往复式单螺杆销钉挤出机设计原理及混炼机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,往复式单螺杆销钉挤出机以其独特的混炼性能越来越多地应用于聚合物混炼加工领域。本文以WXJ-140往复式单螺杆销钉挤出机的研制开发为主线,对往复式单螺杆销钉挤出机的设计原理、挤压系统和传动系统运动仿真、混炼机理、螺纹元件内物料三维动态流动过程以及停留时间分布测量和建模等方面进行探索和研究。
     运用系统工程设计原理,全面剖析了往复式单螺杆销钉挤出机的结构特点,构建了挤压系统销钉-螺棱复合运动数学物理模型,通过运动仿真模拟,对其加工过程进行了全程、实时、动态和全方位观察和研究,完善了往复式单螺杆销钉挤出机挤压系统和传动系统的设计原理,并对WXJ系列往复式单螺杆销钉挤出机系列化开发理论进行研究和实践。
     采用有限元数值方法对往复式单螺杆销钉挤出机三种典型螺纹元件内物料流动及混合进行三维动态模拟,分析了工艺条件、物料特性以及销钉布置对挤出机分布、分散混合性能的影响。在数值模拟理论指导下,开发了国际上最先进的具有超高混合性能的四排销钉四条螺棱的新型混炼元件。
     在验证数字图像处理方法测量塑化挤出机停留时间分布可行性的基础上,对往复式单螺杆销钉挤出机的停留时间分布进行了实验研究。为了预测和控制挤出机的时间分布情况,分别应用化学反应工程和流体力学方法,根据机器的结构组成和螺杆的组合形式,建立了预测往复式单螺杆销钉挤压造粒机组停留时间分布的数学模型。
     目前,往复式单螺杆销钉挤出机的技术和市场基本上被瑞士Buss公司独家垄断,本研究取得的阶段性成果不仅可为该机型的系列化开发和推广应用提供理论依据,还可为我国高分子材料科学和技术的进步提供新的设备平台。
In the resent years,because of the unique kneading characters,more and more reciprocating single screw pin-barrel extruder were used in the polymer mixing process.Based on the development of the WXJ-140 reciprocating single screw pin-barrel extruder,the design principle,dynamic simulation of the plasticating system and driving system,mixing mechanism,fluid flow and mix inside the screw elements,and the experimental measurement and modeling of the residence time distribution in the extruder were studied herein.
     The structures and functions of the reciprocating single screw pin-barrel extruder were analyzed using the systematic engineering design principle.In order to improve the design principle of this kind of the extruder,the dynamic simulation of the plasticating and driving systems was carried out,which was helpful to give a direct,comprehensive,real-time and dynamic observation of the extrusion process.Meanwhile,the mathematic model on the multiple motions of the pins mounted on the barrels and the flights of the screw elements was also founded.Furthermore,the application of the scale-up theories in the serialization development of the WXJ extruders was also studied.
     The flow and mixing characters of the common screw elements in the reciprocating single screw pin-barrel extruder were studied using a polyflow finite element software package.Base on the statistical treatment of the flow trajectories,the dynamic mixing process and the effects of the operating conditions,material viscosity and the pins on the mixing performances of the extruder was studied.At the same time,a novel mixing screw element named NKE with four flights was developed and compared with the traditional mixing element(KE element).
     After validating the feasibility of the digital image processing method in measuring the residence time distribution(RTD)of the plasticating extruder,a experimental study on the RTD in the reciprocating single screw pin-barrel extruder was done.For the sake of the control and forecast of the RTD,based on the assembly of the equipment and the component of the screw,two mathematical models on the RTD in the extruder were built by the chemical reaction engineering method and computing fluid dynamics method, respectively.
     At present,the technologies and markets of this kind of equipment are all controlled by a few of foreign manufacturers basically.Some domestic enterprises and institutes including Beijing University of chemical technology have developed small-and medium-sized reciprocating single screw pin-barrel extruder,but there is no enough dependable and systemic theory for the development of the lager-sized equipment.Generally speaking,all the preliminary investigations can provide not only the theoretical basis for application and serial development of this kind of equipment,but also a new scientific research stage for the improvement of the polymer materials science and technology of China.
引文
[1]耿孝正,张沛.塑料混合及设备[M].北京:轻工业出版社,1992:3-36
    [2]武停启,江波,许澍华.往复式销钉螺杆挤出机混合机理概述[J].中国塑料,2002,16(9):7-10
    [3]LIGUNA SA.Procede et appareil pour la production continue de profiles en matieres fondues ou patteuses,notamment en matieres plastiques[p].Swiss Patent,CH220550.1942-04-15
    [4]COLOMBO R.Improvements in screw presses[P].German Patent,DE883338.1956-03-08
    [5]Anomymous,Verfahren zur Herstellung von festen Polymerisations- und Kondensationsprodukten[P].German Patent,DE895058.1953-11-19
    [6]Meskat W.Vorrichtung zur Entwaesserung bzw.Entlaugung von faserhaltigen Massen[P].German Patent,DE852203.1952-10-13
    [7]Meskat W,Erdmenger R.Vorrichtung zum Verkneten,Gelatinieren and Verpressen von plastischen Massen[P].German Patent,DE862668.1953-01-12
    [8]Meskat W,Erdmenger R.Vorrichtung zur Entwaesserung bzw.Entlaugung von faserhaltigen Massen[P].German Patent,DE872732.1953-04-02
    [9]Herrmann H.Schneckenmaschinen in der Verfahrenstechnik[M].Berlin:Spaineer,1972
    [10]Anonymous.Geschlossene Knetmaschine fuer organische plastische Massen[P].German Patent,DE750509.1945-01-19
    [11]Wurster C.No title available[P].German Patent,DE137813.1901-04-30
    [12]ANDERSON F B.Sausage stuffing machine[P].U.S.Patent,US1848236.1932-03-08
    [13]ANDERSON R T.Feeding mechanism for presses[P].U.S.Patant,US1971632.1934-08-28
    [14]QUILLERY H P M.Procede et appareil pour la fabrication d'objets en caoutchouc moule[P].France Patent,FR855885.1940-05-22
    [15]BECK H.Spritzgussmaschine[P].German Patant,DE858310.1952-12-04
    [16]Wunsche A.No title available[P].German Patent,DE131392.1902-06-20
    [17]EASTON R W.Improvements in Presses and Pumps[P].British patant,GB 109663.1917-09-25
    [18]EASTON R W.Screw conveyer[P].U.S.patant,US1468379.1923-09-18
    [19]Lauritz Meland.Inmprovement in corn and feed mills[P].U.S.Patent,US155662.1874-08-10
    [20]Holdaway W S.Pump[P].U.S.Patent,US1218602.1917-03-06
    [21]Montelius C O J.Device for transferring energy to or from alpha fluid[P].U.S.Patent,US1698802.1929-01-15
    [22]Leistritz P,Burghauser F.Schraubenpumpe mit zwei oder mehr Schraubenspindeln und Schubausgleich durch den Druck der gefoerderten Fluessigkeit[P].German patent,DE453727.1927-12-15
    [23]List H.Maschine zur Durchfuhrung von Knet- und Mischprozessen in kontinuierlichem Arbeitsgang[P].Swiss Patent,CH247704.1947-03-31
    [24]List H.Continuously operating kneader and mixer[P].U.S.Patent,US2505125.1950-04-25
    [25]List H.Misch- und Knetmaschine[P].German patent,DE944727.1956-06-21
    [26]List H.Misch- und Knetmaschine[P].Swiss patent,CH278575.1951-10-31
    [27]List H.Knet- und Mischmaschine[P].Swiss patent,CH284396.1952-07-31
    [28]GUBLER E.Kneading and mixing apparatus[P].U.S.Patent,US3189324.1965-06-15
    [29]SUTTER F.Mixing and kneading device[P].U.S.Patent,US3219320.1965-11-23
    [30]List H.Knet- und Mischmaschine[P].Swiss patent,CH284396.1952-07-31
    [31]List H,Rounder F.Kneading and mixing apparatus[P].U.S.Patent,US3347528.1967-10-17
    [32]Geier H F,Irving H Y F.Mixers[P].U.S.Patent,US3023455.1962-03-06
    [33]SCHUUR G.Mixing and kneading machine[P].U.S.Patent,US3224739.1965-12-21
    [34]GRESCH W.Arrangement for the degasification of plastic masses during their treatment by means of a continuous mixing and kneading worm[P].U.S.Patent,US3367635.1968-02-06
    [35]RUETTENER E,SUTTER F.CONTINUOUSLY OPERATING MIXING AND KNEADING MACHINE[P].U.S.Patent,US3601370.1971-08-24
    [36]WHEELER D A.MIXING APPARATUS[P].U.S.Patent,US3458894.1969-08-05
    [37]Ronner F,Sutter F.Mixing and Kneading Device[P].U.S.Patent,US3618903.1971-11-09
    [38]Tschopp P.Mixing and Kneading Apparatus[P].U.S.Patent,US6270247.2001-08-07
    [39]Andersen P,Connelly D,Messmer P.Improved design and performance characteristics of the kneader reciprocating single screw extruder[A].In:SPE.ANTEC Conference Proceedings[C].Boston:Society of Plastics Engineers,2003,168-172
    [40]Siegenthaler H U.Mixing and Kneading Machine[P].U.S.Patent,US2007/0183253.2007-08-09
    [41]刘伯元,孔祥明,刘英俊.国产SJW-70型往复式单螺杆混炼挤出机结构特点及其应用[J].塑料技术,2001,3(1):38-42
    [42]武停启.往复式销钉螺杆开发计算与流场计算[D].北京:北京化工大学,2002
    [43]王春芬.往复式销钉螺杆开发研制及动态模拟算[D].北京:北京化工大学,2002
    [44]武停启,江波,王春芬.往复式销钉螺杆挤出机设计原理[J].中国塑料,2002,16(1):70-73
    [45]张宝辉.往复式销钉螺杆挤出机的研究与开发[D].北京:北京化工大学,2006
    [46]张宝辉,许澍华,江波.WXJ-140往复式销钉螺杆挤出机的研究与开发[J].塑料,2006,35(2):78-80
    [47]王春芬,许澍华,江波.往复多销钉螺杆挤出机的设计与动态模拟[J].塑料工业,2002,30(4):29-32
    [48]Bigio D I,Boyd J D.Mixing studies in the single screw extruder[J].Polymer Engineering and Science,1985,25:305
    [49]Laake H J,Raebiger N.Temperature development in a rubber processing pin barrel extruder[J].Kunststoffe.1988,78:30-32
    [50]Brozoskowski R,Kubota K,Chung K,et al.Experimental and theoretical study of the flow characteristics of rubber compounds in extruder screws[J].Intern.Polym.Processing,1987,1:130
    [51]Brzoskowski R,White J L,Szydlowski W,et al.Modeling flow in pin-barrel screw extruders[J].Int.Polym.Proc.,1988,3:134-140
    [52]Brzoskowski R,Kumazawa T,White J L.Modified flow analysis network method for analysis of extrusion and molding[J].Int.Polym.Proc.,1990,5:191-194
    [53]Brzoskowski R,White J L.Further considerations of simulations of flow in pin barrel extruder and in screw extruders with sliced flights[J],hat.Polym.Proc.,1990,5:238-243
    [54]Shin K C,White J L.Basic studies of extrusion of rubber compounds in a pin barrel extruder[J].Rubber Chemistry and Technology,1993,66:121-138
    [55]Shin K C,White J L.Simulation of non-Newtonian flow of rubber compounds in a pin barrel screw extruder[J].Rubber Chemistry and Technology,1997,70:264-270
    [56]Booy M L,Kafka F Y.ISOTHERMAL FLOW OF VISCOUS LIQUIDS IN THE MIXING SECTION OF A BUSS KNEADER[A].In:SPE.ANTEC Conference Proceedings[C].Boston:Society of Plastics Engineers,1987,140-145
    [57]Brzoskowski R,Kumazawa T,White J L.Modelling flow in mixing section of a KoKneader (Buss)[A].In:SPE.ANTEC Conference Proceedings[C].Boston:Society of Plastics Engineers,1989,54-58
    [58]Elemans P H M,Meijer H E M.On the modeling of continuous mixers Part Ⅱ:The Cokeader[J].Polymer Engineering and Science,1990,30:893-904
    [59]Meijer H E H,Elemans P H M.The modeling of the continuous mixers Ⅰ:the corotating twin-screw extruder[J].Polymer Engineering and Science,1988,28:2275-290
    [60]Lyu M Y,White J L.Models of flow and experimental studies on a composite modular list/buss kokneter and crosshead screw extruder[A].In:SPE.ANTEC Conference Proceedings[C].Boston:Society of Plastics Engineers,1995,208-216
    [61]Lyu M Y,White J L.Models of Flow and Experimental Studies on a Modular List/Buss Kokneter[J].International Polymer Processing,1995,10:305-313
    [62]Lyu M Y,White J L.Modelling of a Viscous Non-Newtonian Polymer Melt in a List/Buss Kneader and Comparison to Experiment[J].International Polymer Processing,1996,11:208-221
    [63]Lyu M Y,White J L.Non-isothermal non-Newtonian analysis of flow in a modular List/Buss Kneader[A].In:SPE.ANTEC Conference Proceedings[C].Boston:Society of Plastics Engineers,1996,160-169
    [64]Lyu M Y,White J L.Simulation of Non-Isothermal Flow in a Modular Buss Kneader and Comparison with Experiment[J].International Polymer Processing,1997,12:104-109
    [65]Lyu M Y,White J L.Non-isothermal non-Newtonian analysis of flow in a modular list/buss kneader[J].Journal of Reinforced Plastics and Composites,1997,16:1445-1460
    [66]Lyu M Y,White J L.Simulation of linear viscoelastic flow behavior in the Buss Kneader[J].Polymer Engineering and Science,1997,37:623-635
    [67]Lyu M Y,White J L.Simulation of non-linear viscoelastic flow behavior in the Buss Kneader[J].Journal of Reinforced Plastics and Composites,2000,19:756-791
    [68]Danckwerts P V.Continuous flow systems.Distribution of residence times[J].Chemical Engineering Science.1995,50:3857-3866
    [69]Lyu M Y,White J L.Residence time distributions and basic studies of flow and melting in a modular Buss Kneader[J].Polymer Engineering and Science,1998,38:1366-1377
    [70]Hoppe S,Detrez C,Pla F.Modeling of a cokneader for the manufacturing of composite materials having absorbent properties at ultra-high-frequency waves.Part 1:Modeling of flow from residence time distribution investigations[J].Polymer Engineering and Science,2002,42:771-780
    [71]Levenspiel O.Chemical reaction engineering 2nd Edition[M].New York:John Wiley & Sons,Inc.,1972
    [72]郭锴,唐小恒等.化学反应工程[M].北京:化学工业出版社,2000.
    [73]D.B.Tod,Residence time distribution in twin-screw extruders[J],Polymer Engineering and Science,1975,15:437-443
    [74]D.Wolf,D.H.White,Experimental study of the residence time distribution in plasticating screw extruders[J],AICHE Journal,1976,22:122-131
    [75]Janssen L P B M,Hollander R W,Spoon M W,Smith J M.Residence time distributions in a plasticating twin screw extruder[J],AICHE Journal,1979,25:345-351
    [76]Rauwendaal C J.Analysis and experimental evaluation of twin screw extruders[J],Polymer Engineering and Science,1981,21:1092-1100
    [77] Kemblowski Z, Sek J. Residence time distribution in a real single screw extruder[J]. Polymer Engineering and Science, 1981, 21: 1194-1202
    [78] Kao S V, Allison G R. Residence time distribution in a twin screw extruder [J], Polymer Engineering and Science, 1984, 24: 645-651
    [79] Weiss R A, Stamato H. Development of an ionomer tracer of extruder residence time distribution experiments [J], Polymer Engineering and Science, 1989,29: 134-139
    [80] Tzoganakis C, Tang Y, Vlachopoulos J, Hamielec A E. Measurements of residence time distribution for the peroxide degradation of polypropylene in a single-screw plasticating extruder[J], Journal of Applied Polymer Science, 1989, 37: 681-693
    [81] Cassagnau P, Mijangos C, Michel A. An ultraviolet method for the determination of the residence time distribution in a twin screw extruder[J], Polymer Engineering and Science, 1991, 31: 772-778
    [82] Oberlehner J, Cassagnau P, Michel A. Local residence time distribution in a twin screw extruder[J], Chemical Engineering Science, 1994,49: 3897-3907
    [83] Ainsworth P, Ibanoglu S, Hayes G D. Influence of Process Variables on Residence Time Distribution and Flow Patterns of Tarhana in a Twin-screw Extruder[J]. Journal of Food Engineering, 1997, 32: 101-108
    [84] De Ruyck H. Modelling of the Residence Time Distribution in a Twin Screw Extruder[J]. Journal of Food Engineering. 1997, 32: 375-390
    [85] Yeh A I, Jaw Y M. Modeling residence time distributions for single screw extrusion process[J]. Journal of Food Engineering, 1998,35: 211-232
    [86] Yeh A I, Jaw Y M. Predicting residence time distributions in a single screw extruder from operating conditions[J]. Journal of Food Engineering. 1999, 39: 81-89
    [87] Chalamet Y, Taha M. In-line residence time distribution of dicarboxylic acid oligomers /dioxazoline chain extension by reactive extrusion[J], Polymer Engineering and Science, 1999, 39: 347-355
    [88] Chuang C C G, Yeh A I. Effect of screw profile on residence time distribution and starch gelatinization of rice flour during single screw extrusion cooking[J]. Journal of Food Engineering, 2004, 63: 21-31
    [89] Seker M. Residence time distributions of starch with high moisture content in a single-screw extruder[J]. Journal of Food Engineering. 2005,67: 317-324
    [90] Kumar A, Ganjyal G M, Jones D D, Hanna M A. Digital image processing for measurement of residence time distribution in a laboratory extruder[J]. Journal of Food Engineering. 2006,75: 237-244
    [91] Wolf D, Holin N, White D H. Residence time distribution in a commercial twin-screw extruder[J], Polymer Engineering and Science 1986, 26: 640-646
    [92] Gendron R, Daigneault L E, Tatibouet J, Dumoulin M M. Residence time distribution in extruders determined by in-line ultrasonic measurements[J], Advances in Polymer Technology, 1996, 15: 111-125
    [93] Hu G H, Kadri I, Picot C. On-line measurement of the residence time distribution in screw extruders[J], Polymer Engineering and Science, 1999, 39: 930-939
    [94] Gao J, Walsh G C, Bigio D, Briber R M, Wetzel M D. Residence-time distribution model for twin-screw extruders[J]. AIChE Journal, 1999, 45: 2541-2549
    [95] van Zuilichem D J, Kuiper E, Stolp W, Jager T. Mixing effects of constituting elements of mixing screws in single and twin screw extruders[J]. Powder Technology, 1999, 106: 147-159
    [96] Gao J, Walsh G C, Bigio D, Briber R M, Wetzel M D. Mean residence time analysis for twin screw extruders[J], Polymer Engineering and Science, 2000,40: 227-237
    [97] Puaux J P, Bozga G, Ainser A, Residence time distribution in a corotating twin-screw extruder[J], Chemical Engineering Science, 2000, 55: 1641-1651
    [98] Unlu E, Falter J F. Geometric mean vs. Arithmetic mean in extrusion residence time studies[J], Polymer Engineering and Science, 2001,41: 743-751
    [99] Melo T J A, Canevarolo S V. An optical device to measure in-line residence time distribution curves during extrusion[J], Polymer Engineering and Science, 2002,42: 170-181
    [100] Sun Z, Jen C K, Shin C K, Denelsbeck D A. Application of ultrasound in the determination of fundamental extrusion performance: residence time distribution measurement[J], Polymer Engineering and Science, 2003,43: 102-111
    [101] Gilmor C, Balke S T, Calidonio F, Rom-Roginski A. In-line color monitoring of polymers during extrusion using a charge coupled device spectrometer: Color changeovers and residence time distributions[J]. Polymer Engineering and Science, 2203, 43: 356-368
    [102] Poulesquen A, Vergnes B, Cassagnau P, Michel A, Carneiro O S, Covas J A. A study of residence time distribution in co-rotating twin-screw extruders. Part II: Experimental Validation[J]. Polymer Engineering and Science, 2003, 43: 1849-1862
    [103] Apruzzese F, Pato J, Balke S T, Diosady L L. In-line measurement of residence time distribution in a co-rotating twin-screw extruder[J], Food Research International, 2003, 36: 461-467
    [104] Carneiro O S, Covas J A, Ferreira J A, Cerqueira M F. On-line monitoring of the residence time distribution along a kneading block of a twin-screw extruder[J]. Polymer Testing, 2004, 23: 925-937
    [105] Cassagnau P, Courmont M, Melis F, Puaux J P. Study of mixing of liquid/polymer in twin screw extruder by residence time distribution[J]. Polymer Engineering and Science, 2005, 45: 926-934
    [106] Zhang X M, Xu Z B, Feng L F, Song X B, Hu G H. Assessing local residence time distributions in screw extruders through a new in-line measurement instrument[J]. Polymer Engineering and Science, 2006,46: 510-519
    [107] Pinto G, Tadmor Z. Mixing and residence time distribution in melt screw extruders[J]. Polymer Engineering and Science, 1970, 10: 279-288
    [108] Lidor G, Tadmor Z. Theoretical analysis of residence time distribution functions and strain distribution functions in plasticating screw extruders[J]. Polymer Engineering and Science, 1976, 16:450-462
    [109] Bravo V L, Hrymak A N, Wright J D. Study of particle trajectories, residence times and flow behavior in kneading discs of intermeshing co-rotating twin-screw extruders [J]. Polymer Engineering and Science, 2004, 44: 779-793
    [110] Chen L, Lindt J T. 3-D flow effects on residence time distribution in screw extruders[J]. AIChE Journal, 1996,42: 1525-1535
    [111] Kwon T H, Joo J W, Kim S J. Kinematics and deformation characteristics as a mixing measure in the screw extrusion process[J]. Polymer Engineering and Science, 1994, 34: 174-189
    [112] Chen L Q, Hu G H. Applications of a statistical theory in residence time distributions[J]. AIChE Journal, 1993,39: 1558-1562
    [113] Poulesquen A, Vergnes B. A study of residence time distribution in co-rotating twin-screw extruders. Part I: Theoretical modeling[J]. Polymer Engineering and Science, 2003, 43: 1841-1848
    [114]Carley J F,Mckelvey M.Extruder scale-up theory and experiments[J].Ind Eng Chem,1953,45:969
    [115]Maddock B H.A visual analysis of flow and mixing in extruder screws[J].SPE.J.,1959,15:383-390
    [116]Rauwendaal C.SCALE-UP OF SINGLE SCREW EXTRUDERS[A].In:SPE.ANTEC Conference Proceedings[C].Boston:Society of Plastics Engineers,1986,968-974
    [117]Chung C I.On the scale-up of plasticating extruder screws[J].Polymer Engineering and Science,1984,24:626-632
    [118]Maddock B H.Extruder scale-up by computer[J].Polymer Engineering and Science.1974,14:853-858
    [119]Pearson J R A.On the scale-up of single-screw extruders for polymer processing[J].Plastics and rubber:processing,1976,1:113-118
    [120]Yi B and Fenner R T.Scaling-up plasticating screw extruders on the basis of similar melting performance[J].Plastics and rubber:processing,1976,1:119-123
    [121]Schenkel G.MODELLTHEORIE DER KUNSTSTOFFEXTRUDER.left bracket Model Theory of Plastics Extuders right bracket[J].Industrie-Anzeiger,1972,94:113-118
    [122]Fenner R T,Williams J G.Some melt flow and mechanical design aspects of large extruders[J].Polymer Engineering and Science,1971,11:474-483
    [123]Potente H,Fischer P.MODEL LAWS FOR THE DESIGN OF SINGLE SCREW PLASTICATING EXTRUDERS[J].Kunststoffe,1977,67:1-3
    [124]Rauwendaal C.Scale-up of single screw extruders[J].Polymer Engineering and Science.1987,27:1059-1068
    [125]Agur E E.Extruder scale-up in a corotating twin-screw extrusion compounding processing[J].Advances in Polymer Technology,1986,6(2):225-231
    [126]Nichols R J,Lindt J.Scale-up of the counter-rotating non-intermeshing twin screw extruders[A].In:SPE.ANTEC Conference Proceedings[C].Boston:Society of Plastics Engineers,1988,80
    [127]Colbert J A.Scale up of twin screw extruder[A].In:Bradoford University:Polymer Process Engineering Conference Proceeding[C],1995,7
    [128]董中华,江波,许澍华,武停启.啮合同向双螺杆挤出机的相似放大[J].塑料,2004,33(5):82-86
    [129]王健平,江波,李翱,毕超.相似放大理论在大型啮合同向旋转双螺杆挤出机设计中的应用[J].塑料,2007,36(3):66-68
    [130]White J L,Lyu M Y.Development of the modem Buss Kneader and the study of its flow and mixing mechanisms[J].Polymer-Plastics Technology and Engineering.1998,37:385-410
    [131]CheremisinoffN P.Polymer Mixing and Extrusion Technology[M].New York and Basel:Marcel Dekker,Inc.,1987
    [132]#12
    [133]#12
    [134]Kajiwara T,Nagasima Y.Numerical study of twin-screw extruders by three-dimensional flow analysis-development of analysis technique and evaluation of mixing performance for full flight screws[J].Polymer Engineering and Science,1996,36:2142-2154
    [135]Cheng H F,Manas-Zloczower I.Study of mixing efficiency in kneading discs of co-rotating twin screw extruders[J].Polymer Engineering and Science,1997,37:1082-1090
    [136]Yao C H,Manas-Zloczower I.Influence of design on mixing performance in an axial discharge continuous mixer-LCMAX40[J].Polymer Engineering and Science,1998,38:936-946
    [137]胡冬冬,陈晋南.啮合同向双螺杆挤出机中组合螺杆性能的数值研究(Ⅱ)混合特征分析[J].中国塑料,2005,19(6):103-109
    [138]WONG T H,MANAS-ZLOCZOWER I.Two-Dimensional Dynamic Study of the Distributive Mixing in an Internal Mixer[J].International Polymer Processing,1994,9:3-10
    [139]YANG H H,MANAS-ZLOCZOWER I.Analysis of Mixing Performance in a VIC Mixer[J].International Polymer Processing,1994,9:291-302
    [140]Anonymous.POLYSTAT 3.10 User's Guide[R].Lebanon:Fluent Inc.,2003
    [141]Dankwertz P V.The Definition and Measurement of some Characteristics of Mixtures[J].Applied Science Research.Section A,1952,3:279-296
    [142]Rauwendaal C.Mixing in polymer processing[M].New York:Marcel Dekker,Inc.,1991
    [143]Joo J W,Kwon T H.Analysis of residence time distribution in the extrusion process including the effect of 3-D circulatory flow[J].Polymer Engineering & Science,1993,33:959-970
    [144]胡冬冬,陈晋南.啮合同向双螺杆挤出机中组合螺杆性能的数值研究(Ⅰ)瞬态流场分析[J].中国塑料,2005,19(3):90-100
    [145]程佩青.数字信号处理教程 第2版[M].北京:清华大学出版社,2001:177-183
    [146]Bi Ch,Jiang B,Li A.Digital image processing method for measuring the residence time distribution in a plasticating extruder[J],Polymer Engineering and Science,2007,47:1108-1113
    [147]李人宪.有限体积法基础[M].北京:国防工业出版社,2005
    [148]南京工学院数学教研组.积分变换(第三版)[M].北京:高等教育出版社,1989
    [149]王勖成.有限单元法[M].北京:清华大学出版社,2003
    [150]Chen S Ch.Performance of gear pumps in single screw plasticating extrusion process[D].USA:University of Lowell,1988
    [151]Pratt W K.Digital Image Processing 3rd Edition[M].New York:John Wiley,2001
    [152]Yuan C R.Artificial Neural Network and Application[M].Beijing:Tsinghua University Press,1999

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700