盾构掘进模拟试验系统及土压平衡技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盾构掘进综合了包括光、机、电、液、传感、信息在内的多种学科应用技术,作为专用隧道工程机械,盾构掘进机具有开挖切削土体、输送土渣、拼装隧道衬砌、测量、导向、纠偏等功能。目前国内正在大规模开展隧道工程建设,而国内盾构掘进技术研究尚处于初期。基于掘进机地质适应性和现场施工环境特殊性的特点,有必要采用物理模拟方法研制高水平的掘进机综合模拟试验平台,完善全断面掘进机设计技术,尽快掌握核心关键技术,提高盾构掘进系统可靠性。
     本文以盾构模拟掘进试验系统为研究基础,首先基于实用性和先进性要求对土层模拟加载试验系统进行了设计;根据实际盾构的结构特点和施工过程,完成模拟盾构的电液控制系统设计;针对试验台电液控制系统的监控要求,利用PLC和LabVIEW软件搭建了试验台的监控系统;通过理论分析推导了土压平衡控制数学模型,基于ANFIS推理系统,并应用多模型自适应土压平衡控制系统,通过实验数据对控制系统的性能进行仿真研究。本文的主要研究内容如下:
     第一章先对盾构掘进机的施工原理、组成结构及分类等基本知识进行介绍,随后讲述了盾构掘进机的历史及国内外发展历程,对国内外的盾构试验系统和压力控制技术研究进行详细叙述,并针对目前试验系统设计及研究中的不足提出了本课题的研究意义和主要研究内容。
     第二章设计了利用液压缸加载方式对土体进行加载以模拟现实掘进环境的加载试验系统。根据功能要求采用Soliworks完成加载执行机构及模拟土箱的结构设计,采用Ansys软件对结构强度进行校核。基于不同地质和掘进工况特点对加载驱动液压系统进行设计,完成了设计计算和元件选型。同时也对加载系统中的其他辅助系统和装置进行了设计。
     第三章采用模块化设计方法对模拟掘进机的结构进行设计,并根据实际盾构的施工原理和掘进试验功能要求完成了模拟盾构的电液比例驱动系统的设计,主要包括刀盘驱动系统、推进和铰接系统、螺旋输送系统和管片拼装机系统。同时还设计了泥水加压系统和同步注浆系统,为试验模拟完整的盾构掘进过程奠定基础。
     第四章根据试验现场监控的功能需求完成了试验台监控系统软硬件结构的设计,使用基于Profibus-DP总线的PLC控制系统实现现场数据采集和底层控制功能。在上位机中使用LabVIEW完成人机界面的开发和数据管理系统的设计,对上位机通信、监控界面的设计特点、数据库和控制算法的开发进行了阐述。
     第五章建立了土压平衡控制系统、推进系统和螺旋输送机系统的数学模型,通过理论分析推导得到了推进压力、推进速度和螺旋机转速与土舱压力之间的关系。采用ANFIS推理系统匹配和逼近特定土质下的土压平衡控制模型,结合多模型控制技术设计了变工况复杂地质环境下的土压平衡控制系统,采用三种典型土质条件下的实验数据对切换和加权策略下的两种控制系统的性能进行仿真研究,结果表明基于ANFIS控制器的多模型控制系统在变工况及复杂掘进地质环境中能够达到良好的控制效果。
Shield tunneling machine is a very complicated engineer machinery for tunneling, involving so many technologies on optical, mechanical, electronic, hydraulic, sensing, and informational fields. Shield tunneling machine not only has the functions of cutting and conveying the soils, assembling the tunnel segment, but also can be responsible for measuring, guiding, deviation rectifying. Currently a large scale of tunnel construction is carried on all over the country, whereas the civil research on shield tunneling machine is just on initial stage. Since the complex interaction rule between shield tunneling machine and complicated geological conditionals is still beyond knowledge, it is necessary to build a high level test rig of simulating the construction conditions to obtain the design technology and some other key technologies on shield tunneling machine and to improve the reliability of shield tunneling machine while tunneling.
     According to the demands of practicality and advancement of the test rig, the simulated geological environment consisted of load device, driving system and some other auxiliary systems is designed. Simulation of the electro-hydraulic system in shield has been designed based on the actual structural features and construction process.Considering the monitoring needs of electrohydraulic system, the monitoring system is built on the basis of PLC and LabVIEW. Through theoretical analysis, the mathematic model of the earth pressure balance control is deduced. Base on the analysis of the relationship between control parameters and earth pressure of chamber, multiple-model adaptive earth pressure balance control system is established by use of ANFIS. Furthermore, the character of the control system is tested by simulation with experimental data. The main research content of this paper is as follows:
     In the first chapter, the construction principle, the composition structure and the classification of the shield tunneling machine are firstly introduced, and then the historical and present development state of the shield tunneling machine is described. Moreover the established test rig on the shield tunneling machine and the research made on pressure control technology are elaborated. Finally the significance and research content of this subject is discussed.
     In the second chapter, the load system and the auxiliary system are firstly designed which adopt hydraulic technology to build up a simulated geological environment. Base on theoretical calculation, the load mechanism and simulation box are designed by use of Solidworks software. The structure strength of key components is analyzed with Ansys software, furthermore the load structure is optimized and then the dimension is determined. The load hydraulic system is designed and the parameter calculation and component selection are accomplished finally.
     In the third chapter, the structure of the shield tunneling machine is designed with the method of module design at first. Then the electrohydraulic system of the shield tunneling machine mainly consisted of cutter head driving system, thrust and hinge system, screw conveyor system, segment erection system is established, meanwhile the auxiliary systems such as slurry load system, etc are designed.
     In the forth chapter, firstly the hardware and software structure of the test rig monitoring system is designed according to the monitoring demands. The interface design, control strategy and programming mode of PLC system which adopt Profibus-DP bus technology are then introduced. The man-machine interface and data manage system are designed by use of LabVIEW software. Finally, the design feature of the monitoring interface and the communication with upper machine and the development of database and control arithmetic are illustrated.
     In the fifth chapter, the mathematic model of the earth pressure balance control system is built up. The relationship between thrust force, penetration rate, screw conveyor speed and earth pressure is analyzed theoretically. The earth pressure balance control system in a certain strata is established by use of ANFIS inferring system, and the earth pressure balance control system is essentially designed under various complicated geological situation with multiple-model control technology. By use of experimental data from three typical strata, the character of two different control strategies which are switching and weighting control strategies is researched respectively. The results show that multiple-model control system with ANFIS controller can achieve a good performance under different complicated geological conditions.
引文
[1]V.M.Turkowski.Progress towards the optimisation of a mechanical oscillator flowmeters[J].Flow Measurement and Instrumentation,2003,14(1):13-21
    [2]施仲衡.盾构机在中国地铁建设中的应用[J].建筑机械,2002(5):20
    [3]杨华勇,龚国芳.盾构掘进机及其液压技术的应用[J].液压气动与密封,2004(1):58-65
    [4]周文波.盾构法隧道施工技术及应用[M].北京:中国建筑工业出版社,2004
    [5]胡胜利,乔世珊.土压平衡式盾构-盾构系列讲座之二[J].建筑机械,2000(1):24-27
    [6]Richard Lewis.The changing face of the TBM[J].Tunnels & Tunnelling,1994(5):35-37
    [7]邢彤.盾构刀盘液压驱动与控制系统研究[博士学位论文].杭州:浙江大学,2008
    [8]刘仁鹏.土压平衡盾构技术综述[J].世界隧道,2001(1):1-7
    [9]何其平.盾构选型[J].建筑机械,2003(1):43-47
    [10]Martin HerrenkNecht.EPB or slurry machine:the choice[J].Tunnels &Tunnelling,1994(6):35-36
    [11]李国英.盾构技术及其在日本的应用与发展[J].水利水电施工,1996(3):38-41
    [12]陈丹,袁大军,张弥.盾构技术的发展与应用[J].现代城市轨道交通,2005(12):25-30
    [13]加须佐渡.日本盾构掘进技术的现状和展望[J].日刊《城市地下建筑物论文集》,53-54
    [14]唐健.盾构机电气控制系统设计概要[J].隧道建设,2002(1):33-35
    [15]胡国良,龚国芳,杨华勇,余佑官.盾构掘进机推进液压系统压力流量复合控制分析[J].煤炭学报,2006,31(1):125-128
    [16]Challenges and changes:Japan's tunnelling activities in 1988-Part 1[J].Tunnelling and Underground Space Technology1989,(2):215-224
    [17]Challenges and changes:Japan's tunnelling activities in 1988-Part 2[J]. Tunnelling and Underground Space Technology,1989(3):337-342
    [18]何焕雄,曹国金.盾构法施工技术及其在我国的发展和应用[J].建筑技术开发,2004(4):106-108
    [19]傅德明.我国隧道盾构掘进机技术的发展历程(上)[J].建设科技,2002(8):80-83
    [20]傅德明.我国隧道盾构掘进机技术的发展历程(下)[J].建设科技,2002(9):79-80
    [21]张庆贺,柏炯.上海软土隧道的设计与施工[J].世界隧道,1998(2):11-25
    [22]白杉,周洁.我国隧道盾构掘进机的发展和应用[J].工程机械,2004(5):26-29
    [23]董必钦.对我国全断面隧道掘进设备发展的思考[J].中国水利,2005(22):35-36
    [24]魏纲,黄志义,徐日庆,齐静静.土压平衡盾构施工引起的挤土效应研究[J].岩土力学与工程学报,2005,24(19):3523-3527
    [25]上海隧道工程股份有限公司.盾构地层适应性设计理论、方法和模拟试验平台技术鉴定资料[G].2004(12)
    [26]G.Anagnostou,K.Kov'ari.Face stability conditions earth-pressure-balanced shields.Tunnelling and Underground Space Technology,1996(2):165-173
    [27]刘东亮.EPB盾构掘进的土压控制[J].铁道工程学报,2005(2):45-50
    [28]Richard F Flanagan.Ground vibration from TBMS and shields[J].Tunnels &Tunnelling,1993(10):30-33
    [29]Herbert H,Rolf S.Method of and apparatus for controlling the advance of a tunnel drive shield[J].United States Patent,1978(8):40-46
    [30]孙钧,易宏伟.地铁隧道盾构掘进施工市区环境土工安全的地基变形与沉降控制[J].地下工程与隧道,2001(2):11-13
    [31]何於琏.土压平衡盾构机掘进控制系统工作原理[J].矿山机械,2006(2):22-24
    [32]魏建华,丁书福.土压平衡式盾构开挖面稳定机理与压力舱土压的控制[J].工程机械,2005(1):18-19
    [33]Ke L,Mannan M A,Xu M Q,Xiao Z Y.Electro-hydraulic proportional control of twin-cylinder hydraulic elevators[J].Control Eng Practice,2001(9):367-373
    [34]张厚美,吴秀国,曾伟华.土压平衡式盾构掘进试验及掘进数学模型研究[J].岩石力学与工程学报,2005(11):5762-5766
    [35]郭玉海.盾构穿越铁路的沉降综合控制技术[J].市政技术,2003(7):204-208
    [36]日立建机.[EB/OL]http://www.hitachi-c-m.com/cn/products/tunnel/supplementary_device s/supplementary_devices.html
    [37]Takeshi Asano,Mototsugu Ishihara.An observational excavation control method for adjacent mountaintunnels[J].Tunnelling and Underground Space Technology,2003:291-301
    [38]房猛.盾构推进机构电液控制系统的研究[D]:[硕士学位论文].杭州:浙江大学,2003:1-60
    [39]陈宁,司忠志.盾构螺旋输送机液压系统设计[J].浙江科技学院学报,2004(3):164-166
    [40]胡国良.盾构模拟试验平台电液控制系统关键技术研究[D]:[博士学位论文].杭州:浙江大学,2006:5-50
    [41]Monika Ivantysynova.Displacement controlled actuator technology-future for fluid power in aircraft and other applications.3rd International fluid power conference.Aachen,Germany,2002
    [42]胡国良,龚国芳,杨华勇.盾构掘进机土压平衡的实现[J].浙江大学学报(工学版),2006,40(5):874-877
    [43]Hisakazu Matsushita.Earth pressure balanced shield method[J].Tunnels &Tunnelling,1980(11):47-49
    [44]Murad Y A,George Z V.Computational model for the simulation of the shield tunneling process in cohesive soils[J].Int J Numerical and analytical methods in Geomech,1999(23):23-44
    [45]Aphichat S,Mitsutaka S,Kouji K.Theoretical model of shield behavior during excavation Ⅱ:application.J Geotech Geoenviron Eng,2002,128(2):156-165
    [46]胡国良,龚国芳,杨华勇.基于压力流量复合控制的盾构推进液压系统[J]. 机械工程学报,2006,42(6):124-127
    [47]路甬祥.液压气动技术手册[M].北京:机械工业出版社,2002
    [48]庄欠伟.土压平衡式盾构电液控制系统集成技术及其应用[D]:[硕士学位论文].杭州:浙江大学,2005
    [49]施一萍,刘启中.基于现场总线的盾构控制系统的设计[J].计算机应用与软件,2005(3):22-23.
    [50]张庆贺,朱忠隆,周希圣.盾构法隧道施工多媒体监控与仿真技术[J].同济大学学报,2001(6):729-732
    [51]施一萍,刘启中,白英彩.基于现场总线的盾构控制系统的设计[J].计算机应用与软件,2005,22(3):24-25
    [52]王亚民,陈青,刘畅生等.组态软件设计与开发[M].西安:西安电子科技大学出版社,2003
    [53]吴润华.盾构掘进试验平台监控系统的开发和应用[D]:[硕士学位论文].南京:东南大学,2005
    [54]杨宏燕,顾德焜.土压平衡盾构监控系统研制与应用[J].上海市政工程,2000(4):59-60
    [55]雷振山.LABVIEW 7 Express实用技术教程[M].北京:中国铁道出版社,2004
    [56]于睿坤,周奇才.基于LabVIEW的盾构姿态模糊控制器研究[J].机械与电子,2005(1):3-4
    [57]邵翔宇.盾构主要施工参数的控制与管理[J].市政技术,2004(7):197-201
    [58]宋保民,张泾周.上位机与PLC组建分布式控制系统时串口通信的实现[J].机械与电子,2005(1):31-33
    [59]王晓明.基于组态软件的盾构试验平台控制与管理[D]:[硕士学位论文].南京:东南大学,2005
    [60]Nomoto T,Imaura S,Hagiwara T,Kusakabe O,et al.Shield tunnel construction in centrifuge[J].Geotech Geoenviron Eng,1999,125(4):289-300
    [61]傅德明,李向红,刘计山.大型多功能盾构掘进模拟试验台的研制[J].工程机械,2005(12):14-17
    [62]李笑,陈振环,陈烘陶,黎松辉.盾构土压平衡电液模拟系统的研究[J].机床与液压,2006(7):129-130
    [63]陈立生,王洪新.土压平衡盾构平衡控制的新思路[J].上海建设科技2008(5):18-21
    [64]刘明月.秦岭隧道全断面掘进机掘进状况识别分析研究[D]:[硕士学位论文].成都:西南交通大学,2002
    [65]施虎,龚国芳,杨华勇等.盾构掘进土压平衡控制模型[J].煤炭学报,2008,33(3):344-345
    [66]翟军勇.基于多模型切换的智能控制研究[D]:[博士学文论文].南京:东南大学,2002
    [67]王伟,李晓理.多模型自适应控制[M].北京:科学出版社,2001
    [68]张智焕,王树青,王让定.非线性多模型控制及仿真研究[J].系统仿真学报,2003,15(7):919-921
    [69]张国良,曾静,柯熙政等.模糊控制及其MATLAB应用[M].西安:西安交通大学出版社,2002
    [70]陈新兵.ANFIS的MATLAB实现与液压成型机模糊温控系统的研究[D]:[硕士学位论文].长沙:湖南大学,2005:13-14
    [71]黄智,李光耀,钟志华.自适应模糊神经网络在板料弯曲回弹预测中的应用[J].计算机仿真,2003,20(11):58-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700