土压平衡式盾构机监控系统的设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对国内盾构机中的监控系统多是由国外进口,技术封锁严重,并且盾构施工多是人工操作,控制精度低,安全隐患大的实际问题,论文以保证掘进安全、自动化程度高、功能完整的盾构机监控系统设计开发为选题,具有特别重要的实际工程意义。
     本文首先介绍了盾构机的组成和工作过程,结合实际施工的需要,对监控系统的需求进行了分析。为了实现盾构机的自动控制,监控系统应该具有以下功能:数据采集、数据显示、数据管理、报警、模型仿真以及盾构机先进控制等。为了实现所需功能,本文对监控系统的整体结构进行了设计,结构分为四层:掘进监控层、数据管理层、计算仿真层和信息远程发布层。其中,掘进监控层使用WinCC组态软件实现过程监控,用PLC采集掘进数据;数据管理层中提出了基于OPC技术的实时数据和历史数据的管理方案,解决了盾构机子系统数据统一管理困难的问题;计算仿真层中,把Matlab作为后台计算的工具,利用OPC技术实现组态软件与Matlab之间、关系数据库与Matlab之间的通信,为先进控制的实施提供了便利;信息远程发布层提供了数据的web应用,使远程操作人员可以随时浏览和处理掘进信息。另外,为了方便系统的开发,本文把监控系统划分为六个模块:用户管理模块、盾构机子系统模块、冗余模块、数据库模块、计算仿真模块和通讯模块。针对密封舱土压人工控制精度低的问题提出了通过在Matlab中用BP神经网络建立土压预测模型和实现Matlab与WinCC组态软件实时通信来为操作人员提供更精确的参考信息的决策方案。论文还使用WinCC工具箱中WinCC TAG Simulator功能对系统进行了测试,并在系统中检验了土压预测模型的有效性,结果表明:系统的设计是合理和可行的,可以满足盾构机掘进过程的监控要求。
Most supervision systems used in domestic are imported from aboard, technology blockade is very serious. And currently most domestic construction operation is manual control whose control precision is low and risk is high. With the aim of ensuring the safety of shielding process, highly automated, full-featured, this paper has especially important practical engineering significance.
     Firstly, this paper introduces the composition and the working process of shield machine, combined with the actual needs of the construction, analyze the demands for this supervision system. In order to achieve automatic control of shield machines, this supervision system should have the following functions:data acquisition, data display, data management, alarm, simulation and calculation model and advanced control of shield machine. In order to achieve the required functionality, the overall structure of the supervision system is divided into four layers:tunneling monitoring layer, data management layer, simulation layer and information remote release layer. Among them, tunneling monitoring layer controls and monitors the process with WinCC and collects data with PLC; data management layer is based on OPC protocol combined with real time data base and relational data base, which solves the difficult problem of shield machine system data management; in simulation layer, Matlab is a calculated tool in the background which communicates with the relational data base and WinCC with OPC protocol, under the help of this layer, the implementation of advanced control is convenient; information remote release layer provides remote data web application, so that the remote operator can view and deal with real time information. In addition, in order to facilitate system development, this system is divided into six modules:user management module, shield machine subsystem module, redundancy module, database module, calculation and simulation module and communication module. In the view of the low manual control precision of the sealed earth pressure, this paper establish earth pressure prediction model used BP neural network and achieve real-time communication between Matlab and WinCC. This study provides more accurate reference information for the operator in decision-making program. The paper uses WinCC TAG Simulator function to test the system and the validity of earth pressure prediction model, the results show that:the system design is reasonable and practicable, meeting monitoring requirements the shield tunneling process.
引文
[1]王守强.盾构施工技术及其应用[J].水利水电科技进展.1997,17(3):5-11.
    [2]张照煌,李福田.全断面隧道掘进机施工技术[M].北京:中国水利水电出版社,2006.
    [3]张凤祥.盾构隧道[M].北京:北京人民交通出版社,2004.
    [4]Richard Robbins, Martin Kelley. Tunneling Machine Development for Undersea Project-a Review of the issues[J].Tunneling and Underground Space Technology,1994,9(3):323-328.
    [5]Naitoh K. The development of earth pressure balanced shields in Japan[J]. Tunnels&Tunnelling.1985, 31(1):15-18.
    [6]杨华勇,龚国芳.盾构掘进机及其液压技术的应用[J].液压气动与密封.2004(1):27-29.
    [7]胡国良,龚国芳,杨华勇等.盾构模拟试验平台液压推进系统设计[J].机床与液压.2005(02):92-94.
    [8]Herrenknecht AG Schlehenweg. Construction of water tunnels by Herrenknecht Microtunnelling Equipment. Schwanau(Germany), Dipl. Ing. Werner Suhm Workshop Tehran, [2003,08,31]. http://www.herrenknecht.de.
    [9]胡珉,周文波.基于多级神经网络的盾构法隧道施工参数控制[J].计算机工程,2005,31(8):192-194.
    [10]Yeh, I-Cheng. Application of neural networks to automatic soil pressure balance control for shield tunneling [J]. Automation in Construction,1997,5(5):421-426.
    [11]薛茹镜,陈冬,吴婧妹.土压平衡盾构排土量控制分析[J].工业建筑学报,2008,38(21):965-967.
    [12]魏百术,罗人宾.盾构推进姿态动态管理初探[J].铁道建设,2004(3):33-39.
    [13]李向红,傅德明.土压平衡模型盾构掘进试验研究[J].岩土工程学报,2006,28(9):1101-1105.
    [14]鲍文红.西门子WinCC V6组态模块的使用[J].安徽冶金科技职业学院学报,2008,(02):86-90.
    [15]Yonghui Zhang,Cheng Shao,Qinghui Wu. RBF Neural Networks-Based Software Sen-sor for Aluminum Power Granularity Distribution Measurement[J],Leeture Notes of Computer Scienee.2004,31(3):860-865.
    [16]罗庚兴,宁玉珊.基于WinCC和STEP7的PID控制[J].机电工程技术,2009,(01):15-19.
    [17]王志开.PLC及WINCC组态软件在自动控制中的应用[J].中国科技信息,2005,(05):66-71.
    [18]胡国良等.盾构螺旋输送机液压驱动及控制系统[J].液压与气动,2004(12):33-36.
    [19]陈宁等.盾构螺旋输送机液压系统设计[J].浙江科技学院学报,2004,16(3):164-166.
    [20]方臻等.顶管掘进机土压平衡的自动化控制[J].煤炭科学技术,2001,29(9)41-42.
    [21]乐贵平.土压平衡式盾构机简介[J].建筑机械,2000(6):24-25.
    [22]聂学伟.基于OPC技术的WinCC实时数据监控应用[J].山西冶金,2008,31(2):112-115.
    [23]赵武,马建伟.基于OPC的MATLAB与WINCC实时数据交换设计与实现[J].2008,12(5):98-103.
    [24]杨金凤,马思乐.基于C Script实现WinCC过程数据归档及报表查询功能[J].工业控制计算机,2007,(02):100-105.
    [25]黄东,罗飞,赵少华,冯炳枢.基于VBScript实现WinCC过程数据归档[J].微计算机信息,2008,(34):58-69.
    [26]黄东,罗飞,赵少华,冯炳枢.基于VBScript实现WinCC过程数据归档[J].微计算机信息,2008,(34):98-102.
    [27]周开利,康耀红.神经网络模型及其MATLAB仿真程序设计[M].北京:清华大学出版社,2005.
    [28]焦李成.神经网络的应用与实现[M].西安电子科技大学出版社,1995.
    [29]胡守仁.神经网络导论[M].国防科技大学出版社,1992.
    [30]侯媛彬,杜京义,汪梅.神经网络[M].西安:西安电子科技大学出版社,2007.
    [31]管会生.土压平衡盾构机关键参数与力学行为的计算模型研究[D].(博土学位论文).四川:西南交通大学,2008.
    [32]张珍,李雷.基于MATLAB的神经网络的仿真[J].长沙通信职业技术学院学报,2007,(01):45-49.
    [33]邹彤.WinCC组态软件的编程技巧[J].化工自动化及仪表,2001,25(02):78-86.
    [34]贾建异,赵解杨,张猛.WinCC数据采集系统中数据访问方法的研究[J].有色金属加工.2007,36(4):53-56.
    [35]樊广军,谢红清,梁建章.WinCC数据库中压缩数据的访问方法研究[J].机械工程与自动化.2006,32(4):521-52.
    [36]胡国良,龚国芳,杨华勇等.盾构螺旋输送机液压驱动及控制系统[J].液压与气动.2004(12):33-35.
    [37]王洪新,傅德明.土压平衡盾构平衡控制理论及试验研究[J].土木工程学报,2007,40(5):61-68.
    [38]张庭华.土压平衡盾构土舱压力控制技术研究[J].铁道标准设计.2005(08):83-84.
    [39]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报.2005(2):45-50.
    [40]Shani Walks. Screw conveyors will take the pressure [J]. Tunnels&Tunnelling,1990(4):31-34.
    [41]胡国良,胡少华,龚国芳等.土压平衡盾构螺旋输送机排土控制分析[J].工程机械.2008,39:35-38.
    [42]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报.2005,24(2):5762-5766.
    [43]干洪新,傅德明,李向红.土压平衡盾构各主要参数的统计分析[J].大直径隧道与城市轨道交通工程技术.2007,248-255.
    [44]陈烘陶.盾构土压平衡系统的建模与仿真研究[D].(硕士学位论文).广州:广东工业大学,2007.
    [45]Mitsutaka Sugimoto, Aphichat Sramoon. Theoretical Model of Shield Behavior During Excavation. Ⅰ Theory [J]. Journal of Geotechnical and Geoenviron-mental Engineering.2002,128(2):138-155.
    [46]Aphichat Sramoon, Mitsutaka Sugimoto, Kouji Kayukawa. Theoretical Model of Shield Behavior During Excavation. Ⅱ:Application [J]. Journal of Geotechnical And Geoenvironmental Engineering. 2002,128(2):156-165.
    [47]廖常初S7-300/400PLC应用技术[M].北京:机械工业出敝杜,2005.
    [48]西门子(中国)有限公司自动化与驱动集团.深入拽出西门子WinCC V6[M]北京:北京航空航天大学出版社,2004.
    [49]侯学渊,刘建航.盾构法隧道[M].上海:上海科学技术出版社,1982.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700