应用于多路耦合器的可调滤波器研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在现代无线通信系统,尤其是军用无线通信系统中,通信干扰技术与抗干扰技术一直是热点的研究领域。在保证己方通信畅通的同时干扰敌方通信,这就能掌握战场的主动权。由于其可靠性、全天候性与稳定性,跳频超短波抗干扰通信一直是抗干扰通信领域的重要研究课题之一。作为跳频超短波抗干扰通信系统的重要组成部分,超短波抗干扰VHF/UHF多路耦合器以及其中的关键组成部分----可调滤波器一直是研究的热点。本文紧密结合研究课题,以工作于VHF/UHF多路耦合器中的可调滤波器作为设计目标,对可调滤波器的设计方法及工程实现进行了系统的研究。本文所做的工作以及取得的主要研究成果为:
     1.总结了多路耦合器和应用于其中的可调滤波器设计的基本理论和设计方法。将两者的设计结合考虑,从多路耦合器的要求出发,通过分析多路耦合器和可调滤波器之间的相互制约关系,得到了相应可调滤波器必须达到的一些特殊指标要求。超短波抗干扰技术的发展要求多路耦合器具有更多的通信通道,更广的跳频范围以及在跳频范围内恒定的通道带宽。由此得出对可调滤波器的要求为更小的端口电纳,更广的调谐范围以及恒定的滤波器带宽。
     2.对同轴腔可调滤波器的输入输出耦合环形式以及其对应的端口电纳特性进行了研究。总结了经典的同轴腔可调滤波器输入输出耦合环的设计方法,从其端口电纳特性出发分析了经典输入输出耦合环的局限性。提出了一种双环输入输出耦合结构,分析了其工作原理。设计了采用这种双环结构的同轴腔可调滤波器,得到了期望的性能。
     3.对常用同轴腔可调滤波器的腔间耦合结构进行了研究,总结了其设计方法。分析了同轴腔可调滤波器在其调谐频率范围内带宽逐渐变宽的原因。提出了两种耦合窗口结合耦合环的腔间耦合方式,实现了同轴腔可调滤波器在可调谐频率范围内几乎恒定的工作带宽。
     4.对同轴腔可调滤波器的自动调谐方法进行了研究。通过分析同轴腔可调滤波器的特点,提出了一种基于空间映射以及参数提取的自动调谐方案。并且针对这个方案对空间映射方法和参数提取方法进行了改进。最后对所提出的方案进行了验证。
     5.对其他类型的电调谐可调滤波器进行了研究。主要针对非机械调谐的可调滤波器。重点研究了基于移相器的可调滤波器和基于铁氧体的可调滤波器,提出了两种基于移相器的可调滤波器以及一种基于铁氧体的TM模式介质可调滤波器。最后对其性能进行了仿真验证。
In modern wireless communication systems, especially in the military wirelesscommunication systems, the communication interference and anti-interference technology isalways a hot research area. To interference the enemy’s communication systems and ensureone’s own communication system at the same time, the initiative of the battlefield will begrasped in our hand. For the features of reliability, all-weather and stability, the ultra-shortwave anti-interference frequency hopping communication is an important research topic in thefield of the anti-interference communications. As an important part of the ultra-short waveanti-interference frequency hopping communication system, the ultra-short waveanti-interference VHF/UHF multi-coupler and its key component, the tunable filter, is alwaysa hot study pot. Closely integrated research project and take the tunable filter using in theVHF/UHF multi-coupler as the goal, this paper carried out a systematic study the design andengineering realize of the tunable filter. The author’s major work and contributions areoutlined as follows:
     1. The basic theory and design methods of the multi-coupler and the tunable filter usingin the multi-coupler is summary in this paper. In this paper, combining the designconsideration of the multi-coupler and tunable filter together, and starting from therequirements of the multi-coupler, through analyzing the interactions among the multi-couplerand tunable filters, we get some specially specifications that the tunable filter must meet. Thedevelopment of the ultra-short wave anti-interference technology requires that themulti-coupler must have more communication channel, a wider hopping range and a constantbandwidth in the hopping range. The resulting requirements for the tunable filters are asmaller port susceptance, a wider tunable range and a constant bandwidth in the operating.
     2. The form of the input/output coupling loop of the coaxial-cavity tunable filter and itscorresponding susceptance characteristic in the port was studied in this paper. And this papersummarizes the traditional design method of the input/output coupling loop in thecoaxial-cavity tunable filter and analyzes its limitations starting from the port susceptancecharacteristic. And then a double loops coupling structure is proposed also its workingprinciple analyze. Finally, a coaxial-cavity tunable filter adopting this coupling structure isdesigned and a desired performance is obtained.
     3. The study of the coupling structure between cavities of the coaxial cavity filter is carried out in this paper and its designed method is summarized. The reasons for bandwidth ofthe coaxial cavity tunable filter becomes wider and wider is analyzed in this paper. And then ainter-cavities coupling structure constitute of coupling window and coupling loop is presentedand realized an almost constant bandwidth coaxial cavity tunable filter in its operating range.
     4. The study of the auto-tune method using in the coaxial cavity tunable filter is carriedout in this paper. Through analyzing the features of the coaxial cavity tunable filter, anauto-tune method based on the space mapping and parameter extraction is proposed in thispaper. And the space mapping and parameter extraction are improved to meet the demand ofthe coaxial cavity tunable filter. Finally, the method is verified.
     5. The study of the other type tunable filters is carried out in this paper, mainly aim to thenon-mechanical tune tunable filter. The study is focuses on the tunable filter based on thephase shifter and ferrite. Two tunable filters based on the phase shifter and a dielectric tunablefilter based on ferrite operating in TM mode is introduced in this paper. Finally, the method isverified through simulation.
引文
1.A.H.Secord, A.W.Alden, and J.A.Whittaker. A new UHF autotune communicationssystem for ships. Vehicular Technology Conference,1977.27th IEEE.1977. vol.27,no.16-18.244–257.
    2.J.Clark. Cellular rural statistical area (RSA) transmit and receive combining. VehicularTechnology Conference,1989IEEE39th.1989. vol.1, no.1-3.353–358.
    3.G.Hamer, S.Kazeminejad, D.P.Howson.Test set for the measured of IMDS at900MHz.Passive Intermodulation Products in Antennas and Related Structures, IEE Colloquiumon.1989.7.8/1-8/3.
    4.T.A.Harrington. Shipboard RF communications architectural alternative toelectromechanically-based multicoupler implementations. Military CommunicationsConference,2008. MILCOM2008. IEEE.2008. no.16-19.1–6.
    5.A.Prochazka. Receiver multicouplers—State of the art and optimum system design.Vehicular Technology Conference,1983.33rd IEEE.1983. vol.33, no.25-27.210–218.
    6.A.Prochazka. Design of advanced HF receiver multicoupler for shipboard applications.Vehicular Technology Conference,1983.33rd IEEE.1983. vol.33, no.25-27.205–209.
    7.K.Fischer. An Electronic Multicoupler and Antenna Amplifier for the VHF-Range.Communications Systems, IRE Transactions on.1957. vol.5, no.3.43–48.
    8.J.F.Cline, B.M.Schiffman. Tunable Passive Multicouplers Employing Minimum-LossFilters. Microwave Theory and Techniques, IRE Transactions on.1959. vol.7, no.1.121–127.
    9.S.Kazeminejad, D.P.Howson and G.Hamer. Base station multicoupler design for UKcellular radio systems. Electronics Letters.1987. vol.23, no.15.812.
    10.官伯然,杨德顺,赵向阳.天线多路耦合器耦合网络的最佳匹配条件.西安电子科技大学学报.1993. vol.20, no.1.65-69.
    11.苏涛,梁昌洪.多路耦合器耦合网络设计.2003全国微波毫米波会议论文集.2003.849-851.
    12.涂书敏.跳频多路耦合器的设计.舰船电子工程.2009. vol.29, no.6.106-108.
    13.苏涛.多路耦合器及其相关理论和技术研究.西安电子科技大学博士论文.2004.
    14.孙益平.多路耦合器的匹配网络研究.西安电子科技大学硕士论文.2005.
    15.蒋东.微波多路耦合器技术研究.电子科技大学论文.2011.
    16.苏涛,梁昌洪.多路耦合器匹配网络的优化设计.2001全国微波毫米波会议论文集.2001.74-76.
    17.马廷爽.微波双工器和多工器的设计.无线电通信技术.1997. vol.23, no.4.17-21.
    18.宁俊松.高温超导多工器及其在宽带数字接收机多通道前段的应用.电子科技大学博士论文.2009.
    19.Dedieu, H.Dehollain, and Neirynck, etc. A new method for solving broadband matchingproblems. Circuits and Systems I: Fundamental Theory and Applications, IEEETransactions on.1994. vol.41, no.9.561–571.
    20.H.Dedieu, J.Neirynck. A simplified real frequency computation method for broadbandmatching. Circuits and Systems,1993., ISCAS '93,1993IEEE International Symposiumon.1993. vol.4.2697–2700.
    21.A.I.Abunjaileh, I.C.Hunter, A.H.Kemp. Application of dual-mode filter techniques to thebroadband matching of microstrip patch antennas. Microwaves, Antennas&Propagation,IET.2007. vol.1, no.2.273–276.
    22.R.L.Li, J.Laskar, M.M.Tentzeris. Broadband circularly polarized rectangular loopantenna with impedance matching. Microwave and Wireless Components Letters, IEEE.2006. vol.16, no.1.52–54.
    23.J.L.Rodriguez, I.Garcia-Tunon, J.M.Taboada, etc. Broadband HF Antenna MatchingNetwork Design Using a Real-Coded Genetic Algorithm. Antennas and Propagation,IEEE Transactions on.2007. vol.55, no.3.611–618.
    24.W.N.Allen, D.Peroulis. Broadband tunable matching networks utilizing tapered lines.Antennas and Propagation International Symposium,2007IEEE.2007.3121–3124.
    25.C.Dehollain, J.Neirynck. Broadband matching of an RLC load by optimal Chebyshevgain functions. Circuits and Systems,1995. ISCAS '95.,1995IEEE InternationalSymposium on.1995. vol.3, no.28.1648–1651.
    26.M.C.Villalobos, H.D.Foltz, J.S.McLean. Broadband Matching Limitations for HigherOrder Spherical Modes.Antennas and Propagation, IEEE Transactions on.2009.vol.57, no.4.1018–1026.
    27.S.K.S. Lu. CAD broadband matching design,Electronics Letters.1983. vol.19, no.4.146–147.
    28.W.K.Chen, S.Chandra. General theory of broadband matching. Electronic Circuits andSystems, IEE Proceedings G.1982. vol.129, no.3.96.
    29.P.J.erini, D.Portofee. Design of broadband antenna matching networks.Electromagnetic Compatibility,1988. Symposium Record., IEEE1988InternationalSymposium on.1988.78–81.
    30.B.S.Yarman. Modern approaches to broadband matching problems. Microwaves,Antennas and Propagation, IEE Proceedings H.1985. vol.132, no.2.87–92.
    31.R.H,Johnston. r.f. and microwave broadband matching. Circuits and Systems,1994.,Proceedings of the37th Midwest Symposium on.1994. vol.2.1220–1223.
    32.R.B.Whatley, Z.Zhou, K.L.Melde. Reconfigurable RF impedance tuner for match controlin broadband wireless devices. Antennas and Propagation, IEEE Transactions on.2006,vo.54, no.2.470–478.
    33.G.Czawka. Structures of prototypes for broadband microwave filters, diplexers andmatching networks. Microwaves, Radar and Wireless Communications.2000.MIKON-2000.13th International Conference on.2000. vol.2.525–528.
    34.S.Tanigawa, K.Hayashi, and T.Fujii, etc. Tri-band/broadband matching techniques for3-dB branch-line couplers. Microwave Conference,2007. European.2007.560–563.
    35.M. Sumi, K. Hirasawa, and S. Shi. Two rectangular loops fed in series for broadbandcircular polarization and impedance matching. IEEE Trans. Antennas Propag.2004. vol.52, no.2.551–554.
    36.B.Edward and D. Rees. A broadband printed dipole with integrated balun. Microw. J.1987. no.5.339–344.
    37.L.Li, and D.Uttamchandani. Demonstration of a tunable RF MEMS bandpass filter usingsilicon foundry process. J. Electromagn. Waves Appl.2009. vol.23, no.2-3.405–413.
    38.E.Abbaspour-Sani, N.Nasirzadeh, and G.Dadashzadeh. Two novel structures for tunableMEMS capacitor with RF applications. ProgressIn Electromagnetics Research, PIER68.2007.169–183.
    39.M.S Kheir and A.M Abdin. A new tunable wideband ring filter with merged stubs andminiaturized geometry for bluetooth technology. Progress In ElectromagneticsResearch Symposium, PIER68.2008.1368–1370.
    40.J.C.Estes. Tunable RF Bandpass Pass Filter with Variable Resonator Coupling. in IEEEMTT-S Int. Microwave Symp.Dig.2008. pp.1035–1038.
    41.S.-J.Park and G.M.Rebeiz. Low-loss two-pole tunable filters with three differentpredefined Bandwidth Characteristics. IEEE Trans. MicrowaveTheory Techn.2008. vol.56, no.5.1137–1148.
    42.M.A. El-Tanani and G. M. Rebeiz. A Two-Pole Two-Zero Tunable Filter with improvedlinearity. IEEE Trans. Microwave Theory Techn.2009. vol.57, no.4.830–839.
    43.I.C.Hunter and J.D.Rhodes. Electronically Tunable Microwave Bandpass Filters. IEEETrans. Microwave Theory Techn.1982. vol. MTT-30, no.9.1354–1360.
    44.S.-J.Park and G.M.Rebeiz. Low-loss two-pole tunable filters with three differentpredefined Bandwidth Characteristics. IEEE Trans. Microwave Theory Techn.2008. vol.56, no.5.1137–1148.
    45.J.Lee and K.Sarabandi. An Analytic Design Method for Microstrip Tunable Filters.IEEE Trans. Microwave Theory Techn.2008. vol.56, no.7. pp.1699–1706.
    46.M.Makimoto and M.Sagawa. Varactor tuned bandpass filters using microstrip-line ringresonators. in IEEE MTT-S Int. Microwave Symp.Dig.1986. pp.411–414.
    47.S.R.Chandler, I.C.Hunter, and J. G. Gardiner. Active varactor tunable bandpass filter.IEEE Microwave Guided Wave Lett. Mar.1993. vol.3, no.3. pp.70-71.
    48.J.Nath, D.Ghosh, J.-P.Maria, etc. An electronically tunable microstrip bandpass filterusing thin-film barium-strontium-titanate (BST) varactors. IEEETrans. MicrowaveTheory Tech.2005. vol.53, no.9. pp.2707–2711.
    49.R.M.Kurzrok. Design of Interstage Coupling Apertures for Narrow-Band TunableCoaxial Band-Pass Filters. IEEE Trans. MicrowaveTheory Tech.1962. vol.10, no.2.143–144.
    50.C.-Y.Hsu, H.-R Chuang, and C.-Y. Chen. Compact microstrip UWB dual-band bandpassfilter with tunable rejection band. J. Electromagn.Waves Appl.2009. vol.23, no.5-6.617–626.
    51.R.M.Kurzrok. Design of Interstage Coupling Apertures for Narrow-Band TunableCoaxial Band-Pass Filters. IEEE Trans. MicrowaveTheory Tech.1962. vol.10, no.2.143–144.
    52.姚毅,宽范围调谐微波滤波器耦合结构的研究,电子科技大学硕士论文,1993。
    53.朱华彬,漆兰芬。多腔体射频可调谐滤波器的研究。华中科技大学学报(自然科学版),2003,vol.31, no.2,87-89.
    54.郑家骏,可调滤波器研究,西安电子科技大学博士论文,1998.
    55.熊莹霞,可调腔体带通滤波器的研究与设计,华东师范大学硕士论文,2005.
    56.A.R.Brown and G.M.Rebeiz. A varactor-tuned RF filter. IEEE Trans. MicrowaveTheory Tech. July2000. vol.48, No.7.1157-1160.
    57.G.Torrefrosa-Penalva, G.Lopez-Risueno and J.I.Alonso. A simple method to designwide-band electronically tunable combline filters. IEEE Trans. Microwave Theory Tech.June2002. vol.50, No.1.172-177.
    58.A.Tombak, F.T.Ayguavives, J.P.Maria, etc. Tunable RF filters using thin film bariumstrontium titanate based capacitors. in IEEE MTT-S Int. Microwave Symp.Dig.2001.Vol.3.1453-1456.
    59.T.Y.Yun and K.Chang. Piezoelectric transducer controlled tunable microwave circuits.IEEE Trans. Microwave Theory Tech.2002. vol.50, No.5.1303-1301.
    60.A.Abbaspour-Tamijani, L.Dussopt and G.M.Rebeiz. Miniature and tunable filters usingMEMS capacitors. IEEE Trans. Microwave Theory Tech. July2003. vol.51, No.7.1878-1885.
    61. Levy.R, Cohn.S.B. A History of Microwave Filter Research, Design, and Development.IEEE Trans. Microwave Theory Tech.1984. vol.32, no.9.389-394.
    62. Cohn.S.B, Levy.R. History of Microwave Passive Components with Particular Attentionto Directional Couplers. IEEE Trans. Microwave Theory Tech.1984. vol.32, no.9.406-411.
    63.李忠诚,现代晶体滤波器设计,国防工业出版社,1981.
    64. M.Makinoto, S.Yamashita,无线通信中的微波谐振器与滤波器,国防工业出版社,2002.
    65. R.J.Cameron. General Coupling Matrix Synthesis Methods for Chebyshev FilteringFunctions. IEEE Trans. Microwave Theory Tech.1999. Vol.47, no.4.433-442.
    66. S.Amari. on the Maximum Number of Finite Transmission Zeros of Coupled ResonatorFilters with a Given Topology. IEEE Microwave and Guided Wave Letters.1999. Vol.9,no.9.354–356.
    67. Rong Ye, Qing-Xin Chu. Extraction of Finite Transmission Zeros of General ChebyshevFilters. International Conference on Microwave and Millimeter Wave TechnologyProceedings.2004.272-274.
    68. R.J.Cameron. Fast Generation of Chebyshev Filter Prototypes with Symmetricallyprescribed Transmission zeros. ESA Journal.1982. Vol.6, no.1.83–95.
    69. R.J.Cameron. General Prototype Network Synthesis Methods for Microwave Filters. ESAJournal.1982. Vol.6, no.3.193–206.
    70. J.D.Rhodes, I.H.Zabalawi. Synthesis of symmetrical dual mode in-line prototypenetworks. IEEE Trans. Circuit Theory and Applications.1980. Vol.8.145–160.
    71. J.D.Rhodes. A low-pass prototype network for microwave linear phase filters. IEEETrans. Microwave Theory Tech.1970. vol.18, no.4.290-300.
    72. J.D.Rhodes. The generalized Chebyshev low pass prototype filter. Int. J. Circuit TheoryApplicat.1980. Vol.8, no.2.113-125.
    73.游彬,李英,现代通信系统中微波滤波器小型化的研究.上海大学博士学位论文,2003.
    74. A.E.Atia, A.E.Williams. New Types of Waveguide Bandpass Filters for SatelliteTransponders. COMSAT Technical Review.1971. Vol.1, no.1.21–43.
    75. A.E.Atia, A.E.Williams. Narrow-bandpass Waveguide Filters. IEEE Trans. MicrowaveTheory Tech.1972. Vol.20, no.4.258-265.
    76. A.E.Atia, A.E.Williams, R.W.Newcomb. Narrow-band Multiple-coupled CavitySynthesis. IEEE Transactions on Circuits Systems.1974. Vol.20.649-655.
    77. M.H.Chen. Singly terminated pseudo-elliptic function filter. COM-SAT Tech. Rev.1977.vol.7.527-541.
    78. H.C.Bell. Canonical asymmetric coupled-resonator filters. IEEE Trans. MicrowaveTheory Tech.1982. vol.30, no.9.1335-1340.
    79. R.J.Cameron, J.D.Rhodes. Asymmetric realizations for dual-mode bandpass filters. IEEETrans. Microwave Theory Tech.1981. vol.29, no.1.51-58.
    80. R.J.Cameron, A novel realization for microwave bandpass filters. ESA J.1979. vol.3,no.10.281-287.
    81. R.J.Cameron. Synthesis of Advanced Microwave Filters without DiagonalCross-coupling. IEEE Trans. Microwave Theory Tech.2002. Vol.50, no.12.2862-2871.
    82. R.J.Cameron. Advanced Coupling Matrix Synthesis Techniques for Microwave Filters.IEEE Trans. Microwave Theory Tech.2003. Vol.51, no.1.1-10.
    83. J.S.Hong, M.J.Lancaster. Microstrip Filters for RF/Microwave Applications. John wiley&Sons. INC.2001.
    84. George L.Matthaei. Microwave filters, impendence-matching networks, and couplingstructure. John Wiley&Sons. INC.1972.
    85. R.Levy. Direct Synthesis of Cascaded Quadruplet (CQ) Filters. IEEE Trans. MicrowaveTheory Tech.1995. Vol.43.2940–2945.
    86. N.Yildirim, M.Karaaslan. Cascaded Triplet Filter Design Using Cascade SynthesisApproach. MTT-S. Digest:13-19.1999.
    87. O.A.Sen, Y.Sen. Synthesis of Cascaded Quadruplet Filters Involving ComplexTransmission Zeros. MTT-S. Digest:11-16.2000.
    88. R.Levy. Direct Synthesis of Cascaded Quadruplet (CQ) Filters. IEEE MTT-S. Digest:497-500.1995.
    89.孙捷,李英,微带滤波器的小型化研究与仿真分析.上海大学硕士学位论文,2004.
    90. Hui-wen Yao, Kawthar A. Zaki, Ali E. Atia. Full wave modeling of conducting posts inrectangular waveguides and its applications to slot coupled combline filters. IEEE Trans.Microwave Theory Tech.1995. vol.43, no.11.2824-2830.
    91. Yu Rong, Kawthar A. Zaki. Full-wave analysis of coupling between cylindrical comblineresonators. IEEE Trans. Microwave Theory Tech.1999. vol.47, no.7.1721-1729.
    92.叶荣,褚庆昕,带传输零点滤波器的综合.西安电子科技大学硕士学位论文,2005.
    93. Y.Di, P.Gardner, P.S.Hall, etc. Multiple-Coupled Microstrip Hairpin Resonator Filter.IEEE Microwave and Wireless Components Letters.2003.532-534.
    94. J.Brian Thomas. Crass-coupling in coaxial cavity filters--a tutorial overview. IEEE Trans.Microwave Theory Tech.2003. vol.54, no.4.1368-1374.
    95. Mahmoud El Sabbagh, Kawthar Zaki, Ming Yu. Non adjacent resonators effects oncoupling and resonant frequency in combine filters. IEEE MTT-S Digest.2001. Vol.29.1313-1316.
    96.张雪梅,邸英杰,交叉耦合谐振滤波器计算机辅助调谐方法的研究.华北电力大学硕士学位论文,2004.
    97.程兴,苏涛,梁昌洪,交叉耦合微波滤波器传输零点的独立性分析.微波学报,2006,Vol.22, no.1,34-38.
    98. J.W.Bandler, R.M.Biernacki, S. H. Chen. P. A. Grobelny, and R. H. Hemmers, Spacemapping technique for electromagnetic optimization. IEEE Trans. Microwave TheoryTech.1994. vol.42, no.12.2536-2544.
    99. J.W.Bandler, R.M.Biernacki, S.H.Chen, etc. Electromagnetic optimization exploitingaggressive space mapping. IEEE Trans. Microwave Theory Tech.1995. vol.43, no.12.2874-2882.
    100. J.W.Bandler, R.M.Biernacki, and S.H.Chen. Fully automated space mappingoptimization of3D structures. IEEE MTT-S Int. Microwave Symp. Dig.1996.753-756.
    101. J.W.Bandler, R.M.Biernacki, S.H.Chen, etc. Space mapping optimization of waveguidefilters using finite element and mode-matching electromagnetic simulators. Int. J. RFMicrowave Computer-Aided Eng.1999. vol.9, no.3.54-70.
    102. J.W.Bandler, R.M.Biernacki, S.H.Chen, etc. Design optimization of interdigital filtersusing aggressive space mapping and decomposition. IEEE Trans. Microwave TheoryTech.1997. vol.45, no.5.761-769.
    103. M.H.Bakr, J.W.Bandler, and N.Georgieva. An aggressive approach to parameterextraction. IEEE Trans. Microwave Theory Tech.1999. vol.47, no.12.2428-2439.
    104. J.W.Bandler, A.S.Mohamed, M.H.Bakr, etc. EM-based optimization exploiting partialspace mapping and exact sensitivities. IEEE Trans. Microwave Theory Tech.2002.vol.50, no.12.2741-2750.
    105. M.H.Bakr, J.W.Bandler, N.K.Georgieva, etc. A hybrid aggressive space-mappingalgorithm for EM optimization. IEEE Trans. Microwave Theory Tech.1999. vol.47,no.12.2440-2449.
    106. M.H.Bakr, J.W.Bandler, K.Madsen, etc. Space mapping optimization of microwavecircuits exploiting surrogate models. IEEE Trans. Microwave Theory Tech.2000. vol.48,no.12.2297-2306.
    107. J.W.Bandler, M.A.Ismail, J.E.Rayas-Sanchez, etc. Neuromodeling of microwave circuitsexploiting space mapping technology. IEEE Trans. Microwave Theory Tech.1999.vol.47, no.12.2417-2427.
    108. J.W.Bandler, Q.S.Cheng, N.K.Nikolova, etc. Implicit space mapping optimizationexploiting preassigned parameters. IEEE Trans. Microwave Theory Tech.2004. vol.52,no.1.378-385.
    109. J.W.Bandler, S.H.Chen, S.Daijavad, etc. Efficient optimization with integrated gradientapproximations. IEEE Trans. Microwave Theory Tech.1998. vol.36, no.2.444-455.
    110. J.W.Bandler, Q.J.Zhang, J.Song, etc. FAST gradient based yield optimization ofnonlinear circuits. IEEE Trans. Microwave Theory Tech.1990. vol.38, no.11.1701-1710.
    111. M.A.Ismail, D.Smith, A.Panariello, etc. EM-based design of large-scaledielectric-resonator filters and multiplexers by space mapping. IEEE Trans. MicrowaveTheory Tech.2001. vol.52, no.1.386-392.
    112. K.-L.Wu, Y.-J.Zhao, J.Wang, etc. An effective dynamic coarse model for optimizationdesign of LTCC RF circuits with aggressive space mapping. IEEE Trans. MicrowaveTheory Tech.2004. vol.52, no.1.393-402.
    113. S.Amari, C.LeDrew and W.Menzel. Space-mapping optimization of planarcoupled-resonator microwave filters. IEEE Trans. Microwave Theory Tech.2006. vol.54,no.5.2153-2159.
    114. S.Koziel, J.W.Bandler and K.Madsen. Theoretical justification of space-mapping-basedmodeling utilizing a data base and on-demand parameter extraction. IEEE Trans.Microwave Theory Tech.2006. vol.54, no.12.4316-4322.
    115. L.Zhang, J.Xu, M.C.E. Yagoub,etc. Efficient analytical formulation and sensitivityanalysis of neuro-space mapping for nonlinear microwave device modeling. IEEE Trans.Microwave Theory Tech.2005. vol.53, no.9.2752-2767.
    116. A.Hennings, E.Semouchkina, A.Baker, etc. Design optimization and implementation ofbandpass filters with normally fed microstrip resonators loaded by high-permittivitydielectric. IEEE Trans. Microwave Theory Tech.2006. vol.54, no.5.1253-1261.
    117. A.Manchec, C.Quendo, J.-F.Favennec, etc. Synthesis of capacitive-coupled dual-behaviorresonator (CCDBR) filters. IEEE Trans. Microwave Theory Tech.2006. vol.54, no.1.2346-2355.
    118. P.Lenoir, S.Bila, F.Seyfert,etc. Synthesis and design of asymmetrical dual-band bandpassfilters based on equivalent network simplification. IEEE Trans. Microwave Theory Tech.
    2006. vol.54, no.1.3090-3097.
    119. M.Mokhtaari, J.Bornemann, K.Rambabu, etc. Coupling-matrix design of dual and triplepassband filters. IEEE Trans. Microwave Theory Tech.2006. vol.54, no.11.3940-3946.
    120. J.T.Kuo, T.H.Yeh and C.C.Yah. Design of microstrip bandpass filters with adual-passband response. IEEE Trans. Microwave Theory Tech.2005. vol.53, no.4.1331-1337.
    121. C.-F.Chen, T.-Y.Huang and R.-B.Wu. Design of dual-and triple-passband filters usingalternately cascaded multiband resonators. IEEE Trans. Microwave Theory Tech.2006.vol.54, no.9.3550-3558.
    122. C.M.Tsai, H.M.Lee and C.C.Tsai. Planar filter design with fully controllable secondpassband. IEEE Trans. Microwave Theory Tech.2005. vol.53, no.11.3429-3439.
    123. Lamperez and A.Garcia. Analytical synthesis algorithm of dual-band filters withasymmetric pass bands and generalized topology. IEEE MTT-S Int. Dig.909-912.2007.
    124. Macchiarella G, Traina D.A Formulation of the Cauchy Method Suitable for theSynthesis of Lossless Circuit Models of Microwave Filters From Lossy Measurements.IEEE Microw.Wireless Compon. Lett.2006. vol.16, no.5.243-245.
    125. L.Accatino. Computer-aided tuning of microwave filters. in IEEE MTT-S Int.MicrowaveSymp. Digest.249-252.1986.
    126. H.L.Thal. Computer aided filter alignment and diagnosis. IEEE Trans. MicrowaveTheory Tech.1978. vol.26, no.12.958-963.
    127. T.Ishizaki, H.Ikeda, T.Uwano, etc. A computer aided accurate adjustment of cellularradio RF filters. IEEE MTT-S Int. Microwave Symp. Digest.139-142.1990.
    128. A.R.Mirzai, C.F.N.Cowan, and T.M.Crawford. Intelligent alignment of waveguide filtersusing a machine learning approach. IEEE Trans. Microwave Theory Tech.1989. vol.37,no.1.166-173.
    129. J.W.Bandler and A.E.Salama. Functional approach to microwave postproduction tuning.IEEE Trans. Microwave Theory Tech.1985. vol.33, no.2.302-310.
    130. V.N.Mizerink and A.A.Shmatko. wide-band filters on ferrite resonators. Ultrawidebandand Ultrashort Impulse Singles.236-238.2006.
    131. B.R.William. A Tunable Bandpass Filter. IEEE TRANSACTIONS ON MAGNETICS.
    1966. vol.2, no.3.260-263.
    132. F.S.RICHARD, F.C.GEORGE. New type of magnetically tunable multisection bandpassfilter in ferrite-loaded evanescent waveguide. IEEE TRANSACTIONS ONMAGNETICS.1967. vol.3, no.3.397-401.
    133. U.Jaroslaw, B.Jens and A.Fritz. Ferrite tunable millimeter wave printed circuit filters.IEEE MTT-S Digest.871-874.1988.
    134. Jerzy Krupka, Adam Abramowicz, Krysztof Derzakowski. Magnetically tunable filtersfor cellular communication terminals. IEEE Trans. Microwave Theory Tech.2006. vol.54,no.6.2329-2335.
    135. J.UHER, J.BORNEMANN, F.ARNDT. Ferrite tunable metal insert filter. electronicsletters.1987. vol.23, no.15.804-806.
    136. A.Taslimi, K.Mouthaan. A loop resonator tunable filter using phase shifters. Proceedingsof Asia-Pacific Microwave Conference2010.686-689.2010.
    137. R.J.Cameron, C.M.Kudsia, and R.R.Mansour. Microwave filters for communicationsystem-fundamentals, design and applications. New York: Wiley.2007.
    138. K.wakino, H.tamura, and Y.ishikawa. dielectric resonator devices. US patent4692712.
    1987.
    139. W.D.Yan, and R.R.Mansour. tunable dielectric resonator bandpass filter with embeddedMEMS tuning elements. IEEE Trans. Microwave Theory Tech.2007. vol.55, no.6.154-160.
    140.S.B.Cohn. Determination of aperture parameters by electrolytic-tank measurements.Preceeding I.R.E.1951. vol.11.1416-1421.
    141. S.B.Cohn. The electric polarizability of apetures of arbitray shape. Proceeding I.R.E.1952. vol.9.1069-1071.
    142.李刚,微波滤波器的综合、仿真和计算机辅助调试研究,西安电子科技大学博士论文,2009。
    143. A.Sulav, Y.J.Ban, and K.Wu. Magnetically Tunable Ferrite Loaded Substrate IntegratedWaveguide Cavity Resonator.2011. vol.21, no.3.139-141.
    144.姜煜斌,基于空间映射方法设计LTCC滤波器,电子科技大学硕士论文,2008。
    145.徐迎虎,基于空间映射法的滤波器设计,杭州电子科技大学硕士论文,2011。
    146.郑光明,同轴腔对称广义切比雪夫滤波器研究,电子科技大学硕士论文,2005。
    147.肖科,双模波导滤波器设计,国防科学技术大学硕士论文,2005。
    148.徐卫丰,基于Z变换技术的滤波器综合与设计,西安电子科技大学硕士论文,2010。
    149.张忠海,官伯然.一种采用螺旋耦合环的同轴腔可调滤波器.电波科学学报.2011.vol.26, no.1.118-123.
    150.张忠海,官伯然.一种采用三角形耦合环的同轴腔可调滤波器.微波学报.2010.vol.26, no.5.60-63.
    151.张忠海,官伯然.双环耦合结构及其在多路耦合器中的应用.电波科学学报.(已录用)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700