预应力叠合板受力性能和叠合面抗剪强度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
预应力混凝土空心叠合楼板结合了现浇楼板和预制楼板的双重优点,具有良好的整体性,抗震性能优越,并且可以缩短工期、节约材料。叠合结构的研究是当前国际的一个重大趋势。混凝土叠合楼板的主要受力构件是在工厂预制,机械化程度高,专业技术熟练,构件质量好。而且预制构件的模板可重复使用,节约三材,并可以缩短工期。预制构件可采用预应力技术,减少钢材用量,并且可配合各截面受力情况,采用不同强度的材料。考虑到这种构件的优点,我们相信这种构件的使用必将会成为国际上一个大的趋势。本文在预应力叠合构件基础上,对预应力混凝土空心叠合楼板做了深入研究。
     通过预应力混凝土空心叠合板的简支试验,在对预应力混凝土空心板和预应力混凝土空心叠合板正常使用极限状态、承载能力极限状态、破坏标志及破坏特征进行全面的研究的基础上,深入研究叠合板叠合面的抗剪性能。本文对6块130mm厚的螺旋肋预应力混凝土空心楼板进行静力加载试验。通过对这6块130mm厚的螺旋肋预应力混凝土空心楼板的结构性能检验,论证了此种类型板做叠合板底板的可行性。对180mm厚预应力螺旋肋预应力混凝土叠合楼板进行静力加载试验,并对其进行结构性能检验。和130mm厚预应力螺旋肋钢筋混凝土空心板结构性能检验进行对比分析,发现叠合板的开裂荷载、极限荷载都较其底板有较大提高,结构性能合格,说明此种叠合板可用于工程实际中。
     采用有限元分析软件对预应力混凝土空心叠合板的试验模型进行模拟,并与试验结果进行对比分析。本文利用ANSYS分别分析了考虑叠合面滑移和不考虑叠合面滑移这两种情况下的试验模型。重点分析了螺旋肋预应力钢筋混凝土空心叠合板的受力性能、变形性能、裂缝开展、叠合面受力工作特性和抗剪承载力及影响因素,为进一步深入探讨其结构性能和用于实际工程中提供重要依据。对比两种模型的分析结果,论证了叠合面滑移对板承载力有不利影响。
     本文在螺旋肋预应力混凝土叠合板试验基础上,分析了叠合板叠合面的抗剪强度。叠合面裂缝的形成与发展和斜裂缝有直接关系,如果构件不出现斜裂缝,一般不会出现叠合面开裂破坏的情况。参照试验现象,提出一个和板跨度有关的叠合面抗剪强度计算公式。在工程中,应根据叠合板各项参数选取不同的叠合面处理方式。
Prestressed concrete hollow composite floor slab combined with cast-in-situ floor and precast floor slab double merit, has the good team, the seismic performance is superior, and can shorten the construction period, saving material. The composite structure is the current international is a tendency. Concrete composite floor slab are the main stress components in factory prefabrication, high mechanization degree, specialized technical skill, good quality components. And prefabricated components template can be. duplicated, save three material, and can shorten the construction period. Prefabricated components can adopt prestressed technique, reduce the dosage of steel, and can be used with the force of each section, using different strength of the material. Considering the advantages of this component, we believe that this component will be the use of international a big trend. This paper in prestressed composite component basis, the prestressed concrete hollow slab do a thorough study superimposed.
     Through the analysis on these six pieces of130mm thick spiral ribs prestressed concrete hollow slab structure performance inspection, demonstrates this type superimposed slab floor boards of feasibility. For180mm thick prestressed spiral ribs prestressed concrete composite floor slab static loading test, and carries on the structure performance inspection. And130mm thick prestressed concrete hollow slab spiral ribs structure testing performance analysis, found the craze of laminated board load, limit load of the floor is increased greatly and the structure performance qualified, explain this composite plate can be used in engineering practice.
     Using the finite element analysis software for prestressed concrete hollow superimposed slab of simulated test model, and compared with the results of comparative analysis. In this paper are analyzed by using ANSYS consider composite surface sliding and don't consider composite surface sliding the two cases of the experiment model. Analyses the spiral ribs prestressed concrete hollow composite board the mechanical properties, deformation performance, crack development, composite surface force working characteristic and the shear capacity and the influencing factors, and to further explore the structure performance, used in practical projects to provide important basis. Comparing the two kinds of model analysis results, demonstrates the composite surface slip on board bearing capacity have adverse impact.
     This paper in a spiral ribs prestressed concrete composite board test, based on the analysis of the composite superimposed slab shear strength. Composite surface crack formation and development and inclined cracks have immediate concern, if members do not appear inclined cracks, general won't appear superimposed surface cracking destruction. With reference to test phenomenon, this paper puts forward a and the composite face plate span shear strength calculation formula. In engineering, according to the parameters should be superimposed slab choosing different of laminated face processing mode.
引文
[1]Cook J P. Composite Structure Methods. New York:McGraw-hill Book Company inc, 1976,121-150
    [2]周旺华.现代混凝土叠合结构.北京:建筑工程出版社,1998,12-180
    [3]蒋森荣.预应力钢筋混凝士结构学.北京:建筑工程出版社,1959,56~78
    [4]朱伯龙等.装配整体式密肋楼板的理论及试验研究.上海:同济大学科学技术情报站,1961,56-78
    [5]刘成才.预应力混凝土空心板、叠合板、连续叠合板试验研究与技术经济分析(郑州大学、硕士学位论文),2006
    [6]预应力混凝土叠合版(95G39(一)-(三))[S].中国建筑标准设计研究所,1999:2-7
    [7]预应力混凝土空心板(98YG203-98YG204)[M].河南省通用建筑标准图集,2000:2-9
    [8]混凝土结构工程施工质量验收规范(GB50009-2002)[S].中国建筑工业出版社,2002:32-54
    [9]郭乐工.预应力混凝土叠合板承载力试验综合报告[R].郑州工学院科研报告,1996:8-14
    [10]王忠德,郭乐工.混凝土结构性能检验手册[M].郑州:河南科技技术出版社1996:93-127
    [11]谢钰.叠合梁叠合面抗剪机理分析及抗剪强度计算[J].邵阳学院学报(自然科学版)2006,3(3):48-51
    [12]赵山.冷轧带肋钢筋预应力混凝土空心板和叠合板结构性能的研究[D].(郑州大学、硕十学位论文),2004
    [13]混凝土结构设计规范(GB50010-2010)[S].北京:中国建筑工业出版社,2010:9-152
    [14]王新敏ANSYS工程结构数值分析[M].北京:人民交通出版社,2007
    [15]华和贵.钢筋混凝土拼接叠合板试验研究与非线性数值模拟[D].(合肥工业大学、硕士学位论文),2009
    [16]张微伟.PK预应力叠合楼板的试验研究与理论分析[D].(湖南大学、硕士学位论文),2007
    [17]Bathe K J. Finite Element Procedures in EngineeringAnalysis.Prentice-Hall,Inc,1977,44-68
    [18]Zienkiewicz O C, Morgan K, Finite Elements and Approximation. John Wiley&Sons, Inc, 1983,23-59
    [19]邹加彬.现浇混凝土空心楼板结构优缺点及若干问题探讨[J].福建建设科技2008,5:26-27
    [20]聂磊,周旺华.叠合结构推广应用的经济效益和社会效益初析[J].福州大学学报(自然科学版)1996,24:321-324
    [21]江见鲸,陆新征,叶列平.混凝土结构有限元分析[M].北京:清华大学出版社.2005.
    [22]吴可训.钢筋混凝土非线性全过程分析的研究与实践[D].合肥:合肥工业大学士木建筑工程学院,2004
    [23]Antonio F. Barbosa Gabriel O. Ribeiro. Analysis of Reinforced Concrete Structures Using ANSYS Nonlinear Concrete Model[J]. Computational Mechanics,1998.
    [24]陈惠发[美]著,余天庆,王勋文,刘再华译.土木工程材料的本构方程,华中科技大学出版社,2001
    [25]陆新征,江见鲸.利用ANSYS Solid65单元分析复杂应力条件下的混凝土结构2002ANSYS中国用户年会议论文集,2002:473-479
    [26]P. Fanning. Nonlinear Models of Reinforced and Post-tensioned Concrete Beams [J]. Electronic Journal of Structural Engineering,2001,2:55-56.
    [27]Bergan PG, HolandI, Nonlinear Finite Element Analysis of Concrete structures, Computer Methods In Applied Mechanics and Engineering,1979,17/18:P443-467
    [28]Argyris, JH, Faust G, limit load Analysis of Thick-walled concrete structures-A Finite element Approach to fracture, computer Methods in Applied mechanics and engineering, North-Houand.co,1976(8).215-243
    [29]刘康.混凝土灌芯纤维增强石膏板抗震性能的试验研究及有限元分析,天津大学硕士学位论文,2003
    [30]混凝土结构试验方法标准(GB50152-92)[S].中国建筑工业出版社,2002
    [31]宋建中,耿渝新.叠合框架受力性能的试验研究[J].长沙交通学院学报,1996,12(2):65-74
    [32]Saemal J C and Washa G W. Horizontal Shear Connections Between Precast Beams and Cast-in-place Slabs. ACI Journal,1964,61(11):1383-1409.
    [33]Douglas Mechenry et al. Development of Continuity in Precast Prestressed Construction. Sixth Congress of International for Bridge and Structure Engineering,1961
    [34]Hofbeck J A, Ibrahim I O and Mattock A H. Shear Transfer in Reinforced Concrete. ACI Journal,1969,66(2):1521-1534.
    [35]Mattock A H and Hawkins N M. Research on Shear Transfer in Reinforced Concrete. PCI Journal,1972,17(2):348-355.
    [36]Mattock A H. Cyclic shear Transfer and Type of interface. Journal of the Division ASCE, 1981(10):121-128.
    [37]ACI Committee 318. Building Code Requirements for Structural Concrete and Commentary [M]. American Concrete Institute,2002.
    [38]法国建筑科学技术中心.用预制混凝土薄板和现浇混凝土层组成的空心楼板的技术规定[S].1979.9,中国建筑科学研究院情报所译,1982.
    [39]法国钢筋混凝土工程与建筑设计计算技术规定(CC-BA68) [S].1970年修订本.国家建委建筑研究院结构所泽,1973.
    [40]侯建国,贺采旭.预应力混凝土叠合板的叠合面受力性能研究[J].武汉水利电力大学学报1993,26(3):307-316
    [41]鲍戈海.叠合板非线性有限元模拟[D].(同济大学、硕士学位论文),2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700