盾构模拟试验平台电液控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构机是集机械、电气、液压、测量、控制等多学科技术于一体、专用于地下隧道工程开挖的技术密集型重大工程装备。它需要针对不同地层地质要求进行设计制造,而目前国内并没有合适的设计理论和方法来进行指导,也没有掌握相应的设计理论,所以有必要搭建盾构模拟试验平台,用来模拟不同类型的盾构机在不同地层中的掘进过程,开展土压平衡盾构在典型地质条件下的控制策略、设计理论及计算方法的研究。这将有利于提高我国盾构机的设计制造水平,扩大盾构机的国产率。盾构模拟试验平台中,盾构机电液控制系统是其关键和难点所在。
     论文以盾构模拟试验平台为研究对象,模拟实际盾构施工过程中的工况要求,采用电液比例控制技术对盾构模拟试验平台液压系统进行了原理设计。设计了一种基于压力流量复合控制的盾构推进电液控制系统,对推进系统中推进压力和推进速度的控制以及同步协调控制进行了分析研究。仿真和实验结果表明采用压力流量复合控制技术可实时控制推进系统的推进压力和推进速度,满足推进过程中随时变化的推进压力和推进速度的要求;同时采用主从式同步PID控制可使液压缸的同步精度范围控制在±3mm之间,满足掘进要求。对土压平衡的控制机理进行了实验研究,通过对密封仓内土仓压力的实时反馈来控制螺旋输送机的转速,可控制土压力在设定范围,基本实现土压平衡,实验结果表明粘土层中的土仓压力值一般控制在20KPa。论文还推导了盾构机总推力和刀盘扭矩的计算公式,对盾构机工作参数与土体的关系进行了实验研究,实验结果表明在土压平衡的情况下,刀盘扭矩和盾构总推力有良好的线性关系,并且盾构总推力随着推进距离的增加而缓慢地增加。本文的研究成果为实际盾构机的设计制造提供了相关参考依据。
     论文主要研究内容如下:
     第一章,阐述了盾构机以及盾构模拟试验平台的国内外发展概况及现状,论述了盾构机电液控制系统需要解决的关键技术问题。提出了本课题的研究内容以及完成论文所要进行的研究工作。
     第二章,在对实际盾构机施工过程中的工况要求进行分析的基础上,采用电液比例控制技术对盾构模拟试验平台电液控制系统进行了原理设计。包括基于压力流量复合控制技术的推进液压系统;采用电比例反馈控制技术的螺旋输送机液压系统以及采用全局功率自适应技术的刀盘驱动液压系统
     第三章,介绍了盾构模拟试验平台监控系统软硬件结构设计。利用基于CC-Link现场总线的PLC控制实现了盾构液压系统的控制功能,同时对盾构液压系统进行了PLC控制设计;采用组态王对盾构机液压监控系统界面进行开发设计。
     第四章,采用AMESim和MATLAB仿真软件建立了推进电液控制系统的仿真模型。对盾构推进液压系统的压力控制特性和速度控制特性进行仿真分析。结果表明采用压力
The shield tunnelling machine is a type of complicated engineering equipment that is widely applied in the underground tunnel excavation, which is related with subjects of machinery, electronics, hydraulics, measurement and control. Based upon the different kinds of geological conditions, each one of shield tunnelling machines has to be designed and manufactured individually. However, the design theory and method of the shield tunnelling machine is not perfect at present, it is necessary to establish a simulator test rig of shield tunnelling machine for simulating the tunnel excavations under the conditions of different local geological structures. In this thesis, a new design theory and a calculation method in the electro-hydraulic control system are proposed to improve the design level of the shield tunnelling machine.
    Based upon the analysis of the working conditions in the tunnel excavations, a principle design of hydraulic systems for simulator test rig is carried out theoretically with electro-hydraulic proportional control technique. The electro-hydraulic control system of shield thrust system with integration of pressure and flow control is put forward. The control method of both the thrust pressure and the thrust speed is investigated, and the synchronization control of the hydraulic cylinders is also completed. The simulation and experimental results show that the thrust pressure and thrust speed can be controlled through the integration of pressure and flow control technique, and the synchronization precision of the thrust system can be controlled within the range of ±3 mm, which can meet the requirements of the tunnelling process. On the other hand, the earth pressure balance mechanism is analyzed. The earth pressure can be controlled within the range of set value by controlling the revolving speed of the screw conveyor according to the real time feedback of the earth pressure in the working chamber, which can realize the earth pressure balance basically, and the experimental results show that the earth pressure is generally at 20 KPa in the clayey soil. Moreover, the calculation equations of the total thrust force and the torque of the cutting wheel are obtained, and the relationships between the working parameters of the shield and the soils are discussed. The experimental results show that the total thrust force and the torque of the cutting wheel has a good linear relationship, and the thrust force is increased slowly with the increasing of the thrust displacement. These results would provide the theoretical references for the shield design and manufacture.
    The main content of each chapter is summarized as following:
    In chapter 1, the history and current research status of the shield tunnelling machine and the simulator test rig are introduced based on a lot of the publications and conference papers. The key techniques of electro-hydraulic control systems of shield tunnelling machine are also described. Consequently, the research and the goal of the project are brought forward.
    In chapter 2, the electro-hydraulic control systems of the simulator test rig are designed with the proportional electro-hydraulic control technique based on the analyses of the shield tunnelling machines, including the thrust hydraulic system with integration of pressure and flow control technique, the screw conveyor hydraulic system with electric proportional
引文
[1] 杨华勇,龚国芳.盾构掘进机及其液压技术的应用[J].液压气动与密封,2004(1):27-29.
    [2] Naitoh K. The development of earth pressure balanced shields in Japan[J]. Tunnels & Tunnelling. 1985(5): 15-18.
    [3] 施仲衡.盾构机在中国地铁建设中的应用[J].建筑机械,2002(5):20.
    [4] Thames Tunnel Shield[EB/OL]. http://web.ukonline.co.uk/b.gardner/brunel/tunnel.html.
    [5] The Brunel Engine House[EB/OL]. http://www.brunelenginehouse.org.uk/shield.asp.
    [6] Russell L. Building underground: a new concept for tunneling in soft soil[J]. Ports and Dredging, 1996,146:15-17.
    [7] 张凤徉,李炯,沈钧.盾构隧道工法进展概况[J].工程勘察与施工信息,1998(12):7-10.
    [8] Challenges and changes: Japan's tunnelling activities in 1988—Part l[J]. Tunnelling and Underground Space Technology, 1989(2): 215-224.
    [9] Challenges and changes: Japan's tunnelling activities in 1988—Part 2[J]. Tunnelling and Underground Space Technology, 1989(3): 337-342.
    [10] 李国英.盾构技术及其在日本的应用与发展[J].水利水电施工,1996(3):38-41.
    [11] Juan M Schmitter, Raul R Lopez. Sluury shield tunnelling for Mexico City drainage. Tunnels & Tunnelling, 1993(1): 41-44.
    [12] Siegmund Babendererde. Tunnelling Machines in soft ground: a comparison of slurry and EPB shield systems[J]. Tunnelling and Underground Space Technology, 1991, 6(2): 169-174.
    [13] G. Anagnostou, K. Kovari. The face stability of slurry-shield-driven tunnels[J]. Tunnelling and Underground Space Technology, 1994, 9(2): 165-174.
    [14] Martin Herrenknecht. EPB or slurry machine: the choice[J]. Tunnels & Tunnelling, 1994(6): 35-36.
    [15] Tadao Yoshikawa. Soft ground tunnel shields in Japan[J]. Tunnels & Tunnelling, 1985(7): 45-47.
    [16] 刘仁鹤,刘方京.土压平衡盾构技术浅谈[J].工程机械,2000(8):25-28.
    [17] 加须佐渡.日本盾构掘进技术的现状和展望[J].日刊《城市地下建筑物论文集》,53-54.
    [18] Ching-Kuang Chen. Japanese technology in Taiwanese harbour seabed shield drive[J]. Tunnels & Tunnelling, 1984(12): 35-38.
    [19] Hisakazu Matsushita. Earth pressure balanced shield method[J]. Tunnels & Tunnelling, 1980(1): 47-49.
    [20] 胡胜利,乔世珊.土压平衡式盾构机—盾构机系列讲座之二[J].建筑机械,2000(1):24-26.
    [21] EPB Shield[EB/OL]. http://www.herrenknecht.de/en/2_maschinen/html/25_epbschilde.html.
    [22] G. R. Flint. Tunnelling using earth pressure balance machine for the boulac spine sewers of the greater cairo wastewater project[J]. Tunnelling and Underground Space Technology, 1992, 7(4): 415-424.
    [23] Shani Wallis. Anacostia challenges America's first Japanese EPBS[J]. Tunnels & Tunnelling, 1987(3): 27-30.
    [24] C. Gonzalez, C. Sagaseta. Patterns of soil deformations around tunnels. Application to the extension of Madrid Metro[J]. Computers and Geotechnics. 2001 (28): 445-468.
    [25] Peter Darling. Steep tunnelling for EPBM under the Avon Estuary[J]. Tunnels & Tunnelling, 1993(1): 17-19.
    [26] Shani Wallis. UK EPB machine conquers Bordeaux's Karstic limestone[J]. Tunnels & Tunnelling, 1994(7): 43-46.
    [27] Giles Emerson. The Channel Tunnel-The world's longest Undersea tunnels system[G], Foreign & Commonwealth Office, London,1994.
    [28] 英吉利海峡隧道[EB/OL].http://www.bjkp.gov.cn/bjkpzc/kxcl/wk/lnkpwk/jdgc/45250.shtml, 2005-10-11
    [29] 魏百术,罗人宾.盾构推进姿态动态管理初探[J].铁道建设,2004(3):33-39.
    [30] J. Schmitt, M. Fritsch, C. Kuhn, et al. Einfluss der stoffiichen Modellierung auf die numerische Simulation eines Schildvortriebs[J]. 21st CAD-FEM User's Meeting 2003, International Congress on FEM Technology, Potsdam, Germany. Nov. 12-14,2003
    [31] I W Farmer, N H Glossop. Mechanics of disc cutter penetration[J]. Tunnels & Tunnelling, 1980(7), 22-25.
    [32] Richard Robbins, Martin Kelley. Tunnelling Machine Development for Undersea Project- a Review of the issues[J]. Tunnelling and Underground Space Technology, 1994, 9(3): 323-328.
    [33] J.S. Jeona, C.D. Martinb, D.H. Chan, et al. Predicting ground conditions ahead of the tunnel face by vector orientation analysis[J]. Tunnelling and Underground Space Technology, 2005(20): 344-355
    [34] 薛备芳.我国盾构掘进机的现状和发展策略[J].世界隧道,1999(6):26-31.
    [35] Jim Lock. State-of-the-art technology aids tunnelling techniques[J]. Tunnels & Tunnelling, 1994(10): 43-44.
    [36] 魏康林,朱伟,黄红女.盾构隧道施工技术发展新动向[J].河海大学学报,2001(12):157-161.
    [37] 董必钦.加速发展我国全断面隧道掘进设备的思考[J].建筑机械,2002(5):14-19.
    [38] Peter J Tarkoy. Selecting used tunnel boring machines: the pros and cons[J]. Tunnels & Tunnelling, 1983(12): 20-25.
    [39] 闵锐.复合型盾构掘进机刀盘的设计分析[J].建筑机械,2004(8):68-70.
    [40] 李惠平,夏明耀,胡伟伟.多圆形盾构工法及其应用[J].地下工程与隧道,1994(4):31-35.
    [41] Richard Lewis. The changing face of the TBM[J]. Tunnels & Tunnelling, 1994(5): 35-37.
    [42] Shani Wallis. Screw conveyors will take the pressure[J]. Tunnels & Tunnelling, 1990(4): 31-34.
    [43] Simon Walker. Protecting yourself from tunnelling hazards[J]. Tunnels & Tunnelling, 1993(4): 45-47.
    [44] 杨宏燕,顾德焜.土压平衡盾构监控系统研制与应用[J].上海市政工程,2000(4):59-60.
    [45] 唐健.盾构机电气控制系统设计概要[J].隧道建设,2002(1):33-35.
    [46] 傅德明.隧道盾构掘进机技术和沉管法施工回顾及其展望[J].工业技术进步,2001(5):23-26.
    [47] Xuanyuan Xiaowen, Yan Jinxiu. State-of-the-art of Tunneling and Underground Works in the mainland of China[J]. Tunnels&Tunnelling International Chinese Edition. 1999(1): 45-49.
    [48] Gao Quqing. Construction of underground works in shanghai, P.R.C.[J]. Tunnelling and Underground Space Technology. 1989, 5(4): 357-362.
    [49] B. J. Reilly. EPBMs for the north East line project[J]. Tunnelling and Underground Space Technology. 1999(4): 491-504.
    [50] Shani Wallis. TBM contribution to China's economic development[J]. Tunnels & Tunnelling, 1991(6): 36-38.
    [51] 吕建中,石元奇,楼如岳.大断面矩形隧道偏心多轴顶管机的设计和应用[J].上海建设科技,2004(2):16-18.
    [52] 藤丽.双圆盾构推进引起地表变形理论分析及试验研究[A].大直径隧道与城市轨道交通工程技术—2005上海国际隧道工程研讨会论文集,上海:同济大学出版社,2005:567-572.
    [53] 周文波,郑宜枫,藤丽,等.双圆盾构隧道施工过程中管片力学性状的原位测试研究[A].大直径隧道与城市轨道交通工程技术—2005 上海国际隧道上程研讨会论文集,上海:同济大学出版社,2005:573-577.
    [54] 石中柱.北京首台土压平衡盾构机的研制[J].地下工程与隧道,2000(3):18-21.
    [55] 掘进机刀盘—刀具与液压驱动系统[EB/OL].http://info.wujin.hc360.com/2005/12/16083022856.shtml, 2005-12-16.
    [56] 国产盾构机地铁施工显神威[EB/OL].http://www.cast.org.cn/n435777/n435799/n561674/n562078/10244.html, 2006-02-08.
    [57] 杨宏燕.土压平衡盾构监控系统研制技术[J].地下工程与隧道,2000(3):36-41.
    [58] 田东升,张照煌.掘进机盘形滚刀破岩工作模拟及分析[J].工程机械,2000(2):11-13.
    [59] 奚志勇,杨宏燕,顾德焜.φ11.22 m泥水平衡盾构监控系统的应用和开发研究[J].地下工程与隧道,1996(3):18-23.
    [60] 于颖,徐宝富,奚鹰,等.异形断面盾构切削机构分析[J].同济大学学报(自然科学版),2005,33(3):376-379,408.
    [61] 刘瑞庆.不同地质情况下掘进参数的选择标准及经验[J].建筑机械,2000(7):40-42.
    [62] 曾晓清,张庆贺.盾构法隧道施工技术新进展[J].地下工程与隧道,1995(1):7-12.
    [63] 董必钦.对我国全断面隧道掘进设备发展的思考[J].中国水利,2005(22):35-36.
    [64] 上海隧道工程股份有限公司,盾构地层适应性设计理论、方法和模拟试验平台技术鉴定资料[G].2004(12).
    [65] Testing Equipment for Ground Control Foaming Agents California USA[EB/OL]. http://www.ctstbm.com/gallery_pages/foamtester.htm.
    [66] Yukinori Koyama. Railway construction in Japan. Japan Railway & Transport Review[J], December 1997, 36-41.
    [67] Shimizu, Y., K. Yamazato, S. Nishida. Estimation of Shield Movement with FEM[J], J. JSCE, 1997, 40(575), 243-248.
    [68] K. Komiya, K. Soga, H. Akagi, et al. Soil consolidation associated with grouting during shield tunnelling in soft clayey ground [J]. Géotechnique, No.10, 2001, 835-846.
    [69] Yung_Show Fang. Time and settlement in EPB shield tunnelling. Tunnels & Tunnelling[J], 1993(11): 27-28.
    [70] 刘洪州,孙钧.土压平衡盾构与地层沉降的根源及其影响因素分析[J].岩土工程师,2002(5):5-9.
    [71] 路甬祥,胡大紘.电液比例控制技术[M].北京:机械工业出版社,1988.
    [72] 路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002.
    [73] 吴根茂,邱敏秀,王庆丰,等.实用电液比例技术[M].杭州:浙江大学出版社,2005.
    [74] Eric Merrifield. Recent innovations in TBM development[J]. Tunnels & Tunnelling, 1990(1): 44-46.
    [75] Yoshiyuki SHIMIZU, Masayuki ISAKA, Shoji NISHIDA, et al. Moving Characteristics of Shield Tunneling Machine with Multi Circular Face[J]. Trans. JSME C, 1994, 60(569): 144-152.
    [76] Shimizu, Y., M. Suzuki. Study of the moving characteristics of a shield tunneling machine (model experiment and design of the control system)[J]. Trans. JSME C, 1992, 58(550): 155-161.
    [77] Shimizu, Y., M. Suzuki. Study of the moving characteristics of a shield tunneling machine (2nd report, analysis of operation data and verification of control system by full-scale tests)[J]. Trans. JSME C, 1992, 58(554): 121-128.
    [78] Shimizu, Y., M. Suzuki, K. Imai, et al. Position Control of a Shield Machine Used for Laying Pipelines and Tunneling[A], in Proceedings of the 7th International Symposium on Freight Pipelines (Woilongong, Australia), G. F. Round, Ed. Amsterdam, New York: Elsevier, 1992:383-387.
    [79] Herbert Heitkamp, Rolf Stoltz. Method of ,and apparatus for, controlling the advance of a tunnel drive shield[P]. United States Patent, 4095436, Jun. 20,1978.
    [80] Walter Weirich, Herbert Heitkamp. Hydraulic control system for and methods of controlling the operation of tunnelling apparatus[P]. United States Patent, 4391553, Jun. 5,1983.
    [81] 李强,曾德顺.盾构千斤顶推力变化对地面变形的影响[J].地下空间,2003(3):12-15.
    [82] 刘东亮.电液比例技术在盾构推进系统中的应用[J].建筑机械,2005(8):93-95.
    [83] 汪茂祥.盾构机不能往前推进的原因分析[J].工程机械与维修,2003(4):112-114.
    [84] 庄欠伟,龚国芳,杨华勇.盾构机推进系统分析[J].液压与气动,2004(4):11-13.
    [85] 周杜鑫,黄毅,李新利,等.进口小松TM614隧道掘进机的改造与改进技术研究[J].建筑施工,2005(8):44-48.
    [86] 陈传灿.顶管掘进机激光导向控制系统设计与分析[J].建筑机械,2001(10):26-28.
    [87] 陈传灿.土压平衡式顶管掘进机泥土仓压力控制系统的设计与分析[J].建筑机械,2001(11):48-50.
    [88] 陈传灿.DK式顶管掘进机泥土仓土压力控制系统研究[J].筑路机械与施工机械化.2001(6):5-6.
    [89] 房猛.盾构推进机构电液控制系统的研究[D]:[硕士学位论文].杭州:浙江大学,2003.
    [90] 庄欠伟.土压平衡式盾构电液控制系统集成技术及其应用[D]:[硕士学位论文].杭州:浙江大 学,2005.
    [91] G.Anagnostou, K. Kov'ari. Face stability conditions earth-pressure-balanced shields. Tunnelling and Underground Space Technology, 1996(2): 165-173.
    [92] S. Kanayasu, I. Kubota, N. Shikibu. Stability of face during shield tunneling - A survey of Japanese shield tunneling[J]. Fujita and Kusakabe, 337-343.
    [93] 刘东亮.EPB盾构掘进的士压控制[J].铁道工程学报,2005(2):45-50.
    [94] 魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J].工程机械,2005(1):18-19,59.
    [95] Richard F Flanagan. Ground vibration from TBMS and shields[J]. Tunnels & Tunnelling, 1993(10): 30-33.
    [96] 孙钧,易宏伟.地铁隧道盾构掘进施工市区环境土工安全的地基变形与沉降控制[J].地下工程与隧道,2001(2):11-13.
    [97] 孙钧,袁金荣.盾构施工扰动与地层移动及其智能神经网络预测[J].岩土工程学报,2001(3):261-267.
    [98] S. Quebaud, M. Sibai, J.-R Henry. Use of Chemical Foam for Improvements in Drilling by Earth-Pressure Balanced Shields in Granular Soils[J]. Tunnelling and Underground Space Technology. 1998(2): 173-180.
    [99] Cheng Yeh. Application of neural network to automatic soil pressure balance control for shield tunneling[J]. Automation in construction. 1997(5): 421-426.
    [100] 日立建机[EB/OL].http://www.hitachi-c-m.com/cn/products/tunnel/supplementary_devices/supplementary_devices.html.
    [101] M. Alvarez Grima, P.A. Bruines, E N. W. Verhoef. Modeling Tunnel Boring Machine Performance by Neuro-Fuzzy Methods[J]. Tunnelling and Underground Space Technology. 2000(3): 259-269.
    [102] Yasumasa Suzuki. The segment auto carrier system for the shield works[J]. Proceedings of the International-Congress ITA 1990.
    [103] 周文波,胡珉.盾构法隧道施工智能化辅助决策系统的研制与应用(上)[J].上海建设科技,2001(2):12-13.
    [104] 周文波,胡珉.盾构法隧道施工智能化辅助决策系统的研制与应用(下)[J].上海建设科技,2001(3):17-18.
    [105] 顾德焜.地铁10号盾构电气系统技术综述[J].上海隧道,1999(2):39-42.
    [106] 张庆贺,朱忠隆,周希圣.盾构法隧道施工多媒体监控与仿真技术[J].同济大学学报,2001(6):729-732.
    [107] 朱忠隆,张庆贺.盾构法隧道施工沉降预测仿真技术研究[J].世界隧道,2000(5):14-17.
    [108] 宋伯生 编著.PLC编程理论、算法及技巧[M].北京:机械工业出版社,2005.
    [109] 汪晓平 等编著.PLC可编程控制器系统开发实例导航[M].北京:人民邮电出版社,2004.
    [110] 吴道虎,李超钒.基于CC-Link的远程监控系统设计与实施[J].电气时代,2003(6):72-74.
    [111] 鹿玲杰,韩建民,郭福田,等.现场总线技术的研究与应用[J].大庆石油学院学报,1999,23(3):45-47.
    [112] 宋保民,张泾周.上位机与PLC组建分布式控制系统时串口通信的实现[J].机械与电子,2005(1):31-33.
    [113] 施一萍,刘启中,白英彩.基于现场总线的盾构控制系统的设计[J].计算机应用与软件,2005,22(3):24-25.
    [114] 何其平.海瑞克盾构在南京地铁工程中的应用[J].工程机械,2003(2):12-15.
    [115] Bernhald Maidl, Beispiele zum Stand der Schildvortriebs technik in Deutschland[J]. TIS, 1990(12): 856-860.
    [116] 管会生,王伯铭.加拿大LOVAT盾构掘进机的技术特点[J].工程机械,2003(2):16-18.
    [117] 张海舟.地铁工程盾构机选型实例及WIRTH盾构机的性能特点[J].铁道工程学报,2004(3):37-41.
    [118] 钱七虎,李朝甫,傅德明.全断面掘进机在中国地下工程中的应用现状及前景展望[J].建筑机械,2002(5):28-35.
    [119] 李弼越,Richard J..隧道掘进机与中国[J].建筑机械,2002(5):58-60.
    [120] 付毅飞.国产盾构加速地铁建设[EB/OL].http://www.stdaily.com/gb/zoujin863/2005-10/18/content_444332.htm,2005-11-02.
    [121] 傅德明,黄均龙,孙静毅.模拟盾构掘进机试验用的模拟土箱[P].中国:200410089262.6,2005.
    [122] 傅德明,李向红,刘计山.大型多功能盾构掘进模拟试验台的研制[J].工程机械,2005(12):14-17.
    [123] 魏建华,宋德玉,陈宁.掘进机上位机监控系统的研究及实现[J].煤炭学报,2004,29(4):481-486.
    [124] 孙钧,胡向东.盾构隧道施工监控系统数据库的研究[J].地下工程与隧道,2002(1):2-9.
    [125] MITSUBISHI.三菱可编程控制器培训教材-Q编程[M].上海FA中心,2004.
    [126] Powerful Data Logger and Flexible Data Acquisition and Data Logging Systems[EB/OL]. http://datataker.com.
    [127] 三相四线制智能电量隔离变送器[EB/OL].http://www.sset.cn/pro_ce_A_AJ41.htm.
    [128] 北京亚控科技发展有限公司.组态王6.5使用手册[M].2005.
    [129] 马国华,监控组态软件及其应用[M].北京:清华大学出版社,2001.
    [130] 张智杰,黄明键.PLC及其在组态软件中的应用[J].山东电子,2002(2):25-26.
    [131] 王晓明.基于组态软件的盾构试验平台控制与管理[D]:[硕士学位论文].南京:东南大学,2005.
    [132] 龚力,马旭东.盾构掘进实验平台计算机监控系统[J].工业控制计算机,2005,18(9):3-5.
    [133] 吴润华.盾构掘进试验平台监控系统的开发和应用[D]:[硕士学位论文].南京:东南大学,2005.
    [134] 吴兆宇.盾构模拟掘进试验平台电气监控技术[A].大直径隧道与城市轨道交通工程技术—2005上海国际隧道工程研讨会论文集,上海:同济大学出版社,2005:499-505.
    [135] 陈屏华.三菱CC-Link控制与通讯总线在工业控制中的应用[J].制造业信息化,2004(1):46-47.
    [136] 覃强.开放式现场总线CC-Link综述[J].仪器仪表标准化与计量,2002(2):7-11.
    [137] 王亚民,陈青,刘畅生,等.组态软件设计与开发[M].西安:西安电子科技大学出版社,2003.
    [138] Imagine company. AMESim user manual[M],Version 4.0, France: Imagine S. A., 2002.
    [139] 秦家升,游善兰.AMESim软件的特征及其应用[J].工程机械,2004(12):6-8.
    [140] 马长林,黄先祥,郝琳.基于AMESim的电液伺服系统仿真与优化研究[J].液压气动与密封,2006(1):32-34.
    [141] 薛定宇.控制系统计算机辅助设计MATLAB语言及应用[M].北京:清华大学出版社,1997.
    [142] 陈宏亮,李华聪.AMESim与Matlab/Simulink联合仿真接口技术应用研究[J].流体传动与控制,2006(1):14-16.
    [143] 李谨,邓卫华.AMESim与Matlab/Simulink联合仿真技术及应用[J].情报指挥控制系统与仿真技术,2004,26(5):61-64.
    [144] 李洪人.液压控制系统(修订本)[M].北京:国防工业出版社,1990.
    [145] 卢长耿,李金良.液压控制系统的分析与设计[M].北京:煤炭工业出版社,1991.
    [146] 黄方平.变频闭式液压动力系统的设计及应用研究[D]:[硕士学位论文].杭州:浙江大学,2005.
    [147] 徐鸣谦,郦科,萧子渊,等.双缸液压电梯的同步控制[J].同济大学学报,1999,27(5):545-548.
    [148] 田恕倩,黄琪,傅林坚,等.基于无芯挤压原理的多通管件成形液压机研究[J].液压与气动,2005(10):67-69.
    [149] 庄乐和.十力学[M].北京:地质大学出版社,1982.
    [150] 李向红,巴雅吉乎.φ1800 mm土压平衡盾构掘进试验研究[A].大直径隧道与城市轨道交通工程技术—2005上海国际隧道工程研讨会论文集,上海:同济大学出版社,2005:485-492.
    [151] 张梅军,杨小强,何世平.全断面掘进机推进液压缸推压力的确定[J].工程机械,1999(8):9-10.
    [152] 陈英盈.土压平衡盾构机主要技术参数的选择[J].建筑机械化,2004(6):48-50,59.
    [153] 朱伟.隧道标准规范(盾构篇)及解说[M].北京:中国建筑工业出版社,2001.
    [154] 徐开达,何维亨,周杜鑫,等.软土地基盾构推进力和衬砌摩阻力的测试研究.建筑施工,1995(5):30—33.
    [155] 周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004.
    [156] Bernhard Maidl, Martin Herrenknecht, Lothar Anheuser. Mechanised Shield Tunnelling[M]. Berlin: Erbst & Sohn, 1996.
    [157] 施仲衡.地下铁道设计与施工[M].西安:陕西科学技术出版社,2002.
    [158] 宋克志.无水砂卵石地层盾构推力及刀盘扭矩的计算[J].建筑机械,2004(10):58-60,63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700