微小管道机器人结构设计及动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微小管道机器人是微机器人研究领域的一个重要组成部分,它具有体积小、能耗低的特点,能够进入一般机械系统无法进入的狭小空间内,完成检测和维修作业,在化学工业、核工业及医学领域有着广泛的应用前景。
     本文首先对现代微小管道检测机器人的国内外科研进展情况做了较为全面和详实的介绍,指出了本课题的研究重要性和研究方向,为本课题的研究提供了参考。
     针对课题要求,提出了丝杠螺母副传动的蠕动式微小管道机器人、凸轮组式传动的微小管道机器人及直进轮式微小管道机器人三种总体设计方案,做了详细的静力学分析,计算了驱动力和移动速度,从结构及性能上做了对比分析,最终选用了丝杠螺母副传动的蠕动式微小管道机器人方案。
     本文设计的微小管道机器人,采用三组直流电机与丝杠螺母传动装置,通过控制三组电机顺序协调动作,实现了机器人的蠕动式前进。利用SolidWorks 2005及AutoCAD 2006软件设计了全部的机械结构,并对要的零件做了相关校核。设计的机器人总体尺寸为Φ13×190mm(收缩状态),质量约100g。同时研究了机器人在竖直管道中驱动负载的情况,以及支撑结构适应管径变化的力学调节特征。
     最后利用ADAMS动力学分析软件,对机构做了运动学和动力学仿真,通过仿真得到了驱动力和移动速度与结构参数之间的关系数据曲线。仿真表明,机器人可以适应Φ15~20mm的管道,通过优化分析,使机器人在竖直管道上升爬行时的驱动力达到28N,移动速度达到6mm/s。
The in-pipe micro-robot is an important composion division of the micro robot research realm. The in-pipe micro-robots, capable of reaching to narrowness and dangerous areas, are characterized by small size, low power supply. They have the prospect to be widely used in the fields of the chemical engineering, the nuclear power plant, the medical treatment.
     At first, this paper introduces generally and in detail the state of researching and developing in-pipe micro-robot for the purpose of giving me orientation, embodying the importance, researching direction of this problem and providing reference for the research of this topic.
     Then, three design proposals are presented for the subject, which compose the screw-driven design of in-pipe micro-robot, the cam-driven design of in-pipe micro-robot and the wheel mechanism design of in-pipe micro-robot. All the static analyses of the three proposals are made, and the driving force and moving velocity are calculated. The first proposal of screw-driven design in-pipe micro-robot is chosen after comparison from the structure and the function.
     The in-pipe micro-robot we designed comprises three DC motors and screw-driven units. The three motors are coordinated to realize the creeping motion. All mechanical designs are done and strength calculations are checked with the help of SolidWorks 2005 and AutoCAD 2006 software. The diameter of the robot is 13mm and the length of the robot is 190mm (when it has contracted), and it weights 100g. The load is analyzed for the case that the robot creeps in a vertical pipe. And the mechanical adjustment characteristic for the claws to adapt to the varying pipe size is also discussed in this paper.
     At last, with the help of ADAMS software, kinematical and dynamical simulations are presented, which give the relationship between the driving force, the moving velocity and structural parameters of the robot. Simulations also show that the robot is applicable to pipes with diameter ranging from 15 to 20mm. The driving force reaches up to 28N and the moving velocity 6mm/s.
引文
[1]蔡自兴.机器人学[M].北京:清华大学出版社,2000.
    [2]尼库.机器人学导论:分析、系统及应用[M].北京:电子工业出版社,2004.5.
    [3]李旻,章亚男,陈方泉.管道作业的微小型机器人[J].管道技术与设备,2000(4):7-11.
    [4]张永顺.国外微型管内机器人的发展[J].机器人,2000(11):506-513.
    [5]甘小明,徐滨士.管道机器人的发展现状[J].机器人技术与应用,2003(6):5-10.
    [6]孙立夫,刘品宽,吴善强等.管内移动微型机器人研究与发展现状[J].光学精密工程,2003(8):326-332.
    [7]Takaharu I,Hitoshi K,Nobuyuki O,et al.Characteristics of piezoelectric locomotive mechanism for an in-pipe micro inspection machine[A].Sixth Intl Symposium on Micro Machine and Human Science[C],1995,193-198.
    [8]Nobuaki K,Takayuki S,Takanafi S.In-pipe wireless micro robot[A].Part of the SPIE Conf on Microrobotics and Microassembly[C],Boston,1999.Vol,3834 0277-786X/99,166-171.
    [9]Kazuhiro T,Takanari S,Takayuki S,et al.Control Circuit in an In-Pipe Wireless Micro Inspection Robot[A].2000 Intl.Symposium on Micromechatronics and Human Science[C],2000,59-64.
    [10]Kiyoshi I.A mobile micro-robot using centrifugal forces[A].Proc.of the 1999IEEE/ASME Intl Confon Advanced Intelligent Mechatronics[C],Atlanta,1999,736-741.
    [11]Linzhi Sun,Yanan Zhang,Ping Sun,Zhenbang Gong.Study on robots with PZT actuator for small pipe[A].IEEE Symposium on Micromechatronics and Human Science[C],2001,149-154.
    [12]Muramatsu M,Namiki N,Koyama R,Suga Y.Autonomous mobile robot in pipe for piping operations[A].IEEE/RSJ International Conf on Robots and systems[C],2000,2166-2171.
    [13]Shigeo H,Hidetaka O,Takeo M,Kiichi S.Design of in-pipe inspection vehicles for φ25,φ50,φ150 pipes[A].IEEE International Conf on Robotics and Automation[C].1999,2309-2314.
    [14]Iwashina S,Hayashi I,Iwatsuki N,Nakamura K.Development of in-pipe operation micro robots[A].IEEE 5th International Symposium on Micro Machine and Human Science[C].1994,2-4.
    [15]Taguchi K,Kawarazaki N.Development of in-pipe locomotion robot[A].ICAR 15th Intl Confon Advanced Robotics 'Robots in Unstructured Environments[C].1991,297-302.
    [16]Se-gon Roh,Hyouk Ryeol Choi.Differential-drive in-pipe robot for moving inside urban gas pipelines[A].IEEE Transactions on Robotics[C],2005(21):1-7.
    [17]Koichi S,Shuichi W,Massanori T.A miniature Inspection Robot Negotiating Pipes of Widely Varying[A].IEEE International Conf on Robot & Automation[C].2003,2735-2740.
    [18]Hayashi I,Iwatuki N.Micro moving robotics[A].IEEE International Symposium on Micromechatronics and Human Science[C],1998,41-50.
    [19]逢境飞,张家良,杨建国等.一种蠕动式管内微机器人的研制[J].机械设计与制造,2005(4):102-104.
    [20]Hayashi I,Iwatsuki N,Iwashina S.The running characteristics of a screw-principle micro robot in a small bent pipe[A].IEEE Sixth Intl.Symposium on Micro Machine and Human Science[C].1995,225-228.
    [21]郭瑜,尚建忠,罗自荣,解旭辉.微小型螺旋推进管道机器人建模与分析[J].机械制造.2006(12):11-14.
    [22]钱晋宇,章亚男,孙麟治等.螺旋轮驱动的细小管内移动机器人研究[J].光学精密工程,1999(8):54-58.
    [23]Brunete A,Hernando M,Gambao E.Modular Multiconfigurable Architecture for Low Diameter Pipe Inspection Microrobots[A].IEEE International Conference on Robotics and Automation[C],2005,490-495.
    [24]Yamaguchi T,Kagawa Y,Hayashi I,Iwatsuki N.Screw principle micro robot passing steps in a small pipe[A].IEEE International Symposium on Micromechatronics and Human Science[C].1999,149-152.
    [25]金杰,杨建国,李倍智等.一种螺旋行走方式管内机器人控制系统[J].机械与电子,2005(10):59-61.
    [26]Masaki Takahashi,Iwao Hayashi,Nobuyuki lwatsuki.The Development of an In-pipe Micro robot Applying the Motion of an Earthworm.Trans.Japan Society for Precision Engineering.1995.6(1):90-94.
    [27]Matsuoka,T,Okamoto,H,Asano,M,et al.A prototype model of micro mobile machine with piezoelectric driving force actuator[A].IEEE 5th International Symposium on Micro Machine and Human Science[C].Nagoya,Japan.1994,47-54.
    [28]Koichi Suzumori,Toyomi Miyagawa,Masanobu Kimura,Yukihisa Hasegawa.Micro Inspection Robot for 1-in Pipes.IEEE/ASME Transactions on Mechatronics.1999.3(4):286-292.
    [29]Werner N.A Spider-like Robot that Climbs Vertically in ducts or Pipes[A].IEEE/RSJ/GI Int.Conf.on Intelligent Robots and Systems[C],1994.2,1178-1185.
    [30]Ishiyama K,Arai K I.Spiral-type micro-machine for medical applications[A].IEEE MHS'2000[C].2000,65-69.
    [31]Anthierens C,Libersa C,Touaibia M,Arsicault M and Chaillet N.Micro robots dedicated to small diameter canalization exploration[A].IEEE/RSJ International Conference on Intelligent Robots and Systems[C].2000.1,480-485.
    [32]Anthierens C,Ciftci A and Betemps M.Design of an electro pneumatic micro robot for in pipe inspection[A].IEEE International Symposium on Industrial Electronics[C].1999.2,968-978.
    [33]莫锦秋.微机电系统设计与制造[M].化学工业出版社,2004.3.
    [34]吕恬生,宋任.小口径管道内蠕动式移动机构的运动模拟和动力学分析[J].机器人,1995,17(1):43-47.
    [35]颜国正,丁国清,高立明.微小型蠕动驱动管道探测机器人机理研究.仪器仪表学报.1999,2(20):217-220.
    [36]王存敏,孙萍,孙麟治.电磁式管内微小移动机构的运动特性分析[J].上海大学学报(自然科学版).1999.5(3):222-226.
    [37]邓宗全,王永福,张晓华等.小口径管内补口作业机器人的研究[J].机器人,1997,19(4):277-281.
    [38]张永顺,邓宗全,毕德学等.一种可越过管内凹形障碍的双驱动多轮移动载体的研究[J].机器人,1998,20(5):352-355.
    [39]于殿勇,郑钢铁,孙序梁.蠕动式管内移动机构的一种模型[J].机器人,1994,16(5):303-306.
    [40]邓宗全,陈明,李笑等.常力封闭管内行走机器人机构类型研究[J].机器人,1991,13(6):53-58.
    [41]邓宗全,王杰,刘福利等.直进轮式全驱动管内行走机构的研究[J].机器人,1995,17(2):121-122.
    [42]程良伦,杨宜民.一种新型管道内微机器人的研究[J].机器人,1999,21(4):249-255.
    [43]郭瑜.微小型螺旋推进管道机器人设计与分析[D].长沙:国防科技大学硕士学位论文.2006(12):10-12.
    [44]罗怡.双压电薄膜细小管道机器人的研究[D].上海:上海大学博士学位论文,2000(6):15-16.
    [45]孙世贤,黄圳圭等.理论力学教程[M].长沙:国防科技大学出版社,1999.3,138-153.
    [46]张铁,谢存禧.机器人学[M].广州:华南理工大学出版社,2004.1.
    [47]宗光华等译.机器人技术手册[M].北京:科学出版社,1996.
    [48]许冯平,邓宗全.管道机器人在弯道处通过性的研究[J].机器人,2004(3):155-160.
    [49]胡贵钱.蠕动式管内移动机构尺度综合与受力分析[J].现代机械,2000(3):48-50.
    [50]马荣朝,秦岚,潘英俊.微小管道机器人移动机构运动学与动力学特性[J].重庆大学学报,2002(7):26-29.
    [51]濮良贵,纪名刚.机械设计[M].北京:高等教育出版社,2001.
    [52]孙桓,陈作模.机械原理(第六版)[M].北京:高等教育出版社,2001.
    [53]李蕾.精密机械设计[M].北京:化学工业出版,2005.3.
    [54]唐金松.简明机械设计手册[M].上海:上海科学技术出版社,2000.10.
    [55]王国强,张进平,马若丁.虚拟样机技术及其在ADAMS上的实践[M].西安:西北工业大学出版社,2002.
    [56]郑凯,胡仁喜,陈鹿民.ADAMS 2005机械设计高级应用实例[M].北京:机械工业出版社,2006.1.
    [57]温熙森,邱静,陶俊勇.系统分析动力学及其应用[M],北京:科学出版社,2003.8.
    [58]李瑞涛,方湄,张文明.虚拟样机技术的概念及应用[J].机电一体化,2000(5):17-18.
    [59]陈小川.虚拟制造技术研究概况综述[J].机械制造,1998(12):8-10.
    [60]姜士湖.虚拟样机技术及其在国内的应用前景[J].机械,2003(1):4-7.
    [61]Sang Sup Kim.Virtual Prototyping with Multibody Dynamics Software in Vehicle Development Process[A].Korea ADAMS User Conference[C],Seoul,2001.
    [62]陈立平等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005.
    [63]郑建荣.ADAMS虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.11.
    [64]李军,邢俊文,覃文洁.ADAMS实例教程[M].北京:北京理工大学出版社,2002.7.
    [65]胡仁喜,徐东升,阳平华.Unigraphics NX 3.0零件设计实务[M].北京:电子工业出版社,2005.
    [66]陈新荣,余跃庆,姜春福.基于虚拟样机的机器人仿真[J].北京工业大学学报,2004(3):38-40.
    [67]成大先.机械设计手册—常用工程材料[M].北京:化学工业出版社,2004.1.
    [68]www.maxon.com.cn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700