CASK-Id1信号通路在细胞增殖中的作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮细胞不仅仅是血液和组织间的一道机械屏障,而且是一个动态的、异质的、播散分布的器官,具有重要的分泌、合成、代谢和免疫功能。血管内皮细胞是创伤、感染、休克、心血管疾病、肿瘤等多种疾病中极易受损的细胞,同时也是参与机体应激反应、创伤组织修复的重要成员,其增殖和分化的相互协调是烧伤、创伤后创面愈合和修复关键因素之一。
     本室前期研究发现:人钙/钙调蛋白依赖的丝氨酸蛋白激酶(CASK)可以抑制血管内皮细胞株ECV304细胞的增殖,而其调节血管内皮细胞增殖的作用机制尚不清楚,对此深入探讨将有助于我们对创伤修复等涉及血管发生、重建的病理生理现象的理解。
     CASK的主要功能是作为一个支架蛋白质参与细胞膜蛋白骨架的构建,细胞连接的形成,以及调节功能蛋白质的分布,参与细胞的信号传导和基因调控等。我们发现,人血管内皮细胞株ECV304中CASK能够与分化抑制因子1(Id1)相互作用。Id家族属于HLH蛋白,其结构中不含有与DNA特异性结合的碱性区,与很多bHLH转录因子结合形成无功能活性的异二聚体,是bHLH家族的负调控因子,在细胞增殖和分化的调节中具有重要作用。CASK与Id1在物理结构上存在相互作用提示两者可能在生物学功能上有所关联。本室对此做了一些探索性工作,我们发现,过表达CASK的ECV304细胞的生长率显著降低,细胞周期依赖性激酶抑制因子p16、p21表达上调,我们推测CASK过表达后所观察到的细胞增殖抑制现象可能与Id1有关,为了进一步验证以上推测和深入了解CASK抑制细胞增殖的信号机制,我们从几个方面进行了初步探索。
     本室前期的研究已经成功构建了CASK过表达的ECV304细胞,本课题主要承担CASK缺陷表达ECV304细胞模型的建立以及CASK影响细胞增殖的细胞内信号机制研究。采用近年发展起来的RNA干扰技术(RNAi),应用质粒载体介导的细胞内小干扰RNA(siRNA)表达策略,共设计和成功构建7个siRNA表达质粒,分别对应于靶基因CASK、Id1,报告基因萤火虫荧光素酶、EGFP和GFP,全部经测序验证。
     首先通过重组siRNA表达质粒对外源报告基因EGFP和萤火虫荧光素酶的抑制效果,确认了载体介导的RNAi策略在ECV304细胞中应用的可行性。根据蛋白和mRNA
    
    第三军医大学博士学位论文
    水平的阻断效率,筛选出对内源性靶基因CASK和Idl抑制效率较高的重组质粒。应用
    RNAi方法抑制CASK表达,ECV3O4细胞生长加快,而CASK过表达,ECV304细胞生
    长受到一定的抑制,实验从正调节和负调节两个方向证明,CASK能够参与ECv304细
    胞增殖的抑制信号。流式细胞术分析表明,应用RNAi方法抑制CASK表达,ECV304
    细胞的增殖指数(PI)明显高于对照组,细胞较多地进入有丝分裂期和DNA合成期,这
    从另一个侧面说明,CASK是ECV3O4增殖的负调控分子。
     本研究结果显示,CASK过表达时,Idl与其拼接型Idl’的mRNA组成比例发生
    显著的改变,Idl逐渐减少,而Idl’逐渐增高。我们推测CASK调节Idl和Idl’的组
    成比例可能是CASK抑制细胞增殖的原因之一。同时,细胞计数实验结果表明,抑制
    Idl表达削弱了CASK对细胞增殖的影响,提示Idl参与了CASK抑制细胞增殖的信号。
     Idl分子通过与bHLH类转录因子形成无功能活性的异二聚体而抑制bHLH家族
    转录因子的活性,有研究证实,周期素依赖的蛋白激酶抑制因子pl6和pZI在哺乳动
    物细胞中受bHLH转录因子和Idl分子的共同调节,因此我们观察了CASK下调表达
    情况下P16和/或pZI的表达。实验结果表明,以RNAi方法抑制cAsK的表达,P16
    和P21的表达也受到了明显的抑制,这提示cAsK抑制细胞增殖的生物学效应可能是
    通过pl6和/或pZI影响细胞周期转换而实现的。
     为深入探讨CAsK影响pl6和pZI表达的机制,我们研究了cAsK表达抑制或者
    增强的情况下,ldl与bHLH转录因子家族成员EZA形成二聚化的定量改变,结果表明,
    当CASK表达增加时,与EZA分子免疫共沉淀的Idl减少,相反当CASK表达抑制时,
    与EZA分子免疫共沉淀的Idl明显增多。提示同样作为Idl分子的结合伙伴,CASK与
    EZA分子可能存在类似竞争的关系。
     通过上述研究,我们提出一个尚未见报道的哺乳动物细胞增殖抑制信号:细胞外(细
    胞间质)信号传递到支架蛋白CASK,CASK与细胞内分子Idl结合,减少了Idl与bHLH
    类转录因子EZA的结合,由于Idl是EZA负调控因子,EZA转录因子与Idl结合减
    少,相应地对某些下游靶基因的转录活性增强,通过结合p21/P16基因调控序列的
    E一box(CANNTG)区,促进pl6、pZI表达增加,抑制细胞周期转换,抑制细胞增殖。
CASK(calcium/calmodulin-dependent serine protein kinase)is a member of the membrane associated guanylate kinase(MAGUK) family, a group of conserved cytoskeletal proteins. CASK form scaffolds for protein networks at cell membranes, and play important role in construction of cytoskelecton, formation of cell junctions, signal transduction and regulation on gene expression.
    Our previous studies have shown that guanylate kinase (GUK) domain of hCASK interact with Id1 by yeast two-hybrid method. CASK and Id1 were coprecipitated in western blotting detection and distributed co-localized at cytoplasm
    The Id family of helix-loop-helix (HLH) proteins are thought to affect the balance between cell growth and differentiation by negatively regulating the function of basic helix-loop-helix (bHLH) transcription factors. Id family has a constellation of cellular functions including proliferation and cell cycle progression, migration and invasiveness, cell fate determination, but it is not well elucidated on the upstream signal of Id protein.
    A large body of evidence has shown that bHLH transcription factors are involved in the transcription of pl6 and p21.We deduced that CASK might regulate these genes by impacting Idl/bHLH transcription factor binding.To identify this hypothesis, we established a CASK knockdown model of ECV304 cell line with RNA interference technique.
    Methods
    1. Cell culture: Human cell line ECV304 were cultured at 37C /5% CO2in Ml99 medium supplemented with 100IU/ml penicillin, 10ug/ml streptomycin, and 10% heat-inactivated fetal calf serum(FCS).
    2. Construction of recombinant siRNA expression plasmids: (1) Choose appropriate 19bp sequence on the transcript of target gene and blast to eliminate any target sequences with significant homology to other coding sequences. The oligonucleotides were synthesized by Shanghai Bioasia corporation. (2) Annealing of each pair of oligonucieotides (3) Double digestion of vector by endonuclease (4)Ligation of annealed oligonucleotide inserts to linearized vector.(5) Transformation of DH5 a (6) Identification
    
    
    of recombinant plasmids by sequencing.
    3. Cell Transfection: (1) Optimizing the transfection condition according to manufacture's introductions, choosing the best ratio of FuGene6 to plasmid DNA. (2) Plate the ECV304 cells one day before the transfection experiment.When cells were 60-80% confluent, transfected cells according to the optimal condition.
    4. Dual-Luciferase Reporter 1000 Assay :ECV304 cells were transfected by siLuciferase(target to firefly luciferase) plasmid and pGL-3promoter plasmid/pRL plasmid. Collected the cell lysate and measure the firefly luciferase and renilla luciferase activity.
    5. Western blotting and immuno-coprecipitation: Two or three days after transfection, cells were washed with PBS and collected by scraping. They were lysed in ice-cold RIPA buffer and centrifuged. The supernatant was used for protein concentration determination by BCA-200 method. The proteins were resolved on 10% SDS-polyacrylamide gels, transferred onto nitrocellulose membranes, and incubated with the appropriate antibodies. The peroxidase-based detection was performed with Chemiluminescence Reagent (Pierce) according to the manufacturer's instructions.
    6. RT-PCR: Total RNA was prepared from ECV304 cells 48h after transfection using the Tripure reagent according to the manufacturer's protocol. RT-PCR amplification products were resolved by 1 % agarose gel.
    7. Growth rate and cell cycle analysis:The cells were seeded in 24 well plates and transfected with siCASK or pBS/U6 vector by using FuGene 6. On different time points after transfection, cells were trypsinized and counted with a hemocytometer. All samples were done in tripicate and every sample counted was repeated at least 6 times. ECV304 cells were seeded in 6.0cm dishes with M199 medium free of serum. The cells were synchronized in cell cycle 24h later. Then the cells were transfected with siCASK or pBS/U6 vector with FuGene6 reag
引文
1. Carmeliet P, Collen D. Molecular analysis of blood vessel formation and disease. Am J Physiol. 1997; 273(5 Pt 2): H2091-104
    2.杨宗城,高建川。血管内皮细胞在烧伤脏器损害发病中的作用。中华整形烧伤外科杂志。1995;11(3):225-227。
    3. Hunt B J, Jurd KM. Endothelial cell activation: a central pathophysiological process. BMJ 1998; 316: 1328-1329
    4. Dimitratos S, Woods D, Bryant P. Camguk, Lin-2, and CASK: novel membrane-associated guanylate kinase homologs that also contain CaM kinase domains. Mech Dev. 1997; 63(1): 127-130
    5. Hata Y, Butz S, Sudhof T. CASK: a novel dlg/PSD95 homolog with an N-terminal calmodulin-dependent protein kinase domain identified by interaction with neurexins. J Neurosci, 1996; 16(8): 2488-2494
    6.刘煜,赵晓航,吴曼。钙/钙调蛋白依赖性丝氨酸蛋白激酶的结构和功能。生物化学与生物物理进展,2002,29(1):14-18
    7. Hsuch Y, Yang F, Kharazia V, et al. Direct interaction of CASK/LIN-2 and Syndecan heparan sulfate proteoglycan and their overlapping distribution in neuronal synapses. J Cell Bio. 1998; 142: 139-151
    8. Hsueh Y, Wang T, Yang F, et al. Nuclear translocation and transcription regulation by the membrane-associated guanylate kinase CASK/LIN-2. Nature. 2000, 404(6775): 298-302
    9. Cohen A, Wood D, Marfatia S, et al. Human CASK/LIN-2 binds Syndecan-2 and protein 4.1 and localizes to the basolateral membrane of epithelial cell. J Cell Biol,1998; 142: 129-137
    10. Fischbach G, Rosen K. ARIA: A neuromuscular junction neuregulin. Annu Rev Neurosci. 1997; 20: 429-458
    11. Maximov A, Sudhof T C, Bezprozvanny I. Association of neuronal calcium channels with modular adaptor proteins. J Biol Chem. 1999; 274(35): 24453-24456
    12. Butz S, Okamoto M, SudhofT, et al. A tripartite protein complex with the potential to couple synaptic vesicle exocytosis to cell adhesion in brain. Cell, 1998; 94(6): 773-782
    13. Carey D J. Syndecans: multifunctional cell-surface co-receptors. Biochem J. 1997,
    
    327:1-16
    14.齐洁,罗向东,罗勤。人CASK/LIN-2下游信号分子的初步研究。中华医学遗传学杂志,2000,17(6):404-408
    15. Hashmat AS, Meghann K D, Shariff D. Id proteins in cell growth and tumorigenesis. Cancer cell 2003: 3: 525-530
    16.冯洁,王永潮。分化抑制因子(Id)家族研究进展。生理科学进展,1997,28(2):139—141
    17. Norton, J.D. ID helix-loop-helix proteins in cell growth, differentiation and tumorigenesis. J. Cell Sci. 2000; 113, 3897-3905.
    18. Carmeliet P. Developmental biology. Controlling the cellular brakes. Nature1999; 401 (6754): 657-658
    19. Benezra, R., R. Davis, D. Lockshon, D. Turner, and H. Weintraub. 1990.The protein Id-a negative regulator of helix-loop-helix DNA binding proteins. Cell 61:49-59.
    20. Tang J. Gordon GM, Nickoloff B J. et al. The helix-loop-helix protein id-1 delays onset of replicative senescence in human endothelial ceils. Lab Invest 2002; 82(8): 1073-9.
    21. Prabhu S, Ignatova A, Park ST, et al. Regulation of the expression of cyclin-dependent Kinase inhibitor p21 by E2A and Id proteins. Mol Cell Biol. 1997; 17(10):5888-96.
    22. Naoko Ohtani, ZoeZebedee, Thomas J. G. H, et al Opposing effects of Ets and Id proteins on p16INK4a expression during cellular senescence Nature, 2001(409): 1067-1070
    23. Fire, A., Xu, S., Montgomery, M. K. et al. Potent and specific genetic interference by double-stranded RNA in Caenochabditis elegans. Nature 1998; 391, 806-811.
    24.苏踊跃,齐洁,罗向东。RNA干扰技术在功能基因研究中的应用。生命的化学,2002;22(5):485—488
    25. Elbashir SM, Harborth J, Lendeckel W et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Natue 2001, 411: 494-498
    26. Miyagishi M, Taira K. U6 promotor-driven siRNAs with four uridine 3' overhangs efficiently suppression in mammalian cells. Nat Biotech, 2002, 19: 497-500
    27. Sui GC, Christina S, E1 Bachir Aet al. A DNA vector-based RNAi technology to suppress gene expression in mammalian cellls. Proc. Natl. Acad. Sci 2002,99(8):5515-20
    28. Miyagishi M, Taira K RNAi Expression Vectors in Mammalian Cells. Methods Mol Biol. 2004; 252: 483-92
    29.司徒镇强,吴军正,主编。细胞培养。北京,世界图书出版公司,1996:34-39
    
    
    30. Tuschl T. Expanding small RNA interference. Nat Biotechnol 2002; 20(5): 446-8.
    31. Gou DM, Jin NL, Liu L. Gene silencing in mammalian cells by PCR-based short hairpin RNA. FEBS Letters2003; 548: 113-118
    32.金冬雁,黎孟枫 译。分子克隆实验指南.第三版.北京,科学出版社,2000.
    33.姜泊,张亚历,周殿元,主编。分子生物学常用方法。北京:人民军医出版社,1998:56-64。
    34. Harmon GJ. RNA interference. Nature. 2002; 418(6894): 244-51
    35. Plasterk R A. RNA Silencing: The Genome's Immune System. 2000; 296: 1263-1265
    36. Bosher JM, Labouesse M. RNA interference: genetic wand and genetic watchdog. Nat Cell Biol. 2000; 2(2): E31-6
    37. Reynolds A, Leake D, Boese Q, et al. Rational siRNA design for RNA interference. Nat Biotechnol. 2004; 22(3): 326-30.
    38. Kretschmer-Kazemi Far R, Sczakiel G The activity of siRNA in mammalian cells is related to structural target accessibility: a comparison with antisense oligonucleotides. Nucleic Acids Res. 2003; 31 (15): 4417-24.
    39. Agrawal N, Dasaradhi PV, Mohmmed A, et al. RNA interference: biology, mechanism, and applications. Microbiol Mol Biol Rev. 2003; 67(4): 657-85.
    40. Ahlquist P. RNA-Dependent RNA Polymerase, Viruses, and RNA Silencing. 2002; 296: 1270-1273
    41. Brummelkamp TR, Bernards R, Agami R. A system for stable expression of short interfering RNAs in mammalian cells. Science. 2002 Apr 19; 296(5567): 550-3
    42. Shen C, Reske SN. Adenovirus-Delivered siRNA. Methods Mol Biol. 2004; 252: 523-32.
    43. Shen C, Buck AK, Liu X, et al. Gene silencing by adenovirus-delivered siRNA. FEBS Lett. 2003; 539(1-3): 111-4.
    44. Liu CM, Liu DE Dong WJ, et al. Retrovirus vector-mediated stable gene silencing in human cell Biochem Biophys Res Commun. 2004; 313(3): 716-20.
    45. Wang L, Mu FY. A Web-based design center for vector-based siRNA and siRNA cassette. Bioinformatics, 2004
    46.颜子颖,王海林 译。精编分子生物学实验指南。第一版,北京:科学出版社,1998.
    47.黄培堂等 译。细胞实验指南。北京:科学出版社,485-490
    48. Djaborkhel R, Tvrdik D, Eckschlager T et al. Cyclin A down-regulation in TGFbetal-arrested follicular lymphoma cells. Exp Cell Res. 2000; 261(1): 250-9
    
    
    49. Nakashima R, Fujita M, Enomoto T Alteration of p16 and p15 genes in human uterine tumours. Br J Cancer. 1999 May; 80(3-4): 458-67.
    50. Tamura Y, Sugimoto M, Ohnishi K, et al. Differential activity of a variant form of the human Id-1 protein generated by alternative splicing. FEBS Letters 1998 (436) 169-173
    51. Kisato N, Michiyuki M, Sadahiro T et al. Increasing Methylation of the CDKN2A Gene Is Associated with the Progression of Adult T-Cell Leukemia Cancer Res 2000 60:1043-1048
    52.M'Pagano著。细胞周期——材料和方法。人民卫生出版社 2000年第一版
    53. Qun Wang,Jiayun Lu, Cuihong Yang. CASK and its target gene Reelin were co-upregulated in human esophageal carcinoma. Cancer Letters, 2002,179(1): 71-77
    54. Vandesompele J, Edsjo A, De-Preter K, et al. ID2 expression in neuroblastoma does not correlate to MYCN levels and lacks prognostic value. Oncogene. 2003; 22(3): 456-60
    55. Deleu S; Savonet V, Behrends J, et al. Study of gene expression in thyrotropin-stimulated thyroid cells by cDNA expression array: ID3 transcription modulating factor as an early response protein and tumor marker in thyroid carcinomas. Exp Cell Res. 2002; 279(1): 62-70.
    56. Beger C, Pierce L, Kruger M, et al. Identification of Id4 as a regulator of BRCA1 expression by using a ribozyme-library-based inverse genomics approach. Proc Natl Acad Sci U S A. 2001; 98(1): 130-5.
    57. Chaudhary J, Johnson J, Kim G, et al. Hormonal regulation and differential actions of the helix-loop-helix transcriptional inhibitors of differentiation (Idl, Id2, Id3, and Id4) in Sertoli cells, Endocrinology. 2001; 142(:5): 1727-36
    58. Lasorella, A., Noseda, M., Beyna, M., and Iavarone, A. Id2 is a retinoblastoma protein target and mediates signalling by Myc oncoproteins. Nature2000; 407, 592-598.
    59. Deed RW, Hara E, Atherton GT, et al. Regulation of Id3 cell cycle function by Cdk-2-dependent phosphorylation Mol Cell Biol, 1997, 17(12): 6815~6821
    60. Nehlin JO, Hara E, Kuo WL, et al. Collins-C Genomic organization, sequence, and chromosomal localization of the human helix-loop-helix Id1 gene Biochem Biophys Res Commun, 1997, 231(3): 628-634
    61. Xiong Y, Hannon G J. Zhang H, et al. P21 is a universal inhibitor of cyclin kinases. Nature, 1993, 366: 701-704
    
    
    62. Kamb A, Gruis NA, Weaver F J, etal.A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994, 264: 436-440
    63. Serrano M, Harmon G J and Beach D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature, 1993, 366: 704-707
    64. Polsky D, Young AZ, Busam KJ. The transcriptional repressor of p16/Ink4a, Id1, is up regulated in early melanomas. Cancer Res, 2001,61(16):6008-6011
    65. Alani RM,Young A Z, Shifflett C B. Id1 regulation of cellular senescence through transcriptional repression of p16/Ink4a. Proc Natl Acad Sci USA, 2001, 98(14):7812-7816
    66. Atchley, W., and W. Fitch. 1997. A natural classification of the basic helixloop-helix class of transcription factors. Proc. Natl. Acad. Sci. USA 94:5172-5176.
    67. Massari ME, Murre C. Helix-loop-helix proteins: regulators of transcription in eukaryotic organisms. Mol Cell Biol 2000; 20: 429-440.
    68. Y Jen, H. Weintraub, R. Benezra. Overexpression of Id protein inhibits the muscle differentiation program: in vivo association of Id with E2A proteins. Genes Dev 1992; 6: 1466-1479
    69. Sun XH, Copeland NG, Jenkins NA Id proteins Id1 and Id2 selectively inhibit DNA binding by one class of helix-loop-helix proteins. Mol Cell Biol. 1991; 11 (11):5603-11
    70. Yan W, Young AZ, Soares VC. High incidence of T-cell tumors in E2A-null mice and E2A/Id1 double-knockout mice. Mol Cell Biol. 1997; 17(12): 7317-27
    71. Engel I, Murre C E2A proteins enforce a proliferation checkpoint in developing thymocytes EMBO J. 2004 Jan 14; 23(1):202-11
    72. Rutherford MN, LeBrun DP Restricted expression of E2A protein in primary human tissues correlates with proliferation and differentiation. Am J Pathol. 1998 Jul; 153(1): 165-73
    73. Inoue T, Shoji W, Obinata M. MIDA1 is a sequence specific DNA binding protein with novel DNA binding properties. Genes Cells. 2000; 5(9): 699-709.
    74. Inoue T, Shoji W, Obinata M. MIDA1, an Id-associating protein, has two distinct DNA binding activities that are converted by the association with Id1: a novel function of Id protein. Biochem Biophys Res Commun. 1999; 266(1): 147-51
    75. Shoji W, Inoue T, Yamamoto T, et al. MIDA1, a protein associated with Id, regulates cell growth. J-Biol-Chem. 1995; 270(42): 24818-25.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700