接枝有螺旋大分子聚合物微球的制备及其手性识别能力
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
空心/多孔聚合物微球和螺旋大分子由于它们各自独特的结构、性能及潜在的应用前景而受到广泛的关注,将螺旋大分子接枝到空心/多孔交联聚合物微球上,一方面为解决螺旋聚合物的应用难题提供思路,另一方面也可实现聚合物微球的功能化,赋予聚合物微球很高的光学活性,从而拓宽聚合物微球的应用范围。结合螺旋大分子的特殊性能,尤其是光学拆分、不对称催化方面的性能,该类空心/多孔微球有望在手性分离、药物可控释放、手性催化及光学材料领域得到应用。本文设计设计合成了带有碳碳双键功能侧基的螺旋大分子,利用其作为大分子单体分别采用模板法和两步种子溶胀聚合法成功制备了接枝有螺旋大分子的空心聚合物和多孔结构的聚合物微球,考察了它们的手性识别和手性分离性能,主要工作如下:
     通过共聚反应设计合成了一系列带有C=C功能侧基的聚炔丙酰胺聚合物(OAHP),聚合产率高(≥95%),分子量适中(10000-17000),分子量分布略宽(2.63-4.79)。利用红外和核磁表征出了分子链中的C=C功能侧基。利用紫外.可见光谱(UV-vis)和圆二色光谱(CD)表征了聚合物的二级结构,结果显示,共聚物(1-co-2),共聚物(1-co-3),共聚物(4-co-3)均能形成螺旋构象,并具有很强的光学活性,共聚物的二级结构受共聚物组分的影响明显。
     由马来酸酐(MAH)和醋酸乙烯酯(VAC)分散聚合得到的聚合物微球(PMV),并以之作为模板,加入一定量的螺旋大分子单体OAHP,MAH,二乙烯基苯(DVB)为共聚单体,引发剂AIBN,升温聚合制备了核壳结构微球。用丙酮洗去PMV模板,得到接枝有螺旋大分子的空心微球(CPMD-g-OAHP)。利用红外、SEM和TEM对空心微球进行了表征,结果证明空心微球上成功得接枝上了螺旋大分子,微球的大小和壳层厚度可控。将CPMD-g-OAHP空心微球分散在THF中进行测试紫外光谱和圆二色谱(CD),结果显示微球具有很强的光学活性。考察了CPMD-g-OAHP空心微球对酒石酸、苯丙氨酸和苯乙胺的手性识别能力,结果显示微球对苯乙胺的手性识别能力明显,表现为优先吸附R型苯乙胺。微球能对外消旋苯乙胺进行有效拆分,分离液ee值达到28%。
     利用分散聚合法制备了聚苯乙烯微球PS,并以此作为种子,与溶胀剂和单体、交联剂、OAHP乳化液经二步溶胀,升温聚合制备了接枝有螺旋大分子多孔交联微球PSD-g-OAHP。利用红外、SEM和TEM对多孔微球的组成和微观结构进行了表征。
Hollow/porous polymeric micro/nanospheres and helical polymers have recently attracted considerable attention due to their unique properties. By grafting helical chain to polymeric microspheres, it can not only help to resolve the application problem of helical polymer, but also achieve the functional modification of polymeric microspheres. Combining with the special properties of helical polymers, in particular the optical resolution and asymmetric catalysis properties, such hollow/ porous microspheres is expected to find lots of applications, such as chiral separation, controlled release, chiral catalysis and chiroptical materials. In this study, we fistly synthesized optically active helical N-propargylamide copolymers (OAHPs) containing specially designed C=C groups in pendent groups. Using OAHPs as macromonomer, we successfully prepared hollow/porous microspheres grafted with optically active helical chains by template polymerization and two-step swelling polymerization, respectively. The main works were as follows:
     Firstlty, a novel class of optically active N-propargylamide copolymers bearing C=C groups in side chains were synthesized with high yield (≥95%) and moderate molecular weights (10000-17000). The C=C side groups were characterized by FTIR and H1 NMR. All the copolymers adopted stable helices under the investigated conditions. The composition of the copolymers exerted large influence on their optical activity.
     Polymeric particles based on maleic anhydride (MAH) and vinyl acetate were prepared and used as the sacrificial templates for the subsequent preparation of core/shell spheres, which were accomplished by using the system consisting of MAH, divinyl benzene and OAHP macromonomers. After extracting the core in the prepared core/shell particles, hollow microspheres grafted with optically active helical polymer chains were successfully obtained. The hollow particles were characterized with FTIR, field-emission SEM and TEM measurements. The size and the shell thickness of these hollow spheres were readily controllable. Circular dichroism (CD) spectra were recorded on the hollow spheres dispersed in THF. The intense CD effects indicated that the hollow spheres possessed high optical activity, arising from the helical polymer chains. The preferential adsorption of (R)-(+)-1-phenylethylamine to the (S)-form by the obtained hollow spheres clearly attested to the chiral recognition ability of the novel spheres.
     Disersion polymerization was used to produce polystyrene microparticles. Using polystyrene particles as seed, OAHP as macromonomers, styrene as monomers, DVB as cross-linker, porous cross-linked polymeric microspheres. grated with optically active helical chains were prepared by two step swelling polymerization. The porous microspheres composition and microstructure were characterized with FTIR, CD, SEM and TEM measurements.
引文
[1]Shi X, Shen M and Mohwald H. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials[J]. Prog. Polym. Sci.,2004,29:987-1019.
    [2]Meier W. Polymer nanocapsules[J]. Chem. Soc. Rev.2000,29:295-303.
    [3]Lv H, Lin Q, Zhang K, Yu K, Yao T, Zhang X, Zhang J, Yang B. Facile fabrication of monodisperse polymer hollow spheres[J]. Langmuir,2008,24:13736-13741.
    [4]Hu Y, Jiang X, Ding Y, Chen Q, Yang C. Core-template-free strategy for preparing hollow nanospheres[J]. Adv. Mater.,2004,16:933-937.
    [5]Caruso F. Hollow capsule processing through colloidal templating and self-assembly[J]. Chem. Eur. J.,2000,6:413-419.
    [6]Schartl W. Crosslinked spherical nanoparticles with core-shell topology [J]. Adv. Mater.,2000, 12:1899-1908.
    [7]Caruso F. Nanoengineering of particle surfaces[J]. Adv. Mater.,2001,13:11-22.
    [8]乐园,陈建锋,汪文川,空心微球型纳米结构材料的制备及应用进展[J].化工进展,2004,23:595-599.
    [9]张萍,冯年平,武培怡.聚合物空心纳米球及其在药学领域的应用[J].2006,30(8):350-353.
    [10]刘鹏,天军,刘维民,薛群基.空心聚合物纳米球研究进展[J].化学进展.2004,16(1):15-20.
    [11]Wattendorf U, Kreft O, Textor M, Sukhorukov G B, Merkle P. Stable stealth function for hollow polyelectrolyte microcapsules through a poly(ethylene glycol) grafted polyelectrolyte adlayer[J]. Biomacromolecules 2008,9:100-108.
    [12]Shchukin D G, Radtchenko I L, Sukhorukov G B. Synthesis of nanosized magnetic ferrite particles inside hollow polyelectrolyte capsules [J] J. Phys.Chem. B,2003,107 (1):86-90.
    [13]Shchukin D G, Radtchenko I L, Sukhorukov G B. Micron-scale hollow polyelectrolyte capsules with nanosized magnetic Fe3O4 inside[J]. Mater. Lett.,2003,57:1743-1747.
    [14]Brand T, Ratinac K, Castro J V, Gilbert R G. Hollow latex particles as submicrometer reactors for polymerization in confined geometries[F]. J. Polym. Sci., Part A:Polym. Chem.,2004,42: 5706-5713.
    [15]黄文霖.聚合物空心微球填充环氧轻质复合材料的制备与表征[D].浙江:浙江大学,2006
    [16]吴舜英,徐敬一.泡沫塑料成型,北京:化学工艺出版社,1999.
    [17]d'Almerda J R M. An analysis of the effect of the diameters of glass microspheres on the mechanical behavior of glass-microsphere/epoxy-matrix composites[J]. Compo. Sci. Tech., 1999,59:2087-2091.
    [18]Liang J Z, Li R K Y. Effect of filler content and surface treatment on the tensile properties of glass-bead-filled polypropylene composites [J]. Polym. Int.,2000,49:170-174.
    [19]Liang J Z, Li R K Y. Effects of glass bead content and surface treatment on viscoelasticity of filled polypropylene/elastomer hybrid composites[J]. Polym. Int.,1999,48:1068-1072
    [20]Liang J Z, Li R K Y. Mechanical properties and morphology of glass bead-filled polypropylene composites[J]. Polym. Compos.,1998,19(6):698-703.
    [21]Han S, Shi X, Zhou F. Polyelectrolyte hollow sphere lithographic patterning of surfaces: construction of 2-dimensional well-ordered metal arrays[J]. Nano Lett.,2002,2:97-100.
    [22]Shi X, Shen M, Mohwald H. Polyelectrolyte multilayer nanoreactors toward the synthesis of diverse nanostructured materials[J]. Prog. Polym. Sci.,2004,29:987-1019.
    [23]Kim S W, Lee W Y, Hyeon T. Fabrication of hollow palladium spheres and their successful application to the recyclable heterogeneous catalyst for suzuki coupling reactions [J]. J. A m. Chem. Soc.,2002,124 (26):7642-7643.
    [24]Isaacs L, Chin DN, Bowden N, Xia Y, Whitesides GM. Supermolecular materials and technologies[M]. Reinhoudt DN, Ed., Wiley, New York,1999.
    [25]Morris C A, Anderson M L, Stroud R M, Merzbacher C I, Rolison D R. Silica sol as a nanoglue: flexible synthesis of composite aerogels[J]. Science,1999,284:622-624.
    [26]Brown T. Relationship between hollow sphere pigment geometry and optical performance of finished paper coatings[C].TAPPI Proceedings, Coating Conference,1991,113-212.
    [27]Bagheri R, Pearson R. The use of microvoids to toughen polymers[J]. Polymer,1995,36: 4883-4885.
    [28]Huang H, Remsen E E, Kowalewski T, Wooley K L. Nanocages derived from shell cross-linked micelle templates[J]. J. Am. Chem. Soc.1999,121:3805-3806
    [29]Ding J F, Liu G J. Water-soluble hollow nanospheres as potential drug carriers[J]. J. Phys. Chem. B,1998,102:6107-6113.
    [30]Decher G,Hong J D. Buildup of ultrathin multilayer films by a self-assembly process.1. consecutive adsorption anionic and cationic bipolar amphiphiles on charged surfaces[J]. Makromol. Chem. Makromol. Symp.,1991,46:321-327.
    [31]Caruso F, Trau D,Mohwald H, et al. Enzyme encapsulation in Layer-by-layer engineered polymer multilayer capsules[J]. Langmuir,2000,16(4):1485-1488.
    [32]Marinakos S M, Novak J P, Brousseau L C, House A B, Edeki E M, Feldhaus J C, Feldheim D L. Gold Particles as templates for the synthesis of hollow polymer capsules. control of capsule dimensions and guest encapsulation[J]. J. Am. Chem. Soc.,1999,121:8518-8522.
    [33]Marinakos S M, Shultz D A, Feldheim D L. Gold nanoparticles as templates for the synthesis of hollow nanometer-sized conductive polymer capsules[J]. Adv. Mater.,1999,11:34-37
    [34]Emmerich O, Hugenberg N, Schmidt M, Sheiko S S, Baumann F, Deubzer B, Weis J, Ebenhoch J. Molecular boxes based on hollow organosilicon micronetworks[J]. Adv. Mater.,1999,11: 1299-1303.
    [35]Saenger W. Principles of Nucleic Acid Structure[M]. Springer-Verlag:New York,1984.
    [36]Branden C, Tooze J. Introduction to Protein Structure,2nd edition[M]. Garland Publishing: New York,1999,465-471.
    [37]Nakano T. Optically active synthetic polymers as chiral stationary phases in HPLC[J]. Journal of Chromatography A,2001,906:205-225.
    [38]Maeda K, Okamoto Y. Synthesis and Conformational Characteristics of Poly(phenyl isocyanate)s Bearing an Optically Active Ester Group[J]. Macromolecules,1999,32(4): 974-980.
    [39]Nakano T, Okamoto Y. Synthetic helical polymers:conformation and function[J]. Chem. Rev., 2001,101(12):4013-4038.
    [40]Shinohara K I, Yasuda S, Kato G, Fujita M, Shigekawa H. Direct measurement of the chiral quaternary structure in a π-Conjugated polymer at room temperature[J]. J. Am. Chem. Soc.,200, 123:3619-3620.
    [41]Tang B Z. Optically active polyacetylenes:helical chirality and biomimetic hierarchical structures[J]. Polymer News,2001,26:262-272.
    [42]Cheuk K K L, Li B S, Tang B Z. Amphiphilic polymers comprising of conjugated polyacetylene backbone and naturally occurring pendants:synthesis, chain Helicity, self-assembling structure, and biological activity[J]. Curr. Trends. Polym. Sci.,2002,7:41-55.
    [43]Deng J, Luo X, Zhao W, Yang W. A novel type of optically active helical polymers:synthesis and characterization of Poly(N-propargylureas)[J]. J. Polym. Sci., Part A:Polym. Chem.46: 4112-4121.
    [44]Gao G Z, Sanda F, Masuda T. Synthesis and properties of amino acid-based polyacetylenes[J]. Macromolecules,2003,36:3932-3937.
    [45]Morino K, Maeda K, Yashima E. Helix-sense inversion of poly(phenylacetylene) derivatives bearing an optically active substituent induced by external chiral and achiral stimuli[J]. Macromolecules,2003,36:1480-1486.
    [46]46. Tabei J, Nomura R, Sanda F, Masuda T. Induction of one-handed helix sense in achiral Poly(N-propargylamides)[J]. Macromolecules,2003,36:8603-8608.
    [47]Onouchi H, Miyagawa T, Furuko A, Maeda K, Yashima E. Enantioselective esterification of prochiral phosphonate pendants of a polyphenylacetylene assisted by macromolecular helicity: storage of a dynamic macromolecular helicity memory[J]. J. Am. Chem. Soc.,2005,127: 2960-2965.
    [48]Lam J W Y, Dong Y P, Cheuk K K L, Law C C W, Lai L M, Tang B Z. Helical conjugated polymers:synthesis, stability, and chiroptical properties of Poly(alkyl phenylpropiolate)s bearing stereogenic pendants[J]. Macromolecules,2004,37:6695-6704.
    [49]Yashima E, Maeda K, Okamoto Y. Memory of macromolecular helicity assisted by interaction with achiral small molecules[J]. Nature,1999,399:449-451.
    [50]50.Lam J W Y, Dong Y P, Cheuk K K L, Tang B Z. Helical disubstituted polyacetylenes:synthesis and chiroptical properties of Poly(phenylpropiolate)s[J]. Macromolecules,2003,36:7927-7938.
    [51]Cheuk K K L, Lam J W Y, Lai L M, Dong Y, Tang B Z. Syntheses, hydrogen-bonding interactions, tunable chain helicities, and cooperative supramolecular associations and dissociations of poly(phenylacetylene)s bearing L-valine Pendants:toward the development of proteomimetic polyenes[J]. Macromolecules,2003,36:9752-9762.
    [52]Cheuk K K L, Lam J W Y, Chen J, Lai L M, Tang B Z. Amino acid-containing polyacetylenes: synthesis, hydrogen bonding, chirality transcription, and chain helicity of amphiphilic poly(phenylacetylene)s carrying L-leucine pendants[J]. Macromolecules,2003,36:5947-5959.
    [53]Li B S, Cheuk K K L, Yang D, Lam J W Y, Wan L J, Bai C, Tang B Z. Self-assembling of an amphiphilic polyacetylene carrying L-leucine pendants:a homopolymer case[J].Macromolecules,2003,36:5447-5450.
    [54]Li B S, Cheuk K K L, Ling L, Chen J, Xiao X, Bai C, Tang B Z. Synthesis and hierarchical structures of amphiphilic polyphenylacetylenes carrying L-valine pendants[J]. Macromolecules, 2003,36:77-85.
    [55]Deng J, Tabei J, Shiotsuki M, Sanda F, Masuda T. Dynamically stable helices of poly (N-propargylamides) with bulky aliphatic groups[J]. Macromolecules,2004,37(14):5149-5154.
    [56]Deng J, Tabei J, Shiotsuki M, Sanda F, Masuda T. Conformational transition between random coil and helix of poly(N-propargylamides)[J]. Macromolecules,2004,37:1891-1896.
    [57]Tabei J, Nomura R, Masuda T. Synthesis and structure of Poly(N-propargylbenzamides) bearing chiral ester groups[J]. Macromolecules,2003,36:573-577.
    [58]Zhao H C, Sanda F, Masuda T. Tuning of fluorescence by controlling the secondary structure of amino acid-based poly(N-propargylamides) having pendant pyrene groups[J]. Macromolecules, 2004,37:8893-8896.
    [59]Sanda F, Fujii T, Tabei J, Shiotsuki M, Masuda T. Synthesis of hydroxy group-containing poly(N-Propargylamides):examination of the secondary structure and chiral-recognition ability of the polymers[J]. Macromol. Chem. Phys.,2008,209:112-118.
    [60]Aoki T, Shinohara K, Kaneko T, Oikawa E. Enantioselective permeation of various racemates through an optically active Poly{1-[dimethyl(10-pinanyl)silyl]-1-propyne} membrane[J]. Macromolecules,1996,29:4192-4198.
    [61]Yashima E, Huang S, Okamoto Y. An Optically Active Stereoregular Polyphenylacetylene Derivative as a Novel Chiral Stationary Phase for HPLC[J]. Chem. Commun.,1994:1811-1812.
    [62]Nonokawa R, Oobo M, Yashima E. Helicity induction on a poly(phenylacetylene) derivative bearing aza-15-crown-5 ether Pendants in organic solvents and water [J].Macromolecules,2003, 36:6599-6606.
    [63]Gao G Z, Sanda F, Masuda T. Synthesis and properties of amino acid-based polyacetylenes[J]. Macromolecules,2003,36:3932-3937.
    [64]Gao G Z, Sanda F, Masuda T. Copolymerization of chiral amino acid-based acetylenes and helical conformation of the copolymers[J]. Macromolecules,2003,36:3938-3943.
    [65]Li B S, Chen J, Zhu C F, Leung K K L, Wan L, Bai C, Tang B Z. Formation of porous films and vesicular fibers via self-organization of an amphiphilic chiral oligomer[J]. Langmuir,2004,20: 2515-2518.
    [66]Sato I, Kadowaki K, Urabe H, Jung J H, Ono Y, Shinkai S, Soai K. Highly enantioselective synthesis of organic compound using right-and left-handed helical silica[J].Tetrahedron letters, 2003,44:721-724.
    [67]Yashima E, Maeda Y, Okamoto Y. Synthesis of poly[N-(4-ethynylbenzyl)ephedrine] and its use as a polymeric catalyst for enantioselective addition of dialkylzincs to benzaldehyde[J]. Polym. J.,1999,31:1033-1036.
    [68]Deng J, Li L, Wang J, Feng G, Yang W. Stability of poly(N-propargylamide)s under ultraviolet irradiation[J]. J. Appl. Polym. Sci.,2008,107:1924-1931.
    [69]Unsal E, CamLi S T, Senel S, et al. Chromatographic performance of monodisperse-macroporous particles produced by modified seeded polymerization[J]. Applied Polymer Science,2004,92 (1):607-618.
    [70]Huang F C, Ke C H, Hao C Y. Preparation and application of partially porous poly (styrene-divinylbenzene) particles for lipase immobilization[J]. App lied Polymer Science, 2001,80(1):39-46.
    [71]高瑞昶,李凭力,任延,等Preparation ofmonodispered polyacrylamide microspheric gel[J].化工学报,2000,51(4):527-530.
    [72]Ugelstad J. Preparation and app lication ofmonodisperse polymer particles[J]. J. Polym. Sci., Part A:Polym. Chem.,1985,72 (2):225-236.
    [73]Ugelstad J, Mork P C, Schmid R, Ellingsen T, Berge A. Preparation and biochemical and biomedical applications of new monosized polymer particles[J]. Polym. Int.1993,30:157-168.
    [74]Cheng C M, Vanderhoff J W, El-Aasser M S. Monodisperse porous polymer particles: Formation of the porous structure[J]. J. Polym. Sci., Part A:Polym. Chem.,1992,30:245-256.
    [75]Tuncel A, Tuncel M, Salih B. Electron microscopic observation of uniform macroporous particles. I. effect of seed latex type and diluents[J]. J. Appl. Polym. Sci.,1999,71:2271-2290.
    [76]李璐,文秀芳,皮丕辉,程江,杨卓如.种子溶胀聚合制备苯乙烯-二乙烯苯多孔交联微球[J].精细化工.2006,23(6):528-531.
    [77]Unsal E, CamLi S T, Senel S, Tuncel A. Chromatographic performance of monodisperse-macroporous particles produced by "modified seeded polymerization." Ⅰ:Effect of monomer/seed latex ratio[J].2004,92:607-618.
    [78]Tuncel A. Electron microscopic observation of uniform macroporous particles. Ⅱ. Effect of DVB concentration[J].1999,71:2291-2302.
    [79]Gong B L, Li L, Zhu J X, Qiang K J, Ren L. Synthesis of monodisperse poly(chloromethyl-styrene-co-divinylbenzene) beads and their application in separation of biopolymers. J. Sep. Sci.,2005,28:2546-2550.
    [80]Nam J B, Ryu J H, Kim J W, Chang I S, Suh K D. Stabilization of resveratrol immobilized in monodisperse cyano-functionalized porous polymeric microspheres[J]. Polymer,2005,46: 8956-8963.
    [81]Cho S H, Ryu J H, Park J G, Suh K D. Surface modification of monodisperse hydroxyl functionalized polymeric microspheres using ceric ammonium nitrate[J]. Eur. Polym. J.,2005, 41:2209-2215.
    [82]刘岚,卢保森,郑军军,邓芹英.种子溶胀聚合法制备新型分子烙印聚合物[J].2004,43(3):45-48.
    [83]Fogassy E, Nogradi M, Kozma D, Egri G, Palovics E, Kiss V. Optical resolution methods[J]. Org. Biomol. Chem.,2006,4:3011-3130.
    [84]Nakano T. Optically active synthetic polymers as chiral stationary phases in HPLC[J]. J. Chromatogr., A.2001,906:205-225.
    [85]Xing C, Yang W. A Novel, Facile method for the preparation of uniform, reactive maleic anhydride/vinyl acetate copolymer micro-and nanospheres[J]. Macromol. Rapid Commun., 2004,25:1568-1574.
    [86]Xing C, Yang W. Stabilizer-free dispersion copolymerization of maleic anhydride and vinyl acetate. I. Effects of principal factors on microspheres[J]. J. Polym. Sci. Part A:Polym. Chem., 2005,43:3760-3770.
    [87]Yan Q, Bai Y, Meng Z, Yang W. Precipitation Polymerization in Acetic Acid:Synthesis of Monodisperse Cross-Linked Poly(divinylbenzene) Microspheres [J]. J. Phys. Chem. B,2008, 112:6914-6922.
    [88]Frank R S, Downey J S, Yu K, Stover H D H. Poly(divinylbenzene-alt-maleic anhydride) microgels:intermediates to microspheres and macrogels in cross-Linking Copolymerization[J]. Macromolecules,2002,35:2728-2735.
    [89]Li W, Stover H D H. Monodisperse cross-linked core-shell polymer microspheres by precipitation polymerization[J]. Macromolecules,2000,33:4354-4360.
    [90]Tabei J, Nomura R, Masuda T. Conformational study of poly(N-propargylamides) having bulky pendant groups[J]. Macromolecules,2002,35:5405-5409.
    [91]Tabei J, Nomura R, Sanda F, Masuda T. Design of helical poly(N-propargylamides) that switch the helix sense with thermal stimuli[J]. Macromolecules,2004,37:1175-1179.
    [92]William J, Edwin T. Polymers. Ⅲ. Synthesis of optically active stereoregular polyolefins[J]. J. Org. Chem.,1960,25(10):1800-1804.
    [93]Tabata M, Sone T, Sadahiro Y. Precise synthesis of monosubstituted polyacetylenes using Rh complex catalysts control of solid structure and π-conjugation length[J]. Macromol. Chem. Phys.,1999,200(2):265-282.
    [94]Tabei J, Nomura R, Sanda F, Masuda T. Induction of one-handed helix sense in achiral poly(N-propargylamides)[J].Macromolecules,2003,36:8603-8608.
    [95]Nomura R, Nishiura S, Tabei J, Sanda F, Masuda T. Stereoregular poly(N-propargylcarbamates) having helical conformation stabilized'by the intramolecular hydrogen bonds [J]. Macromolecules,2003,36:5076-5080.
    [96]Nomura R, Tabei J, Nishiura S, Masuda T. A helix in helices:a helical conjugated polymer that has helically arranged hydrogen-bond strands[J]. Macromolecules,2003,36:561-564.
    [97]Deng J, Tabei J, Shiotsuki M, Sanda F, Masuda T. Effects of steric repulsion on helical conformation of poly(N-propargylamides) with phenyl groups[J]. Macromolecules,2004, 37(19):7156-7162.
    [98]Deng J, Tabei J, Shiotsuki M, Sanda F, Masuda T. Synthesis and characterization of poly(N-propargylsulfamides)[J]. Macromolecules,2004,37(15):5538-5543.
    [99]Ravve A, in Principle of Polymer Chemistry, Plenum Press[M]:New York,1995, p 64.
    [100]于涌.高交联反应性空心聚合物微球的制备及其表面吸附纳米银粒子的应用[D].2007.
    [101]Zhang, Z, Deng J, Zhao W, Wang J, and Yang W. Synthesis of optically active poly(N-propargylsulfamides) with helical conformation[J]. J. Polym. Sci., Part A:Polym. Chem.,2007,45:500-508.
    [102]Unsal E, CamLi S T, Senel S, et al. Chromatographic performance of monodisperse2macroporous particles produced by modified seeded polymerization[J]. App lied Polymer Science,2004,92 (1):607-618.
    [103]Huang F C, Ke C H, Hao C Y. Preparation and app lication of partially porous poly (styrene-divinylbenzene) particles for lipase immobilization[J]. App lied Polymer Science,2001, 80 (1):39-46.
    [104]Cheng C M, Aanderhoff J W V, El-Aasser M S. Monodisperse porous polymer particles: formation of the porous structure[J]. J. Polym. Sci., Part A:Polym Chem.,1992,30(2):245-256.
    [105]Galia A, Svec F, Frechet J M J. Monodisperse polymer beads as packing material or high-performance liquid chromatography:effect of divinylbenzene content on the porous and chromatographic properties of poly (styrene-co-divinylbenzene) beads prepared in presence of linear polystyrene as a porogen[J]. J. Polym. Sci., Part A:Polym. Chem.,1994,32(13): 2169-2175.
    [106]Deng J, Chen B, Luo X, and Yang W. Synthesis of Nano-Latex Particles of Optically Active Helical Substituted Polyacetylenes via Catalytic Microemulsion Polymerization in Aqueous Systems[J]. Macromolecules,2009,42 (4):933-938.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700