基于取代炔螺旋聚合物核/壳纳米粒子的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先合成了五种带有不同芳香类取代基的炔丙酰胺单体[HC≡CCH2NHCOR,R for M1:C6H4CH3;M2:C6H4CH2CH3;M3:C6H4(CH2)2CH3;M4:C6H4(CH2)3CH3;M5:C6H4C(CH3)3],这些单体在Rh催化剂[(nbd)Rh+B-(C6H5)4]的催化作用下进行配位聚合,得到了分子量适中的聚合物,这些聚合物的产率能达到90%-95%,并且顺式含量均大于95%。Poly(1)-poly(3)的在350nm处有UV-vis吸收峰,表明这三种聚合物可能形成了螺旋结构,但需要得到进一步实验证明。而poly(4)and poly(5)在300nm-500nm这个范围内没有UV-vis吸收峰,表明这两种聚合物在测试条件下没有形成螺旋结构。由于手性单体M6的均聚物在一定条件下可以形成稳定的螺旋结构,因此利用单体M6与M2共聚,所得共聚物能表现出很强的CD信号,并且随着单体组分的变化,CD信号有明显的变化,这表明相邻侧基之间的空间位阻以及协同效应对螺旋结构的形成有一定的影响。
     另外,在Rh催化剂[(nbd)Rh+B-(C6H5)4]的催化作用下,一种手性炔丙酰胺类单体在五种不同极性的溶剂(甲苯、三氯甲烷、四氢呋喃、二氯甲烷以及N,N-二甲基甲酰胺)中聚合,均可得到产率较高的聚合物。在这五种溶剂中对这些聚合物进行圆二色谱(CD)测试,发现聚合物分别在这五种溶剂中都可以形成稳定的螺旋结构,并且能表现出光学活性,即使在强极性溶剂DMF中都可以得到稳定的螺旋结构。这五种聚合物在同一溶剂中其CD和UV-vis谱图吸收峰的强度强度随分子量增大而增强;同一种聚合物在不同溶剂中的CD和UV-vis谱图吸收峰的强度变化规律与溶剂极性有关,即吸收峰的强度随溶剂极性的增大而减小。
     然后,本文还合成了一种新型的具有光学活性的核/壳纳米粒子,这种核/壳纳米粒子的核层是具有光学活性的取代乙炔螺旋聚合物,壳层为乙烯基聚合物。在同一体系中通过配位聚合及自由基聚合得到这种核/壳纳米粒子,且核层与壳层在多官能团单体的作用下交联,得到核/壳以化学键交联的核壳纳米粒子。这一课题不仅使配位聚合和自由基聚合在同一体系中发生,同时还使一种材料具备了光学活性与纳米这两种特性。
Five achiral N-propargylamide monomers with various phenyl-based substitutents, [HC=CCH2NHCOR, R for M1:C6H4CH3; M2:C6H4CH2CH3; M3:C6H4(CH2)2CH3; M4: C6H4(CH2)3CH3; M5:C6H4C(CH3)3], were synthesized and polymerized with a rhodium catalyst, (nbd)Rh+B-(C6H5)4 (nbd= 2,5-norbornadiene). The corresponding five homopolymers were obtained in high yields of 90-95%and with moderate molecular weights (Mn≥10000). All the polymers possessed high cis contents (≥95%). Poly(1)-poly(3) exhibited UV-vis absorption peaks at approx.350 nm, which indicates that the three polymers formed helical conformations, while no UV-vis absorption peaks could be observed in poly(4) and poly(5) in the wavelength range of 320-500 nm, demonstrating that these two polymers could not adopt helical structures under the examined conditions. To confirm the helical structures formed in poly(1)-poly(3), a chiral monomer, M6, was utilized to copolymerize with M2, which was used as the representative for M1-M3. M6 was utilized since its polymer could form stable helices under suited conditions. The resulting copolymers exhibited remarkable CD effects, however, the maximum wavelength in the copolymers varied remarkably, mainly depending on the composition of the copolymers. It is concluded that in the formation of ordered helical conformations, the substitutents of varied bulk led to different steric repulsion and varied synergic effects among the neighboring pendent groups.
     In order to explore the effects of solvents on the polymerization of propargylamide, polymerization of M7 was carried out with Rh catalyst in various solvents with different polarity, including toluene (C7H8), chloroform (CHCl3), tetrahydrofuran (THF), methylene dichloride (CH2Cl2), and dimethylformamide (DMF). The obtaining polymers can reach high yields. According to the CD and UV-vis spectroscopy, the polymers can adopt helical conformation and present optical activity in these five solvents, even in DMF with high polarity. With an increase in the molecular weight of polymers, the CD signals and UV-vis absorptions of the five polymers in the same solvents increased. As the polarity of solvents increased, the the CD signals and UV-vis absorptions of one polymer in the five solvents have a decrease.
     A novel methodology is reported about preparing a new class of core/shell nanoparticles. The nanoparticles consist of a unique core (composed of an optically active helical-substituted polyacetylene) and a shell (composed of a vinyl polymer) and thus exhibit optical activities. Such nanoparticles were synthesized by combining aqueous catalytic microemulsion polymerization and free radical polymerization in one specific system. The shell and core could be further cross-linked for improving the properties of particles by using multifunctionalmolecule. The investigations are of high importance not only in polymer chemistry due to the combination of catalytic polymerization and free radical polymerization in one system but also in materials due to the integration of "chirality" and "nano" concepts in one single material.
引文
[1]Branden C, Tooze J. Introduction to Protein Structure,2nd edition[M]. Garland Publishing:New York,1999,465-471
    [2]Tang H Z, Fujiki M, Sato T. Thermodriven Conformational Transition of Optically Active Poly[2,7-{9,9-bis[(S)-2-methyloctyl]}fluorene] in Solution[J]. Macromolecules 2002,35: 6439-6443
    [3]Maeda K, Okamoto Y. Synthesis and Conformational Characteristics of Poly(phenyl isocyanate)s Bearing an Optically Active Ester Group[J]. Macromolecules 1999,32: 974-980
    [4]Corley L S,Vogl. Optically Active Polychloral[J]. Polym Bull.1980,3:211
    [5]Okamoto Y, Suzuki K.Optically Active Poly (triphenylmethyl methacrylate) with one-handed helical conformation[J]. J.Am.Chen.Soc.,1979,101:4763
    [6]Hanes C S. The Action of Amylases in Relation to the Structure of Starch and Its Metabolism in the Plant[J]. New Phytol,1937,36:189-236
    [7]Morino K., Maeda K., Yashima E. Helix-Sense Inversion of Poly(phenylacetylene) Derivatives Bearing an Optically Active Substituent Induced by External Chiral and Achiral Stimuli[J]. Macromolecules,2003,36:1480-1486
    [8]Pauling L., Corey R.B., Branson H.R. The Stucture of Proteins:Two Hydrogen-Bonded Helical Configurations of the Polypeptide Chain[J]. Proc. Natl. Acad. Sci. USA,1951,37: 205-211
    [9]Natta G, Pino P, Corradini P, Danusso F, Mantica E, Nazzanti G, Moraglio G. Crystalline High Polymers of α-Olefins[J]. J. Am. Chem. Soc.1955,77:1708-1781
    [10]Pino P, Lorenzi G P. Optically Active Vinyl Polymers Ⅱ The Optical Activity Of Isotactic And Block Polymers Of Optically Active α-Olefins in Dilute Hydrocarbon Solution[J]. J. Am. Chem. Soc.1960,82:4745-4749
    [11]Nolte R J M, van Beijnen A J M, Drenth W. Chirality in Polyisocyanides [J].J. Am. Chem. Soc.1974,96:5932-5937
    [12]Goodman M, Chen S C. Optically Active Polyisocyanates[J]. Macromolecules 1970,3: 398-402
    [13]Goodman M., Chen S C. Optically Active Polyisocyanates Ⅱ [J]. Macromolecules 1971,4: 625-629
    [14]D Green M M, Andreola C, Munoz B, Reidy M P, Zero K. Macromolecular stereochemistry:a cooperative deuterium isotope effect leading to a large optical rotation [J]. J. Am. Chem. Soc.1988,110:4063-4068
    [15]Ciardelli F, Lanzillo S, Pieroni O. Optically Active Polymers of 1-Alkynes [J]. Macromolecules 1974,7:174-179
    [16]Moore J S, Gorman C B, Grubbs R H. Soluble, chiral polyacetylenes:syntheses and investigation of their solution conformation[J]. J. Am. Chem. Soc.1991,113,1704-1709
    [17]Yashima E, Huang S, Matsushima T, Okamoto Y. Synthesis and Conformational Study of Optically Active Poly(phenylacetylene) Derivatives Bearing a Bulky Substituent[J]. Macromolecules 1995,28:4184-4190
    [18]Yashima E, Matsushima T, Okamoto Y. Poly((4-carboxyphenyl)acetylene) as a Probe for Chirality Assignment of Amines by Circular Dichroism[J]. J. Am. Chem. Soc.1995,117: 11596-11561
    [19]Simionescu C I, Percec V. Progress in polyacetylene chemistry [J]. Prog. Polym. Sci.1982, 8:133-139
    [20]Ute K, Hirose K, Kashimoto H, Hatada K, Vogl O. Helix-sense reversal of isotactic chloral oligomers in solution[J]. J. Am.Chem. Soc.1991,113:6305-6311
    [21]Deming T J, Nivak B M. Mechanistic studies on the nickel-catalyzed polymerization of isocyanides[J]. J. Am.Chem.Soc.1993,115:9101-9111
    [22]Frey H, Mo¨ller M, Matyjaszewski K. Chiral Poly(dipentylsilylene) Copolymers[J]. Macromolecules.1994,27:1814-1818
    [23]Fujiki M. Ideal Exciton Spectra in Single-and Double-Screw-Sense Helical Polysilanes[J]. J. Am. Chem. Soc.1994,116:6017-6023
    [24]Lehn J M, Rigauit A, Siegel J, Harrowfield J, Chevrier B, Moras D. Spontaneous Assembly of Double-Stranded Helicates from Oligobipyridine Ligands and Copper() Cations:Structure of an Inorganic Double Helix[J]. Proc.Natl,Acad.Sci.,1987,84: 2565-2569
    [25]Fujiki M. Optically Active Polysilane Homopolymer:Spectroscopic Evidence of Double-Screw-Sense Helical Segmentation and Reconstruction of a Single-Screw-Sense Helix by the "Cut-and-Paste" Technique[J]. J. Am. Chem. Soc.1994,116:11976-11981
    [26]洪哲,欧英富,张宏莉.旋光聚合物的合成进展[J].丹东纺专学报,2001.8(1):4-7
    [27]Kajitani T, Lin H, Nagai K, Okoshi K, Onouchi H, Yashima E. Helical Polyisocyanides with Fan-Shaped Pendants. Macromolecules,2009,42:560-567
    [28]Maeda T, Furusho Y, Sakurai S, Kumaki J, Okoshi K, Yashima E. Double-Stranded Helical Polymers Consisting of Complementary Homopolymers. J Am Chem Soc,2008,130: 7938-7945
    [29]Yashima E, Maeda K, Furusho Y. Single-and Double-Stranded Helical Polymers: Synthesis, Structures, and Functions. Acc Chem Res,2008,41:1166-1180
    [30]Kayo Terada, Toshio Masuda, Fumio Sanda. Synthesis and Secondary Structure of Polyacetylenes Carrying Diketopiperazine Moieties. The First Example of Helical Polymers Stabilized by s-cis-Amide-Based Hydrogen Bonding.2009,42:913-920
    [31]Nomura R, Tabei J, Masuda T. Biomimetic Stabilization of Helical Structure in a Synthetic Polymer by Means of Intramolecular Hydrogen Bonds[J]. J.Am.Chem.Soc,2001,123: 8430-8431
    [32]Ute K, Fukunnishi Y, Jha SK, Cheon K S, Munoz B, Hatada K, Green M M. Dynamic NMR Determination of the Barrier for Interconversion of the Left-and Right-Handed Helical Conformation in a Polyisocyanate[J]. Macromolecules,1999,32:1304-1307
    [33]Hoshikawa N, Hotta Y, Okamoto Y. Stereospecific Radical Polymerization of N-Triphenylmethacrylamides Leading to Highly Isotactic Helical Polymers[J]. J.Am.Chem.Soc,2003,125:12380-12381
    [34]SHINOHARA K I, YASUDA S, KATO G. Simultaneous imaging of the structure and fluorescence of a supramolecular nanostructure formed by the coupling of π-conjugated polymer chains in the intermolecular interaction[J]. J. Am. Chem. Soc.2001,123: 3619-3620
    [35]TABEI J, NOMURA R, MASUDA T. Synthesis and Structure of Poly(N-propargylbenzamides) Bearing Chiral Ester Groups [J]. Macromolecules,2003,36: 573-577
    [36]YASHIMA E, HUANG S L, MATSUSHIMA T. Induction of a Single-Handed Helical Conformation through Radical Polymerization of Optically Active Phenyl-2-pyridyl-o-tolylmethyl Methacrylate[J]. Macromolecules,1995,28:4184-4193
    [37]Wang Zhang Yuan, Hui Zhao, Xiao Yuan Shen, Faisal Mahtab, Jacky W. Y. Lam, Jing Zhi Sun and Ben Zhong Tang. Luminogenic Polyacetylenes and Conjugated Polyelectrolytes:Synthesis, Hybridization with Carbon Nanotubes, Aggregation-Induced Emission, Superamplification in Emission Quenching by Explosives, and Fluorescent Assay for Protein Quantitation. Macromolecules,2009,42:9400-941
    [38]Jianbing Shi, Cathy J W Jim, Faisal Mahtab, Jianzhao Liu, Jacky W Y Lam, Herman H Y Sung, Ian D Williams, Yuping Dong and Ben Zhong Tang. Ferrocene-Functionalized Hyperbranched Polyphenylenes:Synthesis, Redox Activity, Light Refraction, Transition-Metal Complexation, and Precursors to Magnetic Ceramics. Macromolecules, 2010, 43:680-690
    [39]Jianzhao Liu, Jacky W. Y. Lam and Ben Zhong Tang. Acetylenic Polymers:Syntheses, Structures, and Functions. Chem. Rev.,2009,109:5799-5867
    [40]张志刚.炔丙磺酰胺螺旋聚合物的制备与应用研究[D].北京:北京化工大学材料科学与工程学院,2008
    [41]赵伟国.炔丙酰胺/炔丙脲类螺旋大分子的设计合成及其二级结构表征[D].北京:北京化工大学材料科学与工程学院,2007
    [42]王剑敏.含肉桂酰胺聚(N-炔丙酰胺)的制备及聚(N-炔丙酰胺)紫外光降解性能的研究[D].北京:北京化工大学材料科学与工程学院,2007
    [43]楼思斌.水溶性炔丙酰胺聚合物的设计、合成与表征[D].北京:北京化工大学材料科学与工程学院,2009
    [44]刘金宝.光学活性(水)凝胶的合成及其在手性分离中的应用[D].北京:北京化工大学材料科学与工程学院,2009
    [45]张添竹.基于取代炔螺旋聚合物分子复合膜的设计与制备[D].北京:北京化工大学材料科学与工程学院,2009
    [46]邓建平,赵伟国,杨万泰.螺旋聚(N-炔丙基酰胺)的合成及侧基对螺旋结构稳定性影响[J].高分子学报,2007,(6):531-535
    [47]K Zhou, L Y Tong, J P Deng, W T Yang. Hollow polymeric microspheres grafted with optically active helical polymer chains:Preparation and their chiral recognition ability.J. Mater. Chem.2010,20,781-789
    [48]Deng J P, Chen B, Zhang Z G, et al. Helical and random coil conformations of N-propargylamide polymer and copolymers[J]. Polym. Int.,2007,56:1247-1253
    [49]Deng J P, Junichi T, Masashi S, Fumio S, Toshio M. Conformational Transition between Random Coil and Helix of Poly(N-propargylamides)[J]. Macromolecules,2004,37: 1891-1896
    [50]Deng J.P., Junichi T., Masashi S., Fumio S., Toshio M. Synthesis and Characterization of Poly(N-propargylsulfamides)[J]. Macromolecules,2004,37:5538-5543
    [51]Deng J.P., Junichi T., Masashi S., Fumio S., Toshio M. Variation of Helical Pitches Driven by the Composition of N-Propargylamide Copolymers[J]. Macromolecules,2004,37: 9715-9721
    [52]Zhang Z.G, Deng J.P., Zhao W.G, Wang J.M., Yang W.T. Synthesis of Optically Active Poly(N-propargylsulfamides) with Helical Conformation[J]. Journal of Polymer Science Part A:Polymer Chemistry,2007,45:500-508
    [53]Deng J.P., Zhao W.G, Yang W.T. Synthesis of Novel Mono-Substituted Polyacetylenes Bearing Functional Urea Groups in Side Chains[J]. Reactfunctpolym.,2007,67:828-835
    [54]Deng J P, Luo X F, Zhao W G,et al. A novel type of optically active helical polymers: Synthesis and characterization of poly(N-propargylureas)[J]. J. Polym. Sci. Part A:Polym. Chem.,2008,46:4112-4121
    [55]Bo Chen, Jianping Deng, Xiaoqing Liu and Wantai Yang. Novel Category of Optically Active Core/Shell Nanoparticles:The Core Consisting of a Helical-Substituted Polyacetylene and the Shell Consisting of a Vinyl Polymer[J]. Macromolecules,2010,43: 3177-3182
    [56]Jianping Deng, Bo Chen, Xiaofeng Luo, Wantai Yang. Synthesis of Nano-Latex Particles of Optically Active Helical Substituted Polyacetylenes via Catalytic Microemulsion Polymerization in Aqueous Systems[J]. Macromolecules.2009,42, 933-938
    [57]Per B. Zetterlund, Yasuyuki Kagawa, Masayoshi Okubo. Controlled/Living Radical Polymerization in Dispersed Systems[J]. Chem. Rev.2008,108:3747-3794
    [58]Hua Zou, Shishan Wu, Jian Shen. Polymer/Silica Nanocomposites:Preparation, Characterization, Properties, and Applications[J]. Chem. Rev.2008,108:3893-3957
    [59]Marie Pierre Krafft, Jean G Riess. Chemistry, Physical Chemistry, and Uses of Molecular Fluorocarbon-Hydrocarbon Diblocks, Triblocks, and Related Compounds Unique " Apolar" Components for Self-Assembled Colloid and Interface Engimeering[J]. Chem. Rev.2009,109:1714-1792
    [60]Peter Wehrmann, Martin Zuideveld, Ralf Thomann, and Stefan Mecking. Copolymerization of Ethylene with 1-Butene and Norbornene to Higher Molecular Weight Copolymers in Aqueous Emulsion. Macromolecules,2006,3918:5995-6002
    [61]Hans-Jurgen P. Adler, Andrij Pich, Axel Henke, Carsten Puschke, Stanislav Voronov. New Core-Shell Dispersions with Reactive Groups[J]. Polymer Colloids,2001,19:276-292
    [62]Zhuo Ao, Zhi Yang, Jianfang Wang, Guangzhao Zhang, To Ngai. Emulsion-Templated Liquid Core-Polymer Shell Microcapsule Formation[J]. Langmuir,2009,25:2572-2574
    [63]Andrea R, Szkurhan, Michael K. Georges. An Overview of the Emulsion Stable Free Radical Nanoprecipitation Polymerization Process[J]. Controlled/Living Radical Polymerization.2006,22:312-325
    [64]Harkins W D. A general theory of the mechanism of emulsion polymerization[J]. J Amer Chem Sco.1947.69:1428-1444
    [65]Williams D J. Morphology of the monomer polymer particle in styrene emulsion polymerization[J]. J Polym Sci(A) 1970:2617
    [66]Dimonie V, El-Aasser M S, Klein A. Core-shell emulsion copolymerization of styrene and acrylonitrile on polystyrene seed particles [J]. J Polym Sci. Polym Chem Ed.1984,22: 2197-2215
    [67]Stutman D R, Klein A, El-Aasser M S. Mechanism of core-shell emulsion polymerization[J]. Ind Eng Chem Prod Res Dev.1985,24:404-409
    [68]Min T I, Klein A, El-Aasse r M S. Process Parameters and effect on grafting of PBA/PSt[J]. J Polym Sci.1983,21:845-846
    [69]Min T I, Klein A, El-Aasse r M S. Morphology and grafting in poly(butylacrylate) polystyrene core-shell emulsion polymerization[J]. J Polym Sci Polym Chem Ed.1983, 21:2845-2856
    [70]Grates J A, Thomas D A, Hickey E C, Noise and vibration damping with latex interpentrating polymer networks[J]. J Appl Polym Sci,1975,19:1731-1743
    [71]Sperling L H, Chiu T W, Gramlich R G. Synthesis and behavior of prototype "silent paint"[J]. J Paint Technol.1974,46:47-53
    [72]Sperling L H, Chiu T W, Thomas D A. Glass transition behavior of latex interpenetrating polymer networks based on methacrylic/acrylic pairs[J]. J Appl Polym Sci.1973,17: 2443-2455

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700