. R. H. Abram, A. A. Mondeli and R. K. Parker, Vacuum electronics for the 21st century. IEEE Microwave Magazine, 2001, Vol. 2, No. 3:pp61-72
    6. V. L. Granatstein, R. K. Parker and C.M. Armstrong, Vacuum electronics at the dawn of the twenty-first century. Proceedings of IEEE, 1999, Vol. 87, No. 5:pp702-716
    7.李建清,行波管三维非线性理论及其网络并行计算。[博士学位论文],成都:电子科技大学,2003
    8. D. Yaogen, Research progress on L-band broadband MBK, IVEC2002, April 2002, pp296-297
    9. C. R. Smith, C. M. Armstrong and J. Duthie, The microwave power module: aversatile RF building block for high-power transmitters. PIEEE, May, 1999, Vol. 87:pp717-737
    10. E. A. Gelvich, L. M. Borisov, and Y. V. Zhary, et al. The new generation of high power multipleBeam klystron, IEEE Trans. MTT, 1993, Vol. 41:pp15-19
    11. G. S. Nusinovich et al. Recent progress in thedevelopment ofplasma filled traveling wave tubes and backward wave oscillators. IEEE Trans. on Plasma Science, 1998, Vol. 26, No. 3:pp628-645
    12. Li Hongfu, et al. 35 GHz low voltage third-harmonic gyrotron with a permanent magnet system. 13th conference of Chinese vacuum electronics society, Aug. 2001, pp71-76
    13. Su Yinong et al., A study of 8 mm the second harmonic gyrotron with a permanent magnet focusing system, 13th conference of Chinese vacuum electronics society, Aug. 2001, pp102-104
    14. Fan Juping et al., Experimental study of relativistic backward wave oscillator with resonant reflector. High power laser and particle beam, 2001, Vol. 13, No. 3
    15. Liu Guozhi et al., Relativistic backward wave oscillator with coaxial extractor. High power laser and particle beam, 2001 ,Vol.13, No. 4
    16. Xiong Xiangzheng, Li Jiayin, et al. The experimental research of the relativistic magnetron with permanent magnet. High power laser and particle beam, 2000. Vol.12. No. 1
    17.James Benford,John Swegle.高功率微波,中译本。成都:电子科技大学出版社,1996,pp13
    18.张军,新型过模慢波高功率微波发生器研究。[博士学位论文],长沙:国防科技大学,2004
    19. D. V. Giri, H. Lackner, C.E. Baum, et al. Design, Fabrication and testing of a paraboloidal reflector antenna and pulse system for impulse-like waveforms. IEEE Trans. on Plasma Sci. 1997, Vol. 25, No. 2:pp318
    20. T. Treado et al, Temporal study of long-pulse relativistic magnetron operation. IEEE Trans. on Plasma Science, 1990, Vol.18:pp594
    21. Granatstein V,I. Alexeff, Virtual cathode oscillator theory, high power microwave sources. Norwood:Artech House, 1987, pp441
    22. John A. Swegle, James W. Poukey, and Gordon T. Leifeste, Backward wave oscillators with rippled wall resonators: Analytic theory and numerical simulation. Phys. Fluids, 1985, Vol. 28, No. 9:pp2882—2894
    23. D. Shiffler, J.A. Nation, and G.S. Kerslick, A high-power traveling wave tube amplifier. IEEE Trans. Plasma Sci, 1990, Vol.18, No. 3:pp546
    24. S. P. BUGAEV, V.A. Cherepenin, etal, Relativistic multiwave cerenkov generators. IEEE Trans. On Plasma Sci., 1990, Vol.18, No. 3:pp525-536
    25.余国芬,高功率微波高频系统及其相关问题研究。[博士学位论文],成都:电子科技大学,1998
    26.杨建华,低磁场谐振腔切伦科夫振荡器——锥形放大管的研究。[博士学位论文],长沙:国防科技大学,2002
    27.陆国权,贾站利,高技术战争与军用电子元器件。信息产业部电子情报所,2003
    28.廖复疆,大功率微波管——21世纪军事电子装备的关键器件。中国电子学会真空电子学分会第十届学术年会论文集,1995,pp1-7
    29.张勇,盘荷波导、脊加载盘荷波导和螺旋带慢波系统特性研究。[博士学位论文],成都:电子科技大学,2003
    30. L. Schachter, and J. A. Nation, Propagation of electronmagnetic and space-charge waves in quasi-periodic structures. Phys. P1asmas, 1995, Vol. 2: pp889
    31. L. Schachter, High efficiency beam-wave interaction in quasi-periodic structures. Phys. Rev.,1995, Vol. 52:pp2037
    32. L. Schachter, and J.A. Nation, An analytical method for studying quasiperiodic disk-loaded waveguide. Appl. Phys. Lett.,1993, Vol. 63:pp2441
    33. S.A. Naqvi, G.S. Kerslick, and J.A. Nation, et al. Axial extraction of high-power microwaves from relativistic traveling wave amplifiers. Appl. Phys. Lett., 1996, Vol. 69:pp1550
    34. S.A. Naqvi, G.S. Kerslick, and J.h. Nation, et al., Resonance shift in relativistic traveling wave amplifiers. Phys. Rev., 1996, Vol. 53:pp4229
    35. S.A. Naqvi, J.A. Nation, and L. Schachter, et al.,High efficiency TWTdesignusing traveling-wave bunch compression. IEEE Trans. on Plasma Science, 1998, Vol. 26: pp840
    36. Cz. Golkowski, J.D. Ivers, and J.A. Nation, et al., First results from a high-power Ka-band TWT. Proceedings 1999 IEEE particle accelerator conference, 1999, New York, NY, pp3603
    37. S. Banna, J. A. Nation, L. Schachter and P. Wang, Interaction of TM01 and HEM11 in a TWT, in PAC99, Particle Accelerator Conf. New York, 1999, pp3609
    38. S. Banna, J. A. Nation, L. Schachter, et al., The Interaction of Symmetric and Asymmetric Modes in a High Power Traveling-Wave Amplifier, IEEE Trans. On Plasma Science, 2000, Vol. 28, No. 3
    39. D. Shiffler, J. D. Ivers, G. S. Kerslick, et al. A Two Stage High-Power Traveling-Wave Tube Amplifier, Appl. Phys. Lett. 1991, Voi. 58: pp899-901
    40. D. Shiffler, J, D. Ivers, G. S. Kerslick, et al. A high power two stage traveling-wave tube amplifier, J. Appl. Phys., 1991, Vol. 70: pp106-113
    41. E. Kuang, T. J. Davis, G.S. Kerslick, J.A. Nation, et al, Transit time isolation of a high power microwave amplifier TWT, Phys. Rev. Lett., 1993, Vol. 71:pp2666-2669
    42. E. Kuang, T. J. Davis, G. S. Kerslick, et al., Resonance shift in relativistic traveling wave amplifiers, Phys. Rev. E., 1996, ,Vol. 53:pp4229-4231
    43. E. Kuang, T. J. Davis, G. S. Kerslick, J. A. Naiton, et at., Axial extraction from high power microwaves from relativistic traveling wave amplifier, Appl. Phy. Lett., 1996, Vol. 69:pp1550-1552
    44.王文祥,余国芬,宫玉彬,行波管慢波系统的新进展—全金属慢波结构。真空电子技术,1995,No.5:pp30-36
    45.王文祥,宫玉彬,魏彦玉等,大功率行波管新型慢波线技术的进展。真空电子技术,2002,NO.6,pp13-18
    46. Pu-Kun Liu, Shou-Xi Xu, Xian-Feng Liang, et al. Proposals for a novel Ka-band frequency-tripling gyroklystron amplifier. Twenty seventh international confrence on infrared and millimeter waves, 2002, pp241-242
    47. Yubin Gong, Wenxiang Wang ,Yanyu Wei, et al. Theoritical analysis of ridge-loaded ring-plane slow-wave structure by variational methods. IEE Proc-Microw. Antennas Propagation, 1998, Vol. 145, No. 5:pp397-405
    48. V. Lagange and F. Payen, π-line high power TWTs. IEDM, 1985, pp350-353
    49. Yubin Gong, Wenxiang Wang and Yanyu Wei, et al. Dispersion relation of π-line slow wave structure. Int. J. of Infrared and Millimeter waves, 1997, Vol. 18, No. 3: pp665-674
    50. V.A. Vanke, A.V. Konnov, et al. On sectioned traveling wave tubes with a circularly polarized field. Radioteknika I Elektronical, 1990, No. 7:pp1549-1551
    51. A. Karp, Design for a high-impedance narrow band 42GHz power TWT using a "foundmental/forward" ladder-based circuit. NASA report, CR165282,1980
    52. A. Bromborsky, and B. Ruth, Caculation of TM_(On) dispersion relations in a corrugated cylindrical waveguide. IEEE /rans. on MTT, 1984, Vol. 32, No. 6:pp600-605
    53. R.J. Barker and E. Schamiloglu, High-power microwave sources and technologies. IEEE Press Series on RF and Microwave Technology, 2001, New York: IEEE Press
    54. L. M. Field, Some slow-wave structure for TWT. Proc. IRE. 1949, Vol. 37, No.1:pp34-40
    55. D. I. Voskresenkii and R.A. Granovslajia, Investigation of the type of helical-channal slow-wave system, in electromagnetic slow-wave system. Moscow, Russia: National Defense Press, 1960, pp98-103
    56. M. R. Nwachuku, The helical waveguide as a periodic structure for millimeter wave. [PH.D. Thesis],1961, University of London
    57. B. T. Henoch, Investigations of the disk-loaded and helical waveguide. Trans. Royal Inst. of Technology, Stockholm, Sweden, 1958, No. 129:pp1-83
    58. K. W.H. Foulds and J.R. Mansell, Propagation of an electromagnetic wave through a helical wavegnide. Proc. IEE, 1964, Vol. 111, No. 11:pp1789-1798
    59. C. Liss et al, Helical waveguide millimeter wave TWT. IEDM, 1988, pp374-377
    60. Wenxiang Wang, YonghaiLanand Yanyu Wei, The analysis of hole-gap helical groove waveguide, Int. J. of Infrared and Millimeter waves, 2000, Vol. 21, No. 10: pp1617-1625.
    61. Yanyu Wei, Wenxiang Wang and Sun Jiahong, An approach to the analysis of arbitrarity-shaped helical groove waveguide. IEEE Microwave and Guided Wave letter, 2000, Vol. 10, No.1: pp4-6
    62. Guofen Yu, Wenxiang Wang, Yanyu Wei, et al. Analysis of the coaxial helical-groove slow-wave structure, IEEE Trans. On MTT, 2002, Vol. 50, No.1: pp191-200
    63.魏彦玉,一类新型慢波系统——螺旋槽结构的理论与实验研究。[博士学位论文],成都;电子科技大学,2000
    64.宫玉彬,新型大功率行波管的研究。[博士学位论文],成都:电子科技大学,1998
    65. G. Dohler, D. Gagne, et al, Serpentine waveguide TWT. IEDM' 87, pp485-488
    66. G. Dohler, D. Gallagher and J. Richards, Millimeter wave folded waveguide TWTs. Proc Vacuum Electron. Annu, Rev., Crystal City, VA.,1993, pV-15-20
    67. Hyun-Jun Ha Soon-Shin Jung and Gun - Sik Park, Theoretical study for folded waveguide traveling wave tube. Int.J. IR/MM waves, 1998, vol.19(9), pp. 1229-1245
    68. S.T. Han, S.G. Jeon, Y.M. Shin, et al., Experimental investigation on miniaturized vacuum electron devices. Proceedings of IVSEC 2004, pp404
    69. S. T. Hart, J.I. Kim, K.H. Jang, G.S. Park, Experimental investigation of millimeter rave folded wavguide TWT. Pourth IEEE Internatinoal vacuum electronics conference(IVEC) 2003, May 28-30, Seoul, Korea. pp322-323
    70. Lawrence I yes, Carol Kory, Mike Read, et al., MEMS-Based TMT rdevelopment. Fourth IEEE Internatinoal vacuum electronics conference(IVEC) 2003, May28-30, Seoul, Kora, pp64-65
    71.王文祥,宫玉彬,余国芬等,宽带大功率行波管新型慢波线的研究。中国国防科学技术报告-9801031,1998
    72. Y Kejhong, W Hanli, Z Rirong, Propagation and radiation behavior of coruugated circular waveguide having dual-depth combination. Scientia Sinica (A),1983,ⅩⅩⅥ:pp990-1003
    73. Oksanen M I, Space-harmonic analysis of multidepth corrugated waveguides. IEE Proc, Pt H, 1989, Vol. 136, No. 2:pp151-158
    74. Takeichi Y, Hashimoto T, Takeda F, The ring-loaded corrugated waveguide. IEEE Trans. on MTT, 1971, Vol. 19:pp947-950
    75. Seng-Woon Chen, Xiao-Peng Liang and Kawthar A. Zaki, Propagation in periodically Loaded corrugated waveguides. IEEE Transactions on Magnetics, 1989, Vol. 25, No. 4:pp3055-3057
    76. K. R. Chu, Y. Y. Lau, and L. R. Barnet, et al. Theory of a wide-band distributed gyrotron traveling-wave amplifier. IEEE transactions on Electron Devices, 1981, Vol. 28, No. 7:pp866-871
    77. 刘盛纲,相对论电子学。北京:科学出版社,1987
    78. K. C. Leou, D.B. McDermott, and N.C. Luhmann. Dieleectric-Loaded wideband gyro-TWT. IEEE Trans. on Plasma Science, 1992, Vol. 20, No. 3:pp188-196
    79. K. C. Leou, Tao Pi, and D. B. McDermott, et al. Circuit design for a wideband disk-loaded gyro-TWT amplifier. IEEE Trans. on Plasma Science, 1998, Vol.26, No. 3:pp488-495
    80.岳玲娜,同轴膜片加载慢波系统的研究.[硕士学位论文],成都:电子科技大学,2003
    81. Lingna Yue, Wenxiang Wang, Yubin gong and Keqian Zhang, Analysis of coaxial ridged disk-loaded slow-wave structures for relativistic traveling wave tubes. IEEE Trans. on Plasma Science, 2004, Vol. 32, No. 3:pp1086-1092
    82.张克潜,李德杰,微波与光电子学中的电磁理论。北京:电子工业出版社,2001,pp407
    83. N. Marcuvitz, Waveguide Handbook. New York: McGraw-Hill, 1951, pp308
    84.章日荣,杨可忠,陈木华,波纹喇叭。北京:人民邮电出版社,1988,pp240-243
    85. S. Ramo, J. Whinnery and T. Van Duzer. Field and Waves in Communication Electronics. New York: Wiley, 1965, pp598
    86. W. X. Wang, G.F. Yu and Y.Y. Wei, Study of the Ridge-Loaded Helical-Groove Slow-Wave Structure. IEEE Trans. on Microwave Theory Tech, 1997, Vol. 45: pp1689-1695
    87. J. R. Pierce and L. M. Field, Traveling-wave tubes. Proc. IRE, 1947, Vol. 35: pp108-111
    88. J. R. Pierce, Theory of the beam-type traveling-wave tube. Proc. IRE, 1947, Vol. 35:pp111-123
    89. J. R. Pierce, Traveling-wave tubes. New York: Van Nostrand, 1950
    90.刘盛纲,微波电子学导论。北京:国防工业出版社,1985,第十二章
    91. O.E.H. Rydbeck, Theory of traveling wave tube. Ericsson Technics, 1948, Vol. 46:pp3-18
    92. L. J. Chu and J. D. Jackson, Field theory of traveling wave tubes. Proc. IRE, 1948, Vol. 36:pp853-863
    93. H.P. Freund, M.A. Kodis, and N.R. Vanderplaats, self-consistent field theory of helix traveling wave tube amplifier. IEEE Trans. on Plasma Science, 1992, Vol. 203:pp543-553
    94. YUE Ling-Na, WANG Wen-Xiang, WEI Yan-Yu and Gong Yu-Bin. Radio- frequency characteristics of the coaxial step-disk-loaded slow-wave structure for relativistic traveling wave tubes. Chin. Phys. Lett., 2005, Vol. 22, No. 3: pp754-757
    95. Lingna Yue, Wenxiang Wang, Yanyu Wei and Yubin gong, Dispersion characteristics of coaxial circular-arc-groove slow-wave structure. International Journal of Infrared and Millimeter Waves, 2005, Vol. 26, No.1:pp107-116
    96. Y Y Wei, W X Wang and J H Sun, An approach to the analysis of arbitrarily shaped helical groove waveguides. IEEE Microwave and Wave Lett, 2000, Vol. 10, No. 4:pp4-6
    97.魏彦玉,王文祥,宫玉彬等,任意槽形螺旋槽慢波结构的色散方程。电子学报,2000,Vol.28,No.7:pp88-90
    98. David K. Abe, Yuval Carmel and Susanne M. Miller, et al. Experimental studies of overmoded relativistic backward-wave oscillators. IEEE Trans. on Plasma Science, 1998, Vol.26, No. 3:pp591-604
    99. Alexander N. Vlasov, hnatoly G. Shkvarunets and Jhon C. Rodgers, et al. Overmoded GW-class surface-wave microwave oscillator.IEEE Trans. on Plasma Science, 2000, Vol.28, No. 3:pp550-559
    100. Haoying Wang, Ziqiang Yang, Linxin Zhao, et al., The numericalcomputation of dispersion curves for symetric and asymmetric modes in an arbitary cylindrical metal SWS. IEEE Trans. on Plasma Science, 2005, Vol. 33, No. 1:pp111-118
    101. Dumbrajs and S. G. Liu. Kinetic theory of Electron-cyclotron resonance masers with asymmetry of the electron beam in a cavity. IEEE transactions on Plasma Science, 1992, Vol. 20, No. 3:pp126-136
    102. G. S. Park, S. Y. Park and R.H. Kyser, et al. Broadband operation of a Ka-band taperd gyro-traveling wave amplifier. IEEE transactions on Plasma Science, 1994, Vol. 22, No. 5:pp536-543
    103. W. Dehope, K. Felch, and G.. Hu, et al., Initial operation of a wideband gyro-TWT amplifier. IEEE IEDM93-355
    104. J. Y. Choe and H. S. Uhm. Theory of gyrotron amplifiers in disc or helix-loaded waveguides .Int. J. Electronics, 1982, Vol. 53, No. 6:pp729-741
    105. B. R. Cheo and A. Rekiouak. Linear and nonlinear analyses of a widebafid gyro-TWT IEEE Trans. Electron Dev, 1989, Vol.36, No. 4:pp802-810
    106. S. J. Rao, P. K. Jain and B. N. Basu. Hybrid mode helix-loading effects on gyrotron-TWT. Int. J. Electron, 1997, Vol. 82, No. 6:pp663-675
    107. Vishal Kesari, P.K. Jain, and B.N. Basu. Analytical Approaches to a disc-loaded cylindyical waveguide for potential application in wide-band gyro-TWTs. IEEE transactions on Plasma Science, 2004, Vol. 32, No. 5:pp2144-2151
    108. A.W. Fliflet, Linear and nonlinear theory of the Doppler-shifted cyclotron resonance maser based on TE and TM waveguide modes. Int. J. Electron, 1986, vol.61, No. 6:pp1049-1080
    109.张宏斌,回旋行波管理论及数值模拟研究,[博士学位论文],成都:电子科技大学,1999
    110.张兆镗,微波管高频系统的测量。北京:国防工业出版社,1982,第四章
    111.斯彼科托尔,慢波系统参量的测量方法。周工展等译,1963,国外电子器件译丛之四
    112. A. W. Horsley and A. Pearson, Measurement of disperision and interaction impedance characteristics of slow-wave structures by resonance method. IEEE Trans. Electron Devices, 1966, Vol.13, No. 12:pp962-969

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700