半固态镁合金材料及其制备技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半固态金属加工技术被认为是 21 世纪最具有发展前途的近净成形技术之一,
    其关键环节是半固态浆料的制备。针对目前半固态镁合金研究较少和制浆机剪切速
    率较低的特点,本文首次采用高剪切速率双螺杆机械搅拌制浆机和半固态流变压铸
    成形机组,研究了 AZ91D 镁合金半固态浆料制备工艺及材料组织与力学性能之间
    的关系。该技术为镁合金产品的推广和应用开辟了新的途径。
     率先比较研究了单螺杆和双螺杆制浆机的制浆效果。高剪切速率的双螺杆制浆
    机可获得固相率为 15%~60%、晶粒平均直径为 35μm~55μm左右的超细球团
    状组织。单螺杆制浆机由于其剪切速率低,对物料的混合作用不强烈,制备的非枝
    晶组织呈条状或不规则块状分布,晶粒平均直径为 80μm~100μm左右。
     系统地研究了镁液浇注温度、筒体温度和剪切速率对双螺杆制浆机制备的半固
    态浆料质量的影响。得出镁合金半固态浆料制备的最佳工艺参数范围为:镁液浇注
    温度 605℃~625℃,筒体温度 575℃~590℃,剪切速率 4100 s-1~6830s-1。结果表
    明,随着镁液浇注温度或筒体温度的降低,半固态浆料的固相率提高,晶粒变得更
    加细小、圆整。螺杆剪切速率越大,半固态浆料的固相率越低,晶粒的圆整度变化
    不大。一方面,随着剪切速率的提高,螺杆对熔体的剪切作用加强,另一方面,剪
    切时间相应缩短。剪切速率低于 1365s-1时,组织形态明显恶化。半固态镁合金浆料
    具有很好的充填性能,采用半固态流变压铸成形技术,成功地生产出壁厚只有
    1.1mm 的薄壁圆盘类零件,该铸件表面光洁,字迹清晰。
     分别采用半固态流变压铸和半固态流变挤压成形工艺,成功地制备出直径为
    φ50mm、高度约为120mm的优质半固态坯料,晶粒平均尺寸分别为40~60μm、50~70
    μm,半固态流变压铸坯料的晶粒形貌更圆整。该坯料可以用于半固态触变成形。
     探明了镁合金半固态流变压铸成形组织中浆料固相率和初生α-Mg相晶粒平均
    尺寸与材料力学性能之间的关系。当半固态浆料固相率保持在 30%~50%时,既有
    较好的充填能力,又具有较细小、园整的非枝晶组织,此时试样的力学性能最佳。
     I
    
    
    随着初生α-Mg 相晶粒尺寸的增大,试样的抗拉强度逐渐降低;晶粒大小在 35~45
    μm 范围时,试样的延伸率变化不大;当晶粒平均尺寸增大到 50μm 以后,延伸率
    急剧下降。通过非线性回归分析,建立了半固态流变压铸成形试样力学性能的数学
    模型。
    研究了热处理工艺对镁合金成形试样力学性能的影响。结果表明,半固态流变
    压铸成形试样克服了液态压铸成形试样在固溶处理或时效处理过程中出现析出气
    孔或显微疏松等缺陷而不能热处理的缺点,可通过热处理工艺进一步提高其力学性
    能。在铸态时,镁合金半固态流变压铸成形试样与液态压铸成形试样的力学性能相
    当,抗拉强度为 192MPa,延伸率为 2.3%,硬度值为 74HB。固溶处理之后,抗拉
    强度提高了 15%,延伸率提高了 210%,硬度值略有降低。时效处理之后,抗拉强
    度提高了 13%,延伸率略有升高,而硬度值提高了 16%。
    提出了高剪切速率条件下非枝晶组织的形成机理,既有破碎枝晶的机械球化现
    象,又有熔体内部均匀形核-平面生长的过程,并建立了半固态组织演化过程的物
    理模型。螺杆搅拌引起的熔体流动及机械剪切力使得初始生成的树枝晶在长大的过
    程中发生碰撞、破碎、熔断而机械球化。对半固态流变压铸成形组织进行面扫描分
    析的结果表明,未见明显的溶质扩散层,细小的网状共晶相中析出了大量的晶粒尺
    寸为 5μm~10μm 的二次α-Mg 相。由此可见,在高剪切速率的双螺杆作用下,
    晶粒结晶界面前沿的温度梯度和溶质浓度梯度极小,一方面,导致液相中各处的形
    核几率相等,晶粒在各处形核更加趋向于同时性,另一方面,抑制了树枝晶的生长,
    有利于晶粒按照平面方式生长。筒体内壁和双螺杆螺棱处首先结晶的晶核随着螺杆
    的运动被很快地带到高温熔体中,极大地增大了熔体中的晶核数,从而减小了晶粒
    尺寸。高速旋转的晶核无择优生长的条件,最终使得晶核逐步演变成球状晶粒。
Semisolid metal processing technology is regarded as one of the near-net shape
    forming technologies with wide application in 21 century, and the preparation of
    semi-solid slurry is the key technique. However, research on semi-solid magnesium
    alloys is seldom to date, and generally the shear rate of stirring mixer is small. In this
    paper, the semi-solid slurry preparation of AZ91D magnesium alloy with twin-screw in
    high shear rate was studied, and the correlation of microstructure and mechanical
    properties of magnesium alloy in semi-solid state was also systematically investigated by
    rheo-diecasting process. Therefore, this advanced technique opens a new route for
    generalization and application of magnesium alloy products.
     Effects of semi-solid slurry preparation by single or twin-screw stirring were
    comparatively studied for the first time. The results showed that fine round granular
    crystals with average diameter of 40μm to 60μm of the prepared slurry could be
    obtained by twin-screw stirring, and the range of solid fraction could be controlled from
    15% to 60%. In contrast, because of the weak effect of mixture with low shear rate, the
    solidified microstructure of the slurry by single screw was in strip shape or anomalous
    block, the range of the primary grain size varied from 80μmto 100μm.
     The influences of the pouring temperature、the barrel temperature and the shear rate
    on the quality of the slurry by twin-screw stirring were systematically investigated. The
    results showed that the pertinent processing parameters were as following: a pouring
    temperature of the Mg melt of 605℃~625℃; a barrel preheating temperature of 575
    ℃~590℃; and shear rate of 4100s-1~6830s-1. The solid fraction in the slurry increased
    and that the grains became finer and rounder with reducing pouring temperature of the
    Mg melt or the barrel temperature. The solid fraction of the semi-solid slurry decreased
    with the increase of the shear rate, and the roundness of the crystals changed slightly. The
    reason is that the higher shear rate enhances the shear action on one hand, whilst it
     III
    
    
    shortenes the shear time on the other hand. But the microstructure was distinctly
    deteriorated when the shear rate was under 1365s-1. A thin-walled circular plate of 1.1
    mm thickness was fabricated successfully with a clear contour and good soundness with
    this technique, this process has advantages of improvement in the fluidity and feeding
    capacity of the semi-solid slurry.
     An excellent semi-solid feedstock of magnesium alloy was successfully produced
    by rheo-diecasting or rheo-squeezing process, which was a round stick of 50 mm
    diameter and 120 mm height. The average size of grains were 40μm ~60μm and 50μ
    m~70μm, respectively, and the grains made by rheo-diecasting were rounder. These slug
    feedstock with non-dendritic primary phase are applicable for thixoforming.
     The relation of the mechanical properties of semi-solid magnesium alloy with the
    solid fraction in slurry and the average size of primary α-phase grains was studied. The
    results showed that the tensile strength and elongation of rheo-diecasting AZ91D alloy
    were best when the solid fraction varied in 30% to 50%, because of high feeding
    capacity of the semi-solid slurry and finer and rounder non-dentritic microstructure. The
    tensile strength decreased gradually with the increase the average size of primary α
    -phase grains. The elongation was almost unchanged when the average size of primary
    α-phase grains was varied in 35μm~45μm, but the elongation decreased rapidly when
    the average size of primary α-phase grains was over 50μm. Mathematical model of
    mechanical property of semi-solid magnesium alloy sample fabricated by rheo-diecasting
    process was constituted with non-linear regression analysis.
     The effect of heat treatment on the mechanical property of magnesium alloy was
    studied. The results indicated that the mechanical property of semi-solid magnesium
    alloy coul
引文
[1] B.L. Mordike,T.Ebert. Magnesium:properties—applications—potential. Mat. Sci.
     & Eng., A302(2001):37-45
    [2] D.H.Kirkwood. Semi-solid metal processing. International Materials Reviews,
     1994, 39(5):173-189
    [3] Z.Fan. Semi-solid metal processing. International Materials Reviews, 2002,
     47(2):49-85
    [4] Flemings M C. Behavior of metal alloy in the semi-solid state. Metallurgical
     Transactions A,1999,22A(5):957~981
    [5] D.B.Spenceer, R.Mehrabian,M.C.Flemings. Reological behavior of Sn-15% Pb
     in the crystallization range. Metallurgical Transactions, 1972, 3(7):1925-1932
    [6] J.C.Gebelin, M.Suery, D.Favier. Characterisation of the rheological behaviour in
     the semi-solid state of grain-refined AZ91 magnesium alloys. Materials Science
     and Engineering, A272(1999):134-144
    [7] 谢水生,黄声宏. 半固态加工技术及其应用. 冶金工业出版社,1999
    [8] Flemings M.C. Some thoughts on post milestones and on the path ahead. The 6th
     International Conference on Semi-solid Processing of Alloys and
     Composites.Turin, Italy, 2000,11-14
    [9] Wang N, Pang H, Wang K K. Rheomolding a one-step process for processing
     semi-solid metal castings with lowest porosity. Light Metals Proceedings of the
     125th TMS Annual Meeting, 1996, 781-786
    [10] 罗守靖,田文彤,李金平. 二十一世纪最具发展前途的近净成形技术-半固态
     成形. 第一届半固态加工技术研讨会论文集, 北京: 2000 年 4 月
    [11] 曾荣昌. Mg 合金的最新发展及应用前景. 金属学报, 2001. 37(7):683-685
    [12] 尹守义. 国外镁合金的新发展. 世界有色金属, 1994(7):9-10
     99
    
    
    [13] Byton B Chow. Magnesium industry overview. Advanced Materials & Prodesses,
     1996(11):9-16
    [14] Yo Kojima. Project of platform science and technology for advanced magnesium
     alloys. Materialx Transactions, 2001,42(7):1154-1159
    [15] Edward J, Vinarcik. Light metal advances in the automotive industry, part Ⅰ:
     magnesium in automotive applications. Light Metal Age, 2001(4):74-75
    [16] Robert E. Magnesium alloys and their applications.Light Metal Age,
     2001(6):54-56
    [17] Decker. Raymond F. The renaissance in magnesium. Advanced Materials &
     Processes, 1998, 54(3):31-33
    [18] 吕 宜 振 , 曾 小 勤 , 丁 文 江 . 镁 合 金 铸 造 成 形 技 术 的 发 展 . 铸 造 ,
     2000.49(7):383-387
    [19] 甄子胜, 毛卫民, 赵爱民等. 半固态镁合金的研究进展. 特种铸造及有色合
     金, 2001(6):32-35
    [20] 苏华钦, 朱鸣芳, 高志强. 半固态铸造的现状及发展前景. 特种铸造及有色
     合金, 1998(5):1-9
    [21] Hiroyuki Nomura, Peiqi Qiu. Semi-solid processing of cast iron. Materials
     Transactions, 2001, 42(2):303-308
    [22] Kitamura T. Thixomolding process of Mg alloy. Sokeizai, 1995, 36 (5) :1-7
    [23] Decker Raymond F, Carnahan Robert D., Babij Ebor. Magnesium semi-solid
     metal forming. Advanced Materials & Processes, 1996, 149(2):41-42
    [24] A I Nussbaum. Semi-solid forming of aluminium and magnesium. Light Metal
     Age, 1996(6):6-22
    [25] Ann Arbor. Thixomoulding of magnesium components experiencing rapid
     commercial growth. Die Casting Word, 1996(6):26-28
    [26] 潘洪平, 丁志勇, 谢水生. 镁合金加工技术的研究现状与应用. 轻合金加工
     技术, 2002.30(7):7-10
     100
    
    
    [27] 樊志田, 黄乃瑜, 吴树森. 半固态金属铸造的新进展-注射成形. 特种铸造及
     有色合金, 2001(2):22-23
    [28] Wang N, Peng H, Wang K K. Assesment of porosity level in rheomolded parts.
     Proc of the 4th Int. Conf. on Semi-solid Processing of Allloys and Composites,
     University of Sheffield, 1996,342-246
    [29] Wang K K, Peng H . Method and apparatus for semi-solid metals. US Patent
     5501266,1996
    [30] 康永林, 毛卫民, 胡壮麒. 金属材料半固态加工理论与技术, 科学出版社,
     2004
    [31] 罗吉荣, 肖泽辉, 宋象军等. 半固态镁合金流变成形技术及装备. 特种铸造
     及有色合金, 2002(4):45-47
    [32] Fan Z. Twin-screw rheoforming technologies for semi-solid processing of
     Mg-alloys. 7th S2P, Sept .24~28, Tsukuba, Japan,2002,671-676
    [33] Ji S, Fan Z, Liu G et al. Twin-screw rheomolding of AZ91D Mg-alloy. 7th S2P,
     Sept .24~28, Tsukuba, Japan,2002,683-688
    [34] Ji S, Fan Z, Bevis M J. Semi-solid processing of engineering alloys by a
     twin-screw rheomoulding process. Mater. Sci. Eng. A299(2001):210-217
    [35] Walukas D M, Vining R E, LeBeau S E et al. Effect of process variables in
     thixomolding. In: Tsutsui M and Ichikawa K. Proc, of the 7th Int. Conf. on
     Semi-solid Processing of Alloys and Composites, Tsukuba, Japan, 2002, 101-106
    [36] 宝晃. マグネシウム合金射出成形法の家电制品への适用. 素形材,
     2001(7):19-25
    [37] 陈晓阳, 曾大本. 镁合金铸件的应用现状及发展前景. 铸造, 1999(11):53-55
    [38] 倪红军, 王渠东, 丁文江. 镁合金半固态成形技术(SSP)的研究与应用. 铸造
     技术, 2000(5):36-40
    [39] 北村和夫. 镁合金的成形模法(THIXOMOLDING). ぁる Al-アルミニの综合
     杂志, 2000, 中国语版特刊号(第 4 号):1-5
     101
    
    
    [40] Walukas S, LeBeau N, Previtt R. Thixomolding-Technology opportunities ang
     practical uses. Proc. of 6th Int. Conference , Semi-solid Processing of Alloys and
     Composites, Turin, Italy, 2000,109-114
    [41] Hsuan Peng, Wen-Min Hsu. Development on rheomolding of magnesium parts.
     Proc. of 6th Int. Conference , Semi-solid Processing of Alloys and Composites,
     Turin, Italy, 2000,313-317
    [42] Wagener W, Hartmann D. Feedstock material for semi-solid casting of
     magnesium. Proc. of 6th Int. Conference Semi-solid Processing of Alloys and
     Composites, Turin, Italy, 2000,301-306
    [43] 李元东, 郝远, 陈体军等. 镁合金半固态成形的现状及发展前景. 特种铸造
     及有色合金, 2001(2):77-79
    [44] 吉泽新, 吕新宇, 王国军等. 镁合金半固态成形技术的研究进展, 金属热处
     理, 2003(5):8-11
    [45] D.N.Li, J.R.Luo, S.S.Wu et al. Study on the semi-solid rheocasting of magnesium
     alloy by mechanical stirring.Journal of materials processing technology,Volume
     129(2002):431-434
    [46] 杨为佑, 陈振华, 吴艳军等. 半固态非枝晶组织合金的制备技术. 铝合金,
     2001(1):32-34
    [47] 李元东, 郝远, 阎峰云. SIMA 法制备 AZ91D 镁合金非枝晶组织锭料. 甘肃工
     业大学学报, 2002(12):34-38
    [48] Kamado S, Yuasa A, Hitoim et al. Effects of stirring conditions on structure and
     apparent viscosity of semi-solid AZ91D magnesium alloy. Japan Institute of
     Light Metals, 1992,42(12):734-740
    [49] 杨明波, 代兵, 伍光风. 铝合金半固态压铸触变成形技术的研究进展. 金属
     热处理, 2003. 28(5):8-11
    [50] 朱鸣芳, 苏华钦. 半固态等温处理制备颗粒组织 ZA12 合金的研究. 铸造,
     1996(4):1-5
     102
    
    
    [51] 崔建忠, 路贵民, 刘丹等. 半固态浆制备技术的新进展. 哈尔滨工业大学学
     报, 2000(8):110-113
    [52] H.Kanfmann,R.Potzinger. An update on the new rheocasting-development work
     for Al- and Mg-alloy. Die-casting Engineer. 2002(7):16-19
    [53] Toshio Haga. Semisolid strip casting using a twin roll caster equipped with a
     cooling slope. Journal of materials processing technology,
     130-131(2002):558-561
    [54] Toshio Haga, P.Kapranos. Simple rheocasting process. Journal of materials
     processing technology, 130-131(2002):594-598
    [55] Vogel A, Doherty R D, Cantor B. Stir-cast microstructure and slow crack growth.
     Proceedings of International Conference on Solidification. University of
     Sheffield, London,1979, 518-525
    [56] Hwllawell A. Grain evolution in conventional and rheocasting. Proc of the 4th Int.
     Conf. on Semi-solid Processing of Alloys and Composites. University of
     Sheffield, London,1996, 60-65
    [57] 毛卫民, 赵爱民, 崔成林. 电磁搅拌对半固态 AlSi7Mg 合金初生α-Al 的影响
     规律. 金属学报, 1999.35(9):971-978
    [58] 张景新, 张奎, 刘国钧等. 电磁搅拌制备半固态材料非枝晶组织的形成机制.
     中国有色金属学报, 2001.10(4):510-514
    [59] 李涛, 黄卫东, 林鑫. 半固态处理中球晶形成与演化的直接观察. 中国有色
     金属学报, 2000(5):635-639
    [60] 谦土重晴, 小岛阳. マゲネウム合金の半溶融搅拌凝固. および加工.まてリ
     あ,1999,33(9):1149~1157
    [61] Y.L.Kang, L.An. Experimental study on rheoforming of semi-solid magnesium
     alloys. Proceedings of the 7th on semi-solid processing of alloys and composites.
     Tsukuba, Japan,2002,287-292
    [62] 甄子胜, 毛卫民, 陈洪涛等. 电磁搅拌工艺参数对半固态 AZ91D 镁合金组织
     103
    
    
    的影响. 北京科技大学学报, 2003, 25(4):341-345
    [63] M.T.Shehata, E.Essadiqi, V.Kao. Thixocasting and thixoforging of magnesium
     AZ91D alloy. Proceedings of the 7th on semi-solid processing of alloys and
     composites. Tsukuba, Japan 2002,263-268
    [64] R.D.Carnahan,R.F.Decker,R.Vining. Influence of solid fraction on the shrinkage
     and physical properties of thixomolded Mg alloys. Die Casting
     Engineer,1996,54-59
    [65] F.Czerwinski, A.Zielinska-lipiec. Correlating the microstructure and tensile
     properties of thixomolded AZ91D magnesium alloy,. Acta mater.,
     49(2001):1225-1235
    [66] F.Czerwinski, A.Zielinska-lipiec. The analytical electron microscopy of a
     thixomolded Mg-9%-1%Zn alloy. Proceedings of the 7th on semi-solid processing
     of alloys and composites. Tsukuba, Japan,2002,275-280.
    [67] J.J.Blandin, D.Giunchi. Effect of thermal treatments on mechanical behavior of
     thixoformed magnesium alloy. Materials Science and Technology, 2002,
     49(3):333-340.
    [68] 乐启炽, 欧鹏, 崔建忠等. 镁合金半固态制浆新工艺. 东北大学学报(自然科
     学版), 2002(4):371-374
    [69] H.Kaufmann, R.Potzinger. The relationship between processing and properties of
     new rheocast AZ91 and AZ71 magnesium alloy. Light Metal Age, 2001(2):56-61
    [70] J.X.Zhang, Z.Kui. Semi-solid processing of AZ91D alloy. Proceedings of the 7th
     on semi-solid processing of alloys and composites. Tsukuba, Japan
     (2002):281-286
    [71] S.Kleiner, O.Beffort. Thixocasting of Mg-Al alloys using extruded feedstock
     material. Proceedings of the 7th on semi-solid processing of alloys and
     composites. Tsukuba, Japan 2002,257-262
    [72] 方昆凡主编. 工程材料手册-有色金属材料卷. 北京出版社, 2002
     104
    
    
    [73] Kazutoshi SEKIHARA, Satoshi OHNISHI. Semi-solid forming of strain-induced
     AZ91Dmagnesium alloy. Light Metal, 1995,560-565
    [74] S. Kleiner, O. Beffort. Microstructure and mechanical properties of squeeze cast
     and semi-dolid cast Mg-Al alloys. Journal of Light Metals, 2002(2):277-280
    [75] Z.Koren, H.Rosenson. Development of semisolid for AZ91 and AM50
     magnesium alloys. Journal of Light Metals, 2002(2):81-87
    [76] 中国机械工程学会铸造专业学会编. 铸造手册(第三卷)-铸造非铁合金. 机械
     工业出版社, 1995
    [77] 北京有色金属铸造昌编. 中外有色金属及合金铸件标准. 机械工业出版社,
     1995
    [78] 上海交通大学. 金相分析编写组编. 金相分析. 国防工业出版社, 1982
    [79] 任怀亮主编. 金相实验技术. 冶金出版社, 1986
    [80] 吴雪平, 吴树森, 毛有武等. 镁、铝合金半固态金相组织分析软件的开发. 特
     种铸造及有色合金, 2002(5):51-52
    [81] 北京化工学院, 华南工学院编. 塑料机械设计. 轻工业出版社, 1983
    [82] 周国利, 况山主编. 概率论与数理统计. 重庆大学出版社, 2004
    [83] Hitomi Takahisa, Yuasa Akira, Kamado Shigeharu et al. Structure and mechanical
     properties of an AZ91D magnesium alloy solidified by the semi-solid stir-casting
     process,. Journal of Japan Institute of Light Metals, 1992,42(9): 504-510
    [84] Weimin Mao, Yanjun Li, Aimin Zhao. The formation mechanism of non-dendritic
     primary α-Al Phase in semi-solid AlSi7Mg alloy. Science and Technology of
     Advanced Materials, 2001(2):97-99
    [85] h.k.Jung. The induction heating process of semi-solid aluminum alloys for
     thixoforming and their microstructure evaluation. Journal of Materials Processing
     Technology, 105(2000):176-190
    [86] 张永忠, 张奎, 崔代金等. AZ91D 镁合金的压铸工艺及性能. 铸造,
     2000(2):74-76
     105
    
    
    [87] 朱鸣芳, 苏华钦. 半固态铸造技术的研究现状. 特种铸造及有色合金,
     1996(2):29-32
    [88] 齐丕骧. 挤压铸造. 国防工业出版社, 1982
    [89] Z.Koren. H.Rosenson, E.M.Gutman. Development of semisolid casting for AZ91
     and AM50 magnesium alloys. Journal of Light Metals. 2002(2):81-87
    [90] Hiroto SASAKI, Mitsuru ADACHI, Akio TAKIMOTO. Effect of microstructure
     on mechanical properties of semi-solid formings of an AZ91 magnesium alloy,
     1996, 3A(6):1313-1319
    [91] Eugênio José Zoqui, Maria Helena Robert. Structural modifications in rheocast
     Al-Cu alloys by heat treatment and implications on mechanical properties,
     Journal of Materials Processing Technology, 78(1998):198-203
    [92] Toshiji Mukai, Masamoi Yamanoi, Watanable et al. Ductility enhancement in
     AZ31 magnesium alloy by controlling its grain structure. Scripta Materialia,
     45(2001):89-94
    [93] A.Balasundaran, A.M.Gokhale. Quantitative characterization of spatial
     arrangement of shrinkage and gas(air) pores in cast magnesium alloys. Materials
     Characterization, 46(2000): 419-426
    [94] Edward J. Vinarcik. Gas entrapment in die casting processes. Advanced Materials
     & Processes, 2001(11): 49-50
    [95] Ya.b.Unigovski, E.M.Gutman. Surface morphology of a die-cast Mg alloy.
     Applied Surface Science, 153(1999): 47-52
    [96] Y.Z.Lu, Q.D.Wang, W.J.Ding. Fracture behavior of AZ91D magnesium alloy.
     Materials Letters, 2000,44(7): 265-268
    [97] A.Bag, W.Zhou. Tensile and fatigue behavior of AZ91D magnesium alloy.
     Journal of Materials Science Letters, 20 (2001): 457-459
    [98] 王健安. 金属学与热处理. 机械工业出版社, 1980
    [99] C.R.布鲁克斯著, 丁夫等译校. 有色合金的热处理组织与性能. 冶金工业出
     106
    
    
    版社, 1988
    [100] 冯少如. 塑料成型机械.西北工业大学出版社, 1994
    [101] 朱复华. 挤出理论及应用. 中国轻工业出版社, 2001
    [102] 李庆春. 铸件形成理论基础.机械工业出版社, 1987
    [103] 王健安. 金属学与热处理.机械工业出版社, 1984
    [104] J.M.Molenaar, L.Katgerman and W.H.Kool: On the formation of the stircast
     structure. Journal of Materials Science, 1986(21):389-394
    [105] 张承甫. 凝固理论与凝固技术. 华中工学院出版社, 1985
    [106] 李元东, 郝远, 陈体军等. 原始组织对半固态AZ91D镁合金重熔行为的影响,
     中国有色金属学报, 2004(3):366-371

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700