盾构机密封舱压力场建模及土压平衡控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
土压平衡盾构机是一种地下工程施工中的专用工程机械,广泛应用于地铁隧道、市政建设、资源开采、水利工程等地下工程建设。盾构掘进施工首先要考虑的是地表沉降控制,而盾构密封舱压力失衡是地表沉降甚至灾难性事故发生的主要成因。由于地质条件的随机多样性与多场耦合作用使得掘进界面的物理和力学行为极为复杂、难以预测,并且现有的土压平衡控制技术主要是凭经验人工操作,掘进施工的安全性难以得到保证。因此,多场耦合作用下密封舱土压动态平衡控制是盾构技术研究中重要课题。本文在对盾构掘进过程进行机理分析的基础上,结合先进控制理论与优化算法,对盾构机密封舱压力场分布、土压控制模型及协调控制等与密封舱压力平衡控制相关的理论进行了研究,论文的主要工作如下:
     (1)研究了掘进过程密封舱压力场的分布规律及压力失衡的特征,提出了基于密封舱压力场梯度的开挖面稳定性判定方法。利用非均匀B样条最小二乘方法建立了密封舱压力场的分布模型,在此基础上,分析了竖直与水平方向压力梯度变化,给出了基于密封舱压力场梯度范数的开挖面稳定域及判定方法,并利用多级动态惩罚函数与粒子群(PSO)相结合的优化算法求解梯度范数的极值。最后,利用现场施工数据进行了仿真研究,揭示了密封舱压力平衡、失衡时的压力分布特征,对开挖面的稳定性进行了判断,验证了方法的有效性。
     (2)盾构机掘进过程机理非常复杂、工况多变,目前尚没有比较精确、完善的土压平衡控制模型。为此,本文提出了采用机理分析与最小二乘支持向量机(LS-SVM)理论相结合的建模方法。首先根据盾构掘进过程的力学平衡方程、连续性方程等,以及盾构推力、推进速度、螺旋输送机转速等施工控制参数对密封舱土压的影响程度不同引入权重系数,建立了密封舱土压与掘进控制参数的关系模型;然后基于LS-SVM技术建立误差模型并求取权重系数的最优值,给出了完整的密封舱土压控制模型,为实现盾构土压平衡的自动控制奠定了基础。
     (3)盾构机在均一稳定的地质中掘进时,通常采用排土控制模式即调节螺旋输送机转速的方式控制密封舱土压平衡。为了有效控制整个开挖面的稳定,提出了以密封舱等效压力平衡为控制目标的土压平衡控制方法。在密封舱压力场分布模型的基础上,通过分析掘进控制参数与密封舱压力的关系,同时考虑了开挖面上压状态变化对土压的影响,建立了密封舱等效压力控制模型,构建了上压平衡控制系统,设计了模糊自适应PID控制器调节螺旋机转速。仿真结果表明系统具有对土压设定值很好的跟踪特性,为盾构掘进过程的上压平衡控制提供了新思路。
     (4)当盾构机在岩性变化频繁、物理力学特性差异大,尤其是复合地层中掘进时,同时调节推进速度和螺旋机转速才能更加有效的控制密封舱土压平衡。但现有的控制方法主要是依据经验人工调节推进速度或螺旋机转速,这样容易导致蛇形路线、机器故障甚至地表塌陷。为此,本文提出了一种基于最小二乘支持向量机和粒子群优化算法的土压平衡优化控制策略。采用LS-SVM建立了以推进速度和螺旋机转速为控制参数的密封舱土压预测模型,在此基础上,以密封舱下一时刻预测土压与期望土压差值最小为优化性能指标,建立了掘进控制参数的优化模型,并引入了PSO进行全局优化求解,同时优化了推进速度和螺旋机转速,实现了密封舱土压平衡控制。仿真结果验证了方法的有效性。
     (5)密封舱压力主要受推进、排渣和刀盘三个子系统的影响,但由于舱内碴土组分及其力学特性对密封舱压力的影响规律不清,目前施工中还难以通过推进、排渣和刀盘等多子系统综合协调来实现密封舱压力的高效平衡控制。为此,本文基于地层状态识别,提出了专家系统控制和预测控制相结合的多子系统协调控制方法。地层识别系统以扭矩切深(TPI)和场切深(FPI)为输入特征参数对地层状态进行识别,专家系统对地层识别的量化结果进行分析推理并给出刀盘转速的控制策略;然后,利用非线性模型预测控制来协调控制与刀盘转速相适应的推进速度和螺旋输送机转速,并通过改进的蚁群系统算法(ACS)进行控制参数的滚动优化。从实验结果可以看出,即使在工况发生变化时也能够很好的保持密封舱土压平衡,表明了方法的可行性,实现了盾构机土压平衡的多子系统协调控制。
Earth pressure balance (EPB) shield machine is an engineering machine specialized in underground construction engineer, and is widely applied in metro tunnel, municipal construction, resources exploitation, hydraulic engineering and so on. The ground surface settlement must be taken into account first, and the earth pressure imbalance in pressure chamber is the main cause of ground settlement or even disastrous accident. The random diversity of geology condition and the multi-field coupling make the physical and mechanical properties of excavation face very complex and difficult to predict. Nowadays, the EPB control is manually operated based on experiences, so that it is difficult to ensure the construction safety. Consequently, the earth pressure balance control in chamber is an important issue of the shield construction technology. In this dissertation, some problems related to the earth pressure balance control in chamber are studied based on the mechanism analysis of tunneling process, such as modeling the earth pressure field in pressure chamber, the earth pressure balance control method, the coordinated control method of multiple sub-systems and so on. The main works of this dissertation are as follows:
     (1) The earth pressure distribution discipline and the earth pressure imbalance characteristic in chamber are studied, and a stability judgment method of shield excavation face is proposed based on the earth pressure field gradient. A distribution model of the earth pressure field is established by using non-uniform B spline method. On this basis, the ranges of the vertical and horizontal gradient are analyzed, subsequently, the stable region of the excavation face and the judgment method are given based on the norm of the earth pressure field gradient. For the norm extremum of the earth pressure field gradient, it is obtained through solving the optimization function by means of the multi-stage dynamic penalty function combined with particle swarm optimization (PSO) algorithm. Finally, the simulation experiment is carried out based on the field data, and the earth pressure distribution in chamber are revealed when it is balance or not, further the excavation face stability is analyzed, and the effectiveness of the method is demonstrated.
     (2) The mechanism of tunneling process is very complicated and the working conditions are changeable, and there is no more accurate and perfect earth pressure control model at present. A modeling method combining mechanism analysis with least squares support vector machine (LS-SVM) theory is proposed. Firstly, a relation model between earth pressure and control parameters is established based on mechanics balance equation, continuity equation and a weighting coefficient which reflects that the total thrust of shield, advance speed and screw conveyor speed have quite different influence on chamber earth pressure. Secondly, an error model is established by means of LS-SVM for optimizing the weighting coefficient, and an integrated earth pressure control model is established which lays the foundation for automatic control of EPB shield machine.
     (3) When shield machine excavates in homogeneous and stable soil layer, the earth pressure balance in chamber is controlled through adjusting advance speed or screw conveyor speed based on the discharge control mode. In order to control the earth pressure balance more efficiently, a new earth pressure balance control method is proposed which takes equivalent earth pressure in chamber as control target. Based on the earth pressure field model, by analyzing the relationship between tunneling control parameters and the earth pressure in chamber and considering the influence on earth pressure of the state change of earth pressure on excavation face, an equivalent earth pressure control model is established. Then, an EPB control system is constructed, in the mean time the fuzzy adaptive PID controller is designed to adjust the screw conveyor speed. The simulations illustrate that the system could track the set earth pressure very well, so that this method provides a new idea for control earth pressure balance of shield tunneling.
     (4) The lithology changes frequently, its physical and mechanical properties differ widely. When shield machine works under this condition, especially in composite soil layer, the earth pressure balance in chamber of shield should be controlled more efficiently by adjusting advance speed and screw conveyor speed simultaneously. But the commonly used method now depends greatly on experiences of operators, so that some problems such as meandering routes, ground subsidence, and machine failure tend to occur. For this purpose, an optimal control strategy for earth pressure balance is proposed in this paper, where an prediction model of earth pressure in chamber is established by means of LS-SVM considering thrust speed and screw conveyor speed as the control parameters. Further, by minimizing the difference between the predicted earth pressure and the desired one, an optimization model of the control parameters is established, and solved by the particle swarm optimization (PSO) algorithm. The advance speed and screw conveyor speed are optimized simultaneously, therefore, the dynamic balance control of earth pressure in chamber is realized. The simulation results demonstrate that the method is very effective.
     (5) The earth pressure in chamber is mainly affected by thrust system, discharge system and cutter head system. However, because it is not clear that how the composition and the mechanical characters of the soil in chamber influence the earth pressure, it is difficult to carry out earth pressure balance control efficiently through coordinated control thrust system, discharge system and cutter head system at present. For this reason, on the basis of soil layer identification, a coordinated control method of multiple subsystems is proposed which combines the expert system control with predictive control. The soil layer system identifies the layer status which takes the TPI and FPI as input character parameters. The expert system analyses and inferences to the quantitative results of the identification and gives the control strategy of cutter head. Then the advance speed and screw conveyor speed are coordinated through nonlinear model predictive control which corresponds to the cutter speed, and rolling optimization is realized by means of ACS. The experiments show that the earth pressure in chamber can keep a good balance even though the working condition changes, which demonstrate the feasibility of this method to achieve the multiple subsystems coordinated control of shield machine for earth pressure balance in chamber.
引文
[1]施仲衡.盾构机在中国地铁建设中的应用[J].建筑机械,2002,(5):20-21.
    [2]薛备芳.我国盾构掘进机的现状和发展策略[J].现代隧道技术,1999,(6):26-31.
    [3]董必钦.对我国全断面隧道掘进设备发展的思考[J].中国水利,2005,(22):35-36.
    [4]杨华勇,龚国芳.盾构掘进机发展战略研究[C].上海:2003.
    [5]Anagnostou G, Kovari K. The face stability of slurry-shield -driven tunnels[J]. Tunneling and Technology,1994,9(2):155-174.
    [6]Mashimo H. State of the road tunnel safety technology in Japan[J]. Tunneling and Underground Space Technology,2002, (17):145-152.
    [7]Grandori R, De B A, Busillo A, et al. Turin metro system-operation of EPB-TBMs beyond the limits of this technology[J]. Felsbau,2003,21(6):34-42.
    [8]Shin H S, Kwon Y C, Jung Y S. Methodology for quantitative hazard assessment for tunnel collapses based on case histories in Korea[J]. International Journal of Rock Mechanics & Mining Sciences,2009, 46(6):1072-1087.
    [9]吴克利.国内外隧道掘进机械发展概述[J].重工与起重技术,2005,(1):14.
    [10]刘仁鹏.土压平衡盾构技术综述[J].世界隧道,2000,(1):1—7.
    [11]Flint G R. Tunneling using earth pressure balance machine for the boucle spine sewers of the greater Cairo wastewater project[J]. Tunneling and Underground Space Technology,1992,7(4):415-424.
    [12]Lewis R. The changing face of the TBM[J]. Tunnels & Tunneling,1994, (5):35-37.
    [13]Matsushita H. Earth pressure balanced shield method[J]. Tunnels &Tunnelling,1980, (1):47-49.
    [14]Association J T. Challenges and changes:Japan's Tunneling activities in 1988-Partl[J]. Tunneling and Underground Space Technology,1989,2(4):215-223.
    [15]Association J T. Challenges and changes:Japan's Tunneling activities in 1988-Part2[J]. Tunneling and Underground Space Technology,1989, (3):337-342.
    [16]Chen C. Japanese technology in Taiwanese harbour seabed shield drive [J]. Tunnels&Tunnelling., 1984, (12):35-38.
    [17]Koyama Y. Present status and technology of shield tunneling method in Japan[J]. Tunneling and Underground Space Technology,2003,2:145-159.
    [18]Reilly J J. The Management Process for Complex Underground and Tunneling Projects[J]. Tunneling and Underground Space Technology,2000,15(1):31-44.
    [19]Xie X Y, Liu Y J, Huang H W. Research of GPR Non-Damaged Test of Grouting behind Lining of Shield Tunnel[C]. Delft, the Netherlands:2004.419-422.
    [20]Shahriar K, Sharifzadeh M, Hamidi J K. Geotechnical risk assessment based approach for rock TBM selection in difficult ground conditions[J]. Tunneling and Underground Space Technology,2008, (23): 318-325.
    [21]Qu Q G. Construction of underground works in Shanghai, P.R.C[J]. Tunnelling and Underground Space Technology,1989,5(4):357-362.
    [22]董哲仁.日本盾构施工技术新进展[J].水利水电技术,2001,32(9):29-32.
    [23]姜嫄.儿种特殊盾构隧道施工方面开发和利用的新工法[J].科技论坛,2010,(12):4-5.
    [24]吴笑伟.国内外盾构技术现状与展望[J].建筑机械,2008,(8):69-73.
    [25]何於琏.土压平衡盾构机掘进控制系统工作原理[J].矿山机械,2006,34(2):22-24.
    [26]张凤祥,朱合华,傅德明.盾构隧道[M].北京:人民交通出版社,2004.
    [27]邢彤,龚国芳,胡国良,等.基于系统重组的盾构刀盘驱动液压系统设计与试验[J].农业机械学报,2006,37(5):125-128.
    [28]邵鑫,余海东,张凯之,等.复合岩土掘进时盾构机冗余驱动推进系统的分组策略[J].机械设计与研究,2011,27(1):5-9.
    [29]龚国芳,胡国良,杨华勇.盾构推进系统同步协调控制实验分析[J].液压与气动,2006,(7):56—58.
    [30]庄欠伟,龚国芳,杨华勇.盾构机推进系统分析[J].液压与气动,2004,(4):11—13.
    [31]房猛.盾构推进机构电液控制系统的研究[D].杭州:浙江大学,2003.
    [32]于睿坤,李万莉,周奇才.盾构机推进系统分析与建模[J].建筑机械化,2007,(2):43-45.
    [33]胡国良,龚国芳,杨华勇,等.盾构螺旋输送机液压驱动及控制系统[J].液压与气动,2004,(12):33—36.
    [34]江玉生,王春河,陈冬.土压平衡盾构螺旋输送机力学模型简析[J].力学与实践,2007,29(5):50-53.
    [35]胡国良,龚国芳.土压平衡盾构螺旋输送机排土控制分析[J].工程机械,2008,39:35-38.
    [36]李文福.盾构管片拼装机的结构分析[J].山西建筑,2010,36(5):337-339.
    [37]胡国良,龚国芳,魏建华,等.盾构管片拼装机液压控制系统[J].工程机械,2007,38:53-57.
    [38]李含春,魏建华,丁书福.盾构管片拼装机无线控制器的设计研究[J].液压气动与密封,2004(6):23—25.
    [39]Tanaka Y. Automatic segment assembly robot for shield tunneling Machine[J]. Microcomputers in Civil Engineering,1995,10(5):325-337.
    [40]Kazuhiro K, Koji T, Toshio F, et al. Task-Oriented Force Control of Parallel Link Robot for the Assembly of Segments of a Shield Tunnel Excavation System[J]. IEEE/ASME Transactions on Mechatronics,1996,1(3):250-258.
    [41]梅勇兵,程永亮,王宇飞.盾构隧道管片拼装技术的应用与发展[J].机电工程技术,2010,39(3):18-20.
    [42]宋天田,周顺华,徐润泽.盾构隧道盾尾同步注浆机理与注浆参数的确定[J].地下空间与工程学报,2008,4(1):130-133.
    [43]朱祖熹.盾构法隧道的盾尾防水密封与盾尾密封油脂[J].中国建筑防水,2009,(7):2-6.
    [44]刘二召.盾尾密封油脂注入系统浅析[J].隧道建设,2003,23(1):16-18.
    [45]杨宏燕.土压平衡盾构监控系统研制技术[J].地下工程与隧道,2000,(3):36-41.
    [46]沈立新.盾构机实时远程监控系统技术[J].隧道/地下工程,2010,(8):34-38.
    [47]魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J].工程机械,2005,(1):18—19.
    [48]胡国良,龚国芳,杨华勇.盾构掘进机土压平衡的实现[J].浙江大学学报(工学版),2006,40(5): 874-877.
    [49]Gonzalez C, Sagaseta C. Patterns of soil deformations around tunnels:application to the extension of Madrid Metro[J]. Computers and Geotechnics,2001, (28):445-468.
    [50]Bezuijen A, Talmon A M, Joustra J F, ea al. Pressure gradients at the EPB face[J]. Tunnels and Tunneling,2005,37(12):14-17.
    [51]Yeh I C. Application of neural networks to automatic soil pressure balance control for shield tunneling[J]. Automation in Construction,1997,5(5):421-426.
    [52]Benardos A G, Kaliampakos D C. Modeling TBM performance with artificial neural networks[J]. Tunneling and Underground Space Technology,2004, (19):597-605.
    [53]刘任喜.基于LS-SVM的盾构密封舱土压建模仿真研究[D].大连:大连理工大学,2009.
    [54]Sugimoto M, Koeta N, Ramdani T, et al. Study on the force at face based on in-situ data[C]. Proceeding of the 46th Annual Meeting, Japan Society Civil Engineering,1991,158-159.
    [55]Suwansawat S. Shield tunneling database management for ground movement evaluation[J]. Tunneling and Underground Space Technology,2004, (19):376-377.
    [56]施虎,龚国芳,杨华勇,等.盾构掘进土压平衡控制模型[J].煤炭学报,2008,33(3):343-346.
    [57]Sugimoto M, Sramoon A. Theoretical Model of Shield Behavior During Excavation I:Theory[J]. Journal of Geotechnical and Geoenviron-mental Engineering,2002,128(2):138-155.
    [58]Sramoon A, Sugimoto M, Kayukawa K J. Theoretical Model of Shield Behavior During Excavation II: Application[J]. Journal of Geotechnical and Geoenvironmental Engineering,2002,128(2):156-165.
    [59]王洪新,傅德明.土压平衡盾构掘进的数学物理模型及各参数间关系研究[J].土木工程学报,2006,39(9):86-90.
    [60]王洪新,傅德明.士压平衡盾构平衡控制理论及试验研究[J].土木工程学报,2007,40(5):61-68.
    [61]李笑,陈振环,陈烘陶.盾构土压平衡电液模拟系统的研究[J].机床与液压,2006,(7):129—131.
    [62]Li X, Chen H T. Modeling and Simulation for Earth-Pressure-Balance Simulated System of Shield Machine[C]. Asia Simulation Conference-7th International Conference on System Simulation and Scientific Computing,2008, (111-68):732-735.
    [63]Komiya K, Soga K, Akagi H, et al. Finite element modeling of excavation and advancement processes of a shield tunneling machine[J]. Soils and Foundations,1999,39(3):37-52.
    [64]Kasper T, Meschke G. A 3D finite element simulation model for TBM Tunneling in soft ground[J]. International Journal for Numerical and Analytical Methods in Geomechanics,2004, (28):1441-1460.
    [65]Sugimoto M, Sramoon A, Asce M, et al. Simulation of Shield Tunneling Behavior along a Curved Alignment in a Multilayered Ground[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007,133(6):684-694.
    [66]Wu H W, Lee C B. Self-tuning adaptive speed control of a pump/inverter-controlled hydraulic motor system[C]. Proceedings of the Institution of Mechanical Engineers. Part I:Journal of systems& Control Engineering,1995, (2):101-114.
    [67]Daniele P, Claudio O, Raffaele V. Screw Conveyor Device for Laboratory Tests on Conditioned Soil for EPB Tunneling Operations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2007, 133(12):1622-1625.
    [68]Merritt A S, Mair R J. Mechanics of tunneling machine screw conveyor:a theoretical model[J]. Geotechnique,2008,58(2):79-94.
    [69]Merritt A S, Mair R J. Mechanics of Tunneling machine screw conveyor:Model tests[J]. Geotechnique,2006,56(9):605-615.
    [70]李惠平,夏明耀.盾构姿态自动控制技术的应用与发展[J].地下空间,2003,22(1):75—78.
    [71]Sinfield J V, Einstein H H. Evaluation of tunnelling technology using the decision aids in tunnelling[J]. Tunnelling and Underground Space Technology,1996,11(4):491-504.
    [72]Dieulot J Y, Borne P. Composite fuzzy-conventional control applied to Earth pressure balanced shield front pressure stabilization[J]. Studies in Informatics and Control,1994,3(4):367-372.
    [73]Li X, Chen Z H. Fuzzy Immune Control for Shield's Earth-Pressure-Balance Simulation System[C]. Fourth International Conference on Natural Computation,2008,648-652.
    [74]胡珉,周文波.基于多级神经网络的盾构法隧道施工参数控制[J].计算机工程,2005,31(8):192—194.
    [75]李守巨,屈福政,曹丽娟,等.土压平衡盾构机密封舱压力控制实验研究[J].煤炭学报,2011,36(6):934-937.
    [76]Xing T, Gong G F, Yang H Y. Research into the intelligent control of the cutter head drive system in Shield Tunneling machine based on the pattern recognition[C]. Proceedings of the 2008 IEEE/ASME, International Conference on Advanced Intelligent Mechatronics,2008,1126-1130.
    [77]Tateyama K, Fukagawa R, Tsuchiya K. Measurement of the earth pressure acting on a shield machine and its application to automatic advancing control of the shield[C].Proceedings of the 11th International Symposium on Automation and Robotics in Construction (ISARC),1994,425-432.
    [78]Shi H, Gong G F, Yang H Y. Pressure and Speed Control of Electro-hydraulic Drive for Shield Tunneling Machine[C]. Proceedings of the 2008 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2008,314-317.
    [79]Yang H Y, Shi H, Gong G F, et al. Electro-hydraulic proportional control of thrust system for shield tunneling machine[J]. Automation in Construction,2009, (18):950-956.
    [80]Sakai K, Hoshitani M. Prediction and control of behaviors on driving shields using Kalman filter theory[J]. Journal of Japan Society Civil Engineering,1987,385(VI-7):69-78.
    [81]Nomoto T, Imamura S, Hagiwara T. Shield tunnel construction in centrifuge [J]. Journal of Geotechnical and Geoenvironmental Engineering,1999,125:289-300.
    [82]Imai K, Shimizu Y, Tomiki H. Automatic control system of shield tunneling machine[J]. Hitachi Zosen Technical Review,1992,53(1):1-8.
    [83]Sakai K, Hoshitani M. Direction control method of shield Tunneling machines and its observed behaviors in some various ground conditions[J]. Journal of Japan Society Civil Engineering,1993, 459(1-22):139-148.
    [84]Yoshihiro E. Management of tunneling process for large shield[J]. Underground Tunnel,1997,(3): 34-45.
    [85]胡珉,周文波,倪国庆.上海地铁二号线隧道轴线控制系统的开发[J].上海隧道,1998,(2):53-57.
    [86]李惠平,夏明耀.盾构姿态的模糊控制方法[J].同济大学学报,2003,31(7):824—827.
    [87]丁睿坤,周奇才.基于Labview的盾构姿态模糊控制器研究[J].中国工程机械学报.2004,2(4): 449-451.
    [88]周奇才,陈俊儒,何自强,等.盾构智能化姿态控制器的设计[J].同济大学学报(自然科学版),2008,36(1):76-80.
    [89]Shimizu G, Suzuki M. Research on motion characteristics of single-round shield(Designing of control system based on model test)[C]. Proceeding of Japanese Society of Mechanical Engineers,1992,(58): 155-161.
    [90]Shimizu G, Yamazato K, Nishida S. Inferring of the motion characteristics for shield tunneling machine in soil[C].Proceedings of Civil Society,1997,(575):243-248.
    [91]Jelmer B, Benklaassens R B. Hybrid control design for a robot manipulator in shield tunneling machine[J]. Informatics in Control, Automation and Robotics,2006,143-150.
    [92]Tanaka Y. Automatic segment assembly robot for shield tunneling Machine[J]. Microcomputers in Civil Engineering,1995,10(5):325-337.
    [93]Kosuge K, Takeo K, Fukuda T, et al. Task-Oriented Force Control of Parallel Link Robot for the Assembly of Segments of a Shield Tunnel Excavation System[C]. IEEE/ASME Transactions on Mechatronics,1996,1(3):250-258.
    [94]Working Group No.2 International Tunnling Association. Guidelines for the Design of Shield Tunnel Lining[J]. Tunneling and Underground Space Technology,2000,15(3):303-331.
    [95]钱晓刚,高峰,郭为忠.六自由度盾构管片拼装机机构设计[J].机械设计与研究,2008,24(1):17-20.
    [96]赫亮,蔡永立.一种新型盾构机管片自动拼装机器人的设计[J].科技信息,2006,(5):59-60.
    [97]赵志杰,金先龙,曹源,等.盾构隧道通用管片虚拟拼装系统[J].计算机辅助设计与图形学学报,2007,19(9):1196—1199.
    [98]Braksma J, Klassen B, Babusk R. Hybrid control design for a robot manipulator in shield tunneling machine[J]. Informatics in Control, Automation and Robotics,2006,:143-150.
    [99]Cheng W C, James C N. Feasibility study of applying SOFO optical fiber sensor to segment of shield tunnel[J]. Tunneling and Underground Space Technology,2009, (24):331-349.
    [100]Comejo L. Instability at the face:its repercussions for tunneling technology[J]. Tunnels and Tunneling,1989,21:69-74.
    [101]Davis E H, Gunn M J, Mair R J, et al. The stability of shallow tunnels and underground openings in cohesive material[J]. Geotechnique,1980,30(4):397-416.
    [102]Lee I M, Nam S w, Jae H A. Effect of seepage force on tunnel face stability [J]. Canadian Geotechnical Journal,2003,40:342-350.
    [103]陈立生,王洪新.士压平衡盾构平衡控制的新思路[J].上海建设科技,2008,(5):18-21.
    [104]Bezuijen A, Talmon A M, Joustra J F, et al. Pressure gradients at the EPBM face[J]. Tunnels & Tunnelling International,2005, (12):14-17.
    [105]施吉林,张宏伟,金光日.计算机科学计算[M].北京:高等教育出版社,2005.
    [106]Ma W Y, Kruth J P. Parametrisation of randomly measured points for the least squares fitting of B spline curves and surfaces[J]. Computer Aided Design,1995,27(9):663-675.
    [107]王仁宏.数值计算[M].北京:高等教育山版社,1999.
    [108]施法中.计算机辅助儿何设计与非均匀有理B样条[M].北京:高等教育山版社,2001.
    [109]Kennedy J, Eberhart R C. Particle Swarm Optimization[C]. Proceedings of the IEEE International Conference on Neural Network, Piscataway NJ:IEEE Service Center,1995.1942-1948.
    [110]Eberhart R C, Kennedy J. A new optimizer using particle swarm theory[C]. Proceeding on 6th International symposium on Micromachine and Human Science, Piscataway NJ:IEEE Service Center,1995.39-43.
    [111]Parsopoulos K E, Vrahatis M N. Particle swarm optimization method for constrained optimization problems [C]. Proceedings of the Euro-international Symposium on Computational Intelligence Kosice, SK,2002,214-220.
    [112]Hu X, Shi Y, Eberhart R C. Recent advance in particle swarm[C]. Piscataway, NJ:2004.90-97.
    [113]Jiang Y, Hu T S, Huang C C. An improved particle swarm optimization algorithm [J]. Applied Mathematics and Computation,2007,193:231-239.
    [114]Anagnostou G, kovari K. Face stability conditions with earth-pressure-balanced shileds[J]. Tunneling and Undergroud Space Technology,1996,11(2):165-173.
    [115]Reilly J J. The management process for complex undergroud and tunneling projects[J]. Tunneling and Undergroud Space Technology,2000,15(1):31-44.
    [116]Manuel J, Melis M, Luis E, et al. Discrete Numerical Model for Analysis of Earth Pressure Balance Tunnel Excavation[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(10): 1234-1242.
    [117]Suykens J A K, vandewalle J. Least squares support vector machine[J]. Neural Processing Letters, 1999,9(3):293-300.
    [118]Vapnik V. The nature of statistical learning theory[M]. New York:Springer,1999.
    [119]Suykens J A K, Van G T, De B J, et al. Least squares support vector machines[M]. Singapore:World Scientific Publishing Co.,2002.
    [120]Mallat S G. A theory for multiresolution signal decomposition:the wavelet representation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1989,11(7):674-693.
    [121]李建平,唐远炎.小波分析方法的应用[M].重庆:重庆大学出版社,1999.
    [122]梁锡坤.B样条类曲线曲面理论及其应用研究[D].合肥:合肥工业大学,2003.
    [123]武力,屈福政,孙伟,等.基于离散元的土压平衡盾构密封舱压力分析[J].岩土工程学报,2010,32(1):18—23.
    [124]Woo Z W. A PID type fuzzy controller with self-tuning scaling factors[J]. Fuzzy Sets and Systems, 2002,115(2):321-326.
    [125]Thompson R, Dexter A. A fuzzy decision-making approach to temperature control in air-conditioning system[J]. Control Engineering Practice,2005,13(6):689-698.
    [126]阎威武,常俊林,邵惠鹤.基于滚动时间窗的最小二乘支持向量机回归估计方法及仿真[J].上海交通大学学报,2004,38(4):524-532.
    [127]Zhu Y F, Mao Z Y. Online optimal modeling of LS-SVM based on time window[C].2004 IEEE International Conference on Industrial Technology,2004,1326-1330.
    [128]Zhou W D, zhang L, Jiao L C. An analysis of SVMs generalization perfonnance[J]. Acta Electronica Sinica,2001,29(5):590-595.
    [129]Krogstard H E. The karush-kuhn-tucker theorem-a summary[EB/OL]. http://www.math.ntnu.noi /-hek/Optimering2004/KKT theorem.pdf,.
    [130]张庭华.土压平衡盾构土舱压力控制技术研究[J].铁道标准设计,2005,(8):83-85.
    [131]刑彤,龚国芳,胡国良,等.盾构刀盘驱动的电液比例控制系统的设计与实验[J].煤炭学报,2006,31(4):520-524.
    [132]Mayne D Q, Rawlings J B, Rao C V, et al. Constrained model predictive model control:Stability and optimality[J]. Automatica,2000,36(6):789-814.
    [133]Camacho E F, Bordons C. Model predictive control[M]. London:Springer,1999.
    [134]刑彤,赵阳.盾构掘进土层识别及刀盘转速控制策略研究[J].浙江工业大学学报,2010,38(6):649-654.
    [135]Arzen K E. An architecture for expert system based feedback control[J]. Automatica,1989,25(6): 813-827.
    [136]Yang C H, Shen D Y, Wu M. Synthesis of qualitative and quantitative methods in a coal blending expert system for coke oven[J]. Acta Automatica Sinca,2002,3(3):238-251.
    [137]Morari M, Lee J H. Model predictive control:Past, present and future[J]. Computers and Chemical Engineering,1999,23(4):667-682.
    [138]Dorigo M, Maniezzo V, Colorni A. Ant system:optimization by a colony of cooperating agents. IEEE Transaction on Systems[J], Man and Cybernatics,1996,26:28-41.
    [139]Dorigo M. Optimization, learning and natural algorithms[D]. Italy:Politecnico di Milano,1992.
    [140]Dorigo M, Gambardella L M. Ant colonies for the traveling salesman problem[J]. BioSystems,1997, 43:73-81.
    [141]Walter J G. ACO algorithms with guaranteed convergence to the optimal solution[J]. Information Processing Letters,2002,82:145-153.
    [142]Thomas S, Holger H. Max-min ant system and local search for combinatorial optimization problems[C]. Proceeding of 2nd International Conference on Metaheuristics,Sophia-Antipolis, France:Springer-Verlag,1997,1-15.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700