气动系统的螺旋式超声运动控制机构及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以压缩空气为工作介质的气动技术在工业生产等领域得到了广泛应用,但是由于气体介质的可压缩性大以及非线性严重,导致气动系统的定位精度较低以及低速运动时易爬行等问题,限制了气动技术的发展。针对这一问题,本文提出了一种采用新型工作原理的螺旋式超声解锁与速度控制机构(文中命名为超声运动控制机构),将其应用到气动控制系统中,目的在于改善气动系统的定位精度与速度控制能力。
     通过对超声振动的减摩效应与超声驱动作用的机理分析,得出超声运动控制机构提出的理论与实验基础。超声运动控制机构要由超声振子与螺纹输出轴组成,在超声振动的减摩效应与超声驱动的共同作用下,控制超声振子同螺纹输出轴间摩擦系数,提供二者间相对运动趋势,实现螺旋式传动的自锁与解锁状态转换以及速度控制的功能。
     通过定义螺纹距径比、摩擦系数剩余率以及判定系数的概念,分析了螺纹参数与摩擦系数对超声运动控制机构的自锁与解锁状态的影响规律。分析结果表明,当判定系数大于1时,超声运动控制机构处于解锁状态;选择大的螺纹距径比,减小摩擦系数剩余率,有利于机构的解锁设计。通过建立该机构的电压-速度控制特性的数学模型,得出其具有承载能力大、输出速度线性可控的特点。
     考虑转动惯量与剪切变形的影响,对自由约束弯曲振动梁的共振频率计算公式进行了修正,扩展了频率计算公式的适用范围。采用有限元仿真与实验测试的方法,验证了理论分析结果的正确性。以修正公式为理论基础,建立了用于描述弯曲振动梁的固有振动特性的谐振曲线的数学模型,为开展弯曲振动模态超声振子的振动特性研究提供了理论基础。
     通过对压电片贴片式弯曲振动模态超声振子的布片激振方式进行分析,研究了压电元件的布片位置与布片长度对超声振子输出性能的影响规律。得出压电片的布片位置位于超声振子振动的中心波腹处,布片长度不宜超过两个振动节点间距离为合理的布片方式。采用有限元分析的方法,验证了理论分析结果的正确性,为开展柱状弯曲振动模态超声振子的设计提供了理论指导。
     实现了两种不同结构与激振模式的超声运动控制机构原型样机的研制。一种为行波单波长超声运动控制机构,超声振子采用黄铜材料的中空方柱型结构,自重24g,尺寸为长×宽×内径为20mm×8mm×M4mm;另一种为行波三波长超声运动控制机构,超声振子采用外表面加工有十二棱面的中空柱状多面体结构,材料为45号钢,自重206g,尺寸为长×宽×内径为36mm×46mm×Tr38mm。
     通过定义转折负载、稳态速度以及载重比的概念,开展了超声运动控制机构在质量负载下的实验研究。两台样机均可实现螺旋式传动机构的自锁与解锁状态转换功能。通过调节激励电压,可实现对机构输出速度的线性控制。单波长超声运动控制机构的激振频率为49.30kHz,激励电压有效值7V时,载重比为30:1以上;三波长超声运动控制机构的激振频率为42.90kHz,激励电压有效值14V时,可获得80:1以上的载重比能力。
     将三波长超声运动控制机构应用于气动控制系统中,实现了一套带有超声运动控制机构的新型气动控制系统,测试了该系统的定位与速度控制特性。测试结果表明,通过控制超声运动控制机构,可以完成对气动系统的位置定位与速度控制。与传统气动系统中采用机械锁紧的定位方式相比,带有超声运动控制机构的新型气动控制系统可以获得更高的定位精度;系统的输出速度与超声运动控制机构的激励电压呈线性变化,与系统回路的气体流量无关,提高了气动控制系统的抗干扰能力,特别适用于具有低速运动控制需求的场合。
The pneumatic technology utilizing compressed air has an extensive applicationin industrial manufacture. Due to the high compressibility and nonlinearity ofcompressed air, the low positioning accuracy and stick-slip motion under low velocityare caused to pneumatic system. And the applications of pneumatic technology arerestricted. Aiming at this problem, a type ultrasonic unlocking and velocity controlmechanism with screw structure named ultrasonic motion control mechanism (forshort UMCM in this paper) based on novel working principle is proposed. TheUMCM is used in pneumatic system and the performance of position and velocitycontrol is to be improved.
     The principles of ultrasonic driving and friction reduction effect induced byultrasonic vibrations are analysed, and the foundations of UMCM conception both intheory and experiment are established. The UMCM is comprised by an ultrasonicactuator and screw output shaft. Utilizing the friction reduction effect and ultrasonicdriving, the friction coefficient between the ultrasonic actuator and screw output shaftis reduced and a movement trend between each other is produced. The screw lockingand unlocking statuses of UMCM are transformed and the velocity is controlled.
     The concepts of friction coefficient remainder rate, rate of screw pitch todiameter, and judging coefficient are defined. The influence of these parameters onthe statuses of locking and unlocking are discussed. It is indicated that when thejudging coefficient is over1, the unlocking status of UMCM can be gained. It is infavour of unlocking design foe UMCM by choosing the larger rate of screw pitch todiameter, and decreasing the friction coefficient remainder rate. A mathematicalmodel of voltage-velocity control characteristics for UMCM is established and thefeatures such as large bearing capacity, output velocity linear control are obtained.
     Considering the influence of rotary inertia and shear deformation, an amendedformula used for calculating the resonant frequency of bending vibration mode beamis deduced. The range of using for beam calculated by the amended formula isextended. The theoretical result is confirmed both by finite element simulation andexperiment method. Based on the amended formula, a mathematical model ofresonant characteristics curve used for describing the inherent characteristics ofbending beam is founded. A theoretical basis employing for the investigation ofultrasonic actuator utilizing bending vibration mode can be afforded.
     The exciting mode of PZT plates in plate-attached bending ultrasonic actuator isanalysed theoretically, and the influence of disposition and length of PZT plates on the ultrasonic actuator output performance are researched. The logical dispositionlocation of PZT plates is at the centre wave loop of bending vibration. And the lengthof PZT plates should not be larger than the distance between the two vibration nodes.The simulation confirmation is accomplished to theoretical results by finite elementmethod. A reference for bending ultrasonic actuator design is provided.
     Two prototypes of UMCM utilizing different structures and exciting modes aredeveloped. One prototype of one wavelength driving mode is adopted with a brasshollow square column structure, and has a weight of24g. The length, width and innerdiameter of this prototype are20mm,8mm, and M4mm, respectively. The otherprototype of three wavelength driving mode is adopted. The latter has a weight of206g, and a hollow steel tube structure with twelve planes is used. The length, width andinner diameter are36mm,46mm, and Tr38mm, respectively.
     The concepts of steady velocity, inflection load and rate of mass load to selfweight are defined, and an experimental research of UMCM under mass load iscarried out. The transform functions of locking and unlocking with screw structurecan be achieved for the two prototypes. The exciting frequency of one wavelengthUMCM is49.30kHz, and a rate of mass load to self weight is more than30:1underan exciting voltage effective value of7V can be gained. The exciting frequency ofthree wavelength UMCM is42.90kHz, and a rate of mass load to self weight is morethan80:1under an exciting voltage effective value of14V can be gained.
     The three wavelength UMCM is applied in pneumatic control system, and anovel pneumatic control system with UMCM is achieved. The characteristics such asposition and velocity control of this novel pneumatic control system are tested. It isindicated that the position and velocity control functions of this system can beachieved by controlling UMCM. Compared to the positioning method by mechanicallocking in traditional pneumatic system, a higher positioning accuracy can beobtained in the novel pneumatic control system. The output velocity of the novelsystem can be controlled linearly by exciting voltage, and has an independence onflow of pneumatic circuit. So, the interference immunity is improved and this novelpneumatic system can be applied specially in the occasion of low velocity control.
引文
[1]陈启复.对我国气动工业现状与未来发展的思考[J].液压气动与密封,2012(1):16-22.
    [2] Elhawary H, Zivanovic A, Davies B, et al. A review of magnetic resonanceimaging compatible manipulators in surgery[J]. Proc Inst Mech Eng H,2006,220(3):413-424.
    [3]李小宁,郭钟华.气动助力医疗康复技术的现状及发展趋势[J].机械制造与自动化,2012,41(3):1-5.
    [4] Alric M, Chapelle F, Lemaire J J, et al. Potential applications of medical andnon-medical robots for neurosurgical applications[J]. Minimally InvasiveTherapy and Allied Technologies,2009,18(4):193-216.
    [5]王祖温,杨庆俊.气压位置控制系统研究现状及展望[J].机械工程学报,2003,39(12):10-16.
    [6] Carneiro J F, de Almeida F G. A macro-micro motion servopneumaticdevice[J]. Journal of Systems and Control Engineering,2012,226(I6):775-786.
    [7] Volder D M, Reynaerts D. Pneumatic and hydraulic microactuators: areview[J]. Journal of Micromechanics and Microengineering,2010,20:1-18.
    [8] Minase J, Lu T F, Cazzolato B, et al. A review, supported by experimentalresults, of voltage, charge and capacitor insertion method for drivingpiezoelectric actuators[J]. Precision Engineering,2010,34(4):692-700.
    [9]梁大志,时运来,朱华,等.超声电机驱动及控制技术的新进展[J].振动、测试与诊断,2012,32(6):990-993.
    [10] Aksel E, Jones J L. Advances in lead-free piezoelectric materials for sensorsand actuators[J]. Sensors,2010,10(3):1935-1954.
    [11] Gupta V, Sharma M, Thakur N. Optimization Criteria for Optimal Placementof Piezoelectric Sensors and Actuators on a Smart Structure: A TechnicalReview[J]. Journal of Intelligent Material Systems and Structures,2010,21(12):1227-1243.
    [12]何海杨,王小燕. FESTO新型锁紧气缸在成型机胎面传递环上的应用[J].橡塑技术与装备,2009,35(10):41-44.
    [13] Chiang M H, Lin H T. The leveling position control of a four-axial activepneumatic isolation system using PWM-driving parallel dual-on/off valves[J].Applied Mechanics and Materials,2012,110(116):3176-3183.
    [14]刘道东,汪江,薛盛智.气动伺服刻划技术及应用[J].现代零部件,2013(1):86-88.
    [15] Hodgson S, Le M Q, Tavakoli M, et al. Improved tracking and switchingperformance of an electro-pneumatic positioning system[J]. Mechatronics,2012,22(1):1-12.
    [16] Wang H. Y., Zhao K. D., Cui X. H. On-line compliant force control forpneumatic hydraulic combination control (PHCC) servo system[J]. Journal ofSystem Simulation,2008,19(21):4985-4989.
    [17]张远深,赵娜,张文涛,等.基于磁流变阻尼器作用直线气缸位置控制研究[J].机床与液压,2008,36(10):154-156.
    [18] Li S J, Jiang D. Study on pneumatic position control brake using magneto-rheological fluid[J]. China Mechanical Engineering,2005,16(22):1998-2001.
    [19] Chiang M H. Development of X-Y servo pneumatic-piezoelectric hybridactuators for position control with high response, large stroke and nanometeraccuracy[J]. Sensors,2010,10(4):2675-2693.
    [20] Liu Y T, Higuchi T. Precision positioning device utilizing impact force ofcombined piezo-pneumatic actuator[J]. IEEE/ASME Transactions onMechatronics,2001,6(4):467-473.
    [21] Chiang M H. Development of X-Y Servo Pneumatic-Piezoelectric HybridActuators for Position Control with High Response, Large Stroke andNanometer Accuracy[J]. Sensors,2010,10(4):2675-2693.
    [22]韩森.精密锁紧气缸[J].液压与气动,1996(2):13.
    [23]赵彤. SMC培训教材:现代实用气动技术(第2版)[M].机械工业出版社,2003:10-14.
    [24]宋维波.电气设备比例阀系统的应用分析[J].科技创业家,2012(19):5-7.
    [25] Situm Z. Applying different controller structures for position control ofpneumatic servo system[J]. Strojarstvo,2006,48(5-6):261-271.
    [26]姜继民,张雷,史敬灼.基于免疫原理的气动比例阀缸系统的位置控制[J].电气传动,2012,42(5):30-32.
    [27]胡杰,许昌.高速开关阀的气缸定位控制[J].机械设计与研究,2011,27(6):75-78.
    [28]罗艳蕾,陈伦军,李渊,等.气动比例位置系统优化模糊PID控制方法的研究[J].中国工程机械学报,2010,8(1):56-61.
    [29]高恒,尚群立.气动位置伺服系统建模与PID控制仿真研究[J].机械制造,2009,47(11):21-23.
    [30] Situm Z, Pavkovic D, Novakovic B. Servo pneumatic position control usingfuzzy PID gain scheduling[J]. Journal of Dynamic Systems Measurement andControl Transactions of the ASME,2004,126(2):376-387.
    [31]陈均伟,朱正龙,李渊,等. BP神经网络PID的气动位置控制系统的研究[J].数字技术与应用,2009(12):54-55.
    [32] Shih M C, Ma M A. Position control of a pneumatic rodless cylinder usingsliding mode M-D-PWM control the high speed solenoid valves[J]. JSMEInternational Journal Series C-Mechanical Systems Machine Elements andManufacturing,1998,41(2):236-241.
    [33]王涛,阎祥安,查宏民.基于模糊控制的气缸位置控制系统仿真研究[J].润滑与密封,2006(2):118-120.
    [34] Takosoglu J E, Laski P A, Blasiak S. A fuzzy logic controller for thepositioning control of an electro-pneumatic servo-drive[J]. Proceedings of theInstitution of Mechanical Engineers Part I-Journal of Systems and ControlEngineering,2012,226(I10):1335-1343.
    [35] Najafi F, Fathi M, Saadat M. Performance improvement of a PWM-slidingmode position controller used in pneumatic actuation[J]. IntelligentAutomation and Soft Computing,2009,15(1):73-84.
    [36]杨天兴.气动技术的发展现状及其应用前景[J].煤,2011,20(4):39-41.
    [37] Chiang M H, Chen C C, Tsou T N. Large stroke and high precision pneumatic-piezoelectric hybrid positioning control using adaptive discrete variablestructure control[J]. Mechatronics,2005,15(5):523-545.
    [38] Chiang M H, Lin H T. Development of a3D parallel mechanism robot armwith three vertical-axial pneumatic actuators combined with a stereo visionsystem[J]. Sensors,2011,11(12):476-494.
    [39] Liu Y T, Lee C H, Fung R F. A pneumatic positioning device coupled withpiezoelectric self-moving mechanism[J]. Asian Journal of Control,2004,6(2):199-207.
    [40] Liu Y T, Jiang C C. Pneumatic actuating device with nanopositioning abilityutilizing PZT impact force coupled with differential pressure[J]. PrecisionEngineering,2007,31(3):293-303.
    [41] Wang H. Y., Zhao K. D., Cui X. H. Pneumatic hydraulic combinationcompliant force control system with adaptive experiments[J]. Journal of Xi'anJiaotong University,2007,41(9):1106-1109.
    [42]徐秀芬,赵克定,王洪艳,等.气液联控位置伺服系统模糊并联控制[J].液压与气动,2005(10):25-27.
    [43]李松晶,蒋丹.气动位置控制磁流变流体制动器的研究[J].中国机械工程,2005,16(22):1998-2001.
    [44]张琳,李彦希,陈志武.磁流变气动位置控制系统的仿真与实验研究[J].机床与液压,2006(10):100-103.
    [45] Mohammed A M, Brian S. Force/velocity control of a pneumatic gantry robotfor contour tracking with neural network compensation[C]. ASMEInternational Manufacturing Science and Engineering Conference, Evanston,United States, October7-October10,2008:11-18.
    [46]李岚.气-液速度控制回路中实现稳定低速的措施[J].组合机床与自动化加工技术,1999(12):50.
    [47] Mohammed A M, Brian S. Hybrid force/velocity control of a pneumatic gantryrobot for contour tracking: Tuning and model validation[C]. ASMEInternational Design Engineering Technical Conferences and Computers andInformation in Engineering Conference, Las Vegas, United States, September4-September7,2007:829-837.
    [48]石运序,李小宁.排气回收速度控制系统的键图模型研究[J].液压与气动,2006(3):26-28.
    [49]李军英,王安敏,刘艳香.气动伺服系统的速度特性分析[J].机械制造与自动化,2007,36(2):54-55.
    [50]李岚.气-液速度控制回路中实现稳定低速的措施[J].组合机床与自动化加工技木,1999(12):50-52.
    [51]王焱玉,田玲.磁流变气动速度控制系统的实验研究[J].机床与液压,2007,35(8):115-116.
    [52]丰卫邦.磁流变液技术研究现状[J].船电技术,2012,32(6):15-18.
    [53]熊伟,曾令申,包钢,等.调速阀位置对气动系统性能影响的研究[J].机床与液压,2000(1):50-51.
    [54]王海江,林廷圻.双层PID气动速度伺服控制[J].机床与液压,2004(12):112-113.
    [55]王洪艳,赵克定,崔向华.气液联控伺服系统的滑模位置控制研究[J].机床与液压,2010,38(3):1-3,28.
    [56] Xu X F, Zhao K D, Yuan L P. Performance analysis and experimentalinvestigation to pneumatic-hydraulic-combination-control system[J]. Journalof Xi'an Jiaotong University,2005,39(3):266-269.
    [57]赵家文.磁流变技术在气液阻尼缸中的应用[J].液压与气动,2011(11):77-79.
    [58] Tusset A M, Balthazar J M, Chavarette F R, et al. On energy transferphenomena, in a nonlinear ideal and nonideal essential vibrating systems,coupled to a (MR) magneto-rheological damper[J]. Nonlinear dynamics,2012,69(4):1859-1880.
    [59]杨华,王焱玉,谢仁恩.基于磁流变气动伺服系统的数字PID控制器的设计[J].桂林航天工业高等专科学校学报,2008(2):8-12.
    [60] Zhu X C, Jing X J, Cheng L. Systematic design of a magneto-rheological fluidembedded pneumatic vibration isolator subject to practical constraints[J].Smart Materials and Structures,2012,21(3):50-63.
    [61]李海涛,彭向和,何国田.磁流变液机理及行为描述的理论研究现状[J].材料导报,2010,24(3):121-124.
    [62]冯立霞,玲田.磁流变技术在气动伺服系统中的应用[J].液压与气动,2007(8):55-57.
    [63] Uchino K. Piezoelectric ultrasonic motors: overview[J]. Smart Materials andStructures,1998,7(3):273-285.
    [64] Morita T. Miniature piezoelectric motors[J]. Sensors and Actuators A:Physicals,2003,103(3):291-300.
    [65] Uchino K, Koc B, Dong S. Compact ultrasonic rotary motors[J]. Ferroelectrics,2001,257(1):3-12.
    [66]刘涛,陈宇,路凯,等.切角方柱压电超声微电机的研制[J].清华大学学报(自然科学版),2008,48(8):1229-1232.
    [67]王剑,郭吉丰,鹿存跃,等.柱状弯曲超声波电机的定转子接触方式和力传递模型[J].声学学报,2007,32(6):511-516.
    [68]程廷海.多行波金属管式超声电机研究[D].哈尔滨工业大学硕士学位论文.2008:2-4.
    [69] Uchino K. Piezoelectric actuators-expansion from IT/robotics toecological/energy applications[J]. Journal of Electroceramics,2008,20(3):301-311.
    [70] Watson B, Friend J, Yeo L. Piezoelectric ultrasonic micromilli scaleactuators[J]. Sensors and Actuators A: Physical,2009,152(5):219-233.
    [71] Morita T. Piezoelectric materials synthesized by the hydrothermal method andtheir applications[J]. Materials,2010,3(12):5236-5245.
    [72] Kurosawa M K, Nakamura K, Okamoto T, et al. An ultrasonic motor usingbending vibrations of a short cylinder[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,1989,36(5):517-521.
    [73] Henderson D A. Ultrasonic lead screw motor: US,6940209-B2[P].2005-09-06.
    [74] Henderson D A, D. Viggiano. Mechanism comprised of ultrasonic lead screwmotor: US,7170214-B2[P].2007-01-30.
    [75] Henderson D A. Simple ceramic motor, inspiring smaller products [C].10thInternational Conference on New Actuators, Bremen, Germany,14-16June,2006:1-4.
    [76] Henderson D A, Guelzow J, Hoffman C, et al. Mechanism comprised ofultrasonic lead screw motor: US,7309943-B2[P].2007-12-18.
    [77] Henderson D A. Micro moves [J]. Machine Design,2006,78(1):114-120.
    [78] Ota T, Patronik N A, Schwartzman D, et al. Minimally invasive epicardialinjections using a novel semiautonomous robotic device[J]. Circulation,2008,118(Sl):115-120.
    [79] Nathan A W, Patronik N A, Zenati M A, et al. Fourier modeling of porcineheartbeat and respiration in vivo for synchronization of heartlander robotlocomotion [C]. The33rd Annual International Conference of the IEEE EMBSBoston, USA, AUG30-SEP3,2011:7041-7044.
    [80] Fisher C, Braun D, Kaluzny J, et al. Cobra: A two-degree of freedom fiberoptic positioning mechanism [C].2009IEEE Aerospace Conference, Big Sky,MT, MAR07-14,2009:1366-1376.
    [81] Patronik N A, Ota T, Zenati M A, et al. Accurate positioning for interventionon the beating heart using a crawling robot [C].20082ND BiennialIEEE/RAS-EMBS International Conference on Biomedical Robotics andBiomechatronics, Scottsdale, AZ, OCT19-22,2008:250-257.
    [82] Henderson D A. Simple ceramic motor, inspiring smaller products [C].10thInternational Conference on New Actuators, Bremen, Germany,14-16June,2006:1-4.
    [83] Henderson D A. Novel piezo motor enables positive displacement micro-fluidic pump [C].2007NSTI Nanotechnology Conference and Trade Show,Santa Clara Convention Center, Santa Clara, California, USA, May20-24:272-275.
    [84] Simonite T. Creepy-crawly robot to mend a broken heart [J]. New Scientist,2007,194(26):26-26.
    [85] Patronik N A, Ota T, Zenati M A, etal. Synchronization of epicardial crawlingrobot with heartbeat and respiration for improved safety and efficiency oflocomotion [J]. International Journal of Medical Robotics and ComputerAssisted Surgery,2012,8(1):97-106.
    [86] Sanguinetti B, Varcoe B T H. Use of a piezoelectric SQUIGGLE motor forpositioning at6K in a cryostat[J]. Cryogenics,2006,46:694-696.
    [87] Hotchkiss C. Implantable linear motor is made of piezoceramics for MRI[J].Advanced Materials and Processes,2005,163(7):55.
    [88] Turowski S G, Seshadri M, Loecher M, et al. Performance of a novelpiezoelectric motor at4.7T: applications and initial tests[J]. MagneticResonance Imaging,2008,26(3):426-432.
    [89] Peter P, Nicholas A, Zenati M A, et al. A mobile robot driven by miniatureonboard motors for cardiac intervention [C].34th Annual NortheastBioengineering Conference, Brown University, Providence, RI, USA, April04-06,2008:9-10.
    [90]周铁英,张筠,陈宇.螺母型超声电机及其在透镜调焦中的应用[J].科学通报,2008,53(11):1251-1256.
    [91] Zhou T Y, Chen Y, Lu C Y. Integrated Lens Auto-Focus System Driven By ANut-Type Ultrasonic Motor (USM)[J]. Science in China Series E:Technological Sciences,2009,52(9):2591-2596.
    [92] Zhang J T, Huang W Q, Zhu H, et al. Lead screw linear ultrasonic motor usingbending vibration modes[J]. Transactions of Nanjing University ofAeronautics and Astronautics,2009,26(2):89-94.
    [93] Wereley N M, Wang G, Chaudhuri A. Demonstration of Uniform CantileveredBeam Bending Vibration Using a Pair of Piezoelectric Actuators[J]. Journal ofIntelligent Material Systems and Structures,2011,22(4):307-316.
    [94] Maeno T, Bogy D B. Effect of the hydrodynamic bearing on rotor/statorcontact in a ring-type ultrasonic motor[J]. IEEE Transactions on UltrasonicsFerroelectrics and Frequency Control,1992,39(6):675-682.
    [95]罗云霞,曲建俊,齐毓霖.基于超声微驱动的超声波振动减摩机理[J].机械工程学报,2001,37(5):52-56.
    [96] Kumar C V, Hutchings M I. Reduction of the sliding friction of metals by theapplication of longitudinal or transverse ultrasonic vibration[J]. TribologyInternational,2004(37):833-840.
    [97]吴博达,常颖,杨志刚,等.超声振动减摩性能的实验研究及理论分析[J].中国机械工程,2004,15(9):813-815.
    [98] Zarchi M, Razfar M R, Abdullah A. Investigation of the effect of cutting speedand vibration amplitude on cutting forces in ultrasonic-assisted milling[J].Proceedings of the Institution of Mechanical Engineers Part B-Journal ofEngineering Manufacture,2012,226(B7):1185-1191.
    [99] Baek D K, Ko T J, Yang S H. Enhancement of surface quality in ultrasonicmachining of glass using a sacrificing coating[J]. Journal of MaterialsProcessing Technology,2013,213(4):553-559.
    [100] Nath C, Lim G C, Zheng H Y. Influence of the material removal mechanismson hole integrity in ultrasonic machining of structural ceramics[J]. Ultrasonics,2012,52(5):605-613.
    [101]常颖,彭太江,阚君武,等.超声振动对摩擦系数影响的试验研究[J].压电与声光,2003,25(6):511-513.
    [102] Tawakoli T, Azarhoushang B. Influence of ultrasonic vibrations on drygrinding of soft steel[J]. International Journal of Machine Tools&Manufacture,2008,48(14):1585-1591.
    [103] Popov V L, Starcevic J, Filippov A E. Influence of ultrasonic in-planeoscillations on static and sliding friction and intrinsic length scale of dryfriction processes[J]. Tribology Letters,2010,39(1):25-30.
    [104]彭太江,杨树臣,杨志刚,等.超声波的减摩特性[J].吉林大学学报(工学版),2006(S2):88-90.
    [105] Gutowski P, Leus M. The effect of longitudinal tangential vibrations onfriction and driving forces in sliding motion[J]. Tribology International,2012,55:108-118.
    [106]董迎晖,赵韩,赵淳生.圆柱体弯曲振动超声电机椭圆运动轨迹研究[J].中国机械工程,2007,18(13):1522-1525.
    [107]朱华,陈超,赵淳生.一种微型柱体超声电机的研究[J].中国电机工程学报,2006,26(12):128-133.
    [108] Qu J J, Zhou N N, Wang Y L. Experimental study of air squeeze effect onhigh-frequency friction contact[J]. Tribology International,2010,43(11):2190-2195.
    [109]周广平.超声振动系统的纵-扭和扭-弯复合振动[J].声学学报,2001,26(5):435-439.
    [110] Zhou G P, Zhang B F. The complex-mode vibration of ultrasonic vibrationsystems[J]. Ultrasonics,2002,40:907-911.
    [111]屈维德.机械振动手册[M].机械工业出版社,2000:123-163.
    [112]莫岳平,胡敏强,金龙,等.剪切变形与转动惯量对超声波电机振动特性的影响[J].东南大学学报(自然科学版),2007,37(1):56-59.
    [113] Pin L, Kwok H L, Siak P L, et al. A kinematic analysis of cylindricalultrasonic micromotors[J]. Sensors and Actuators A:Physical,2001,87(3):194-197.
    [114] Cagatay S, Koc B, Uchino K. A1.6-mm, metal tube ultrasonic motor[J]. IEEETransactions on Ultrasonics Ferroelectrics and Frequency Control,2003,50(7):782-786.
    [115] Dong S X, Lim S P, Lee K H, et al. Piezoelectric ultrasonic micromotor with1.5mm diameter[J]. IEEE Transactions on Ultrasonics, Ferroelectrics andFrequency Control,2003,50(4):361-367.
    [116] Morita T, Kurosawa M K, Higuchi T. A cylindrical shaped micro ultrasonicmotor utilizing PZT thin film (1.4mm in diameter and5.0mm long statortransducer)[J]. Sensors and Actuators A:Physical,2000,83(3):225-230.
    [117]陶征,赵淳生.纵扭型超声电机的研发进展与现存问题[J].郑州轻工业学院学报(自然科学版),2011,26(4):63-67.
    [118] Liu Y X, Chen W S, Liu J K, et al. A cylindrical traveling wave ultrasonicmotor using longitudinal and bending composite transducer[J]. Sensors andActuators: A Physical,2010,161(1):158-163.
    [119] Takano M, Takimoto M, Nakamura K. Electrode design of multilayeredpiezoelectric transducers for longitudinal-bending ultrasonic actuators[J].Acoustical Science and Technology,2011,32(3):100-108.
    [120] Filiz S, Ozdoganlar O B. A three-dimensional model for the dynamics ofmicro-endmills including bending, torsional and axial vibrations[J]. PrecisionEngineering,2011,35(1):24-37.
    [121] Suzuki A, Kihara M, Katsumata Y, et al. Ultrasonic rotary motors usingcomplex transverse, and torsional vibration rods and multiple longitudinalvibration transducers[J]. Japanese Journal of Applied Physics. Part1: RegularPapers and Short Notes,2005,44(6):4642-4646.
    [122] Harkness P, Lucas M, Cardoni A. Coupling and degenerating modes inlongitudinal-torsional step horns[J]. Ultrasonics,2012,52(8):980-988.
    [123] Bekiroglu E. Ultrasonic motors: Their models, drives, controls andapplications[J]. Journal of Electroceramics,2008,20(3):277-286.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700