三聚芴分子玻璃的设计、合成与光电性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:The Design, Synthesis and Optoelectronic Properties of Molecular Glasses on Fluorene Trimers
  • 作者:唐诗
  • 论文级别:博士
  • 学科专业名称:高分子化学与物理
  • 学位年度:2008
  • 导师:马於光
  • 学科代码:070305
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-01
  • 答辩委员会主席:胡斌
摘要
在众多的电致发光材料中,一类具有无定形态性质的分子玻璃材料受到人们越来越多的关注。分子玻璃可以使用多种方法制备均匀、平整、稳定的薄膜,这样的薄膜可以显著的提高电致发光器件的性能,因此设计和合成适合电致发光的分子玻璃材料就显的极为重要。
     本论文以芴的三聚体作为基本结构单元,通过取代基团刚柔性质的变化,构筑具有无定形态的分子玻璃材料。在具体的研究过程中,首先引入不同比例柔性的己基以改善螺环三聚芴由于强烈结晶所导致薄膜不稳定的问题。通过“刚柔并济”的分子设计得到无定形态的分子玻璃材料,它们的薄膜非常的平整并且稳定,在电致发光器件上表现了优异的性能。
     为了得到具有更高稳定性的分子玻璃材料,并同时增加分子的空穴传输和注入能力,咔唑基团被引入三聚芴体系,合成了一系列具有烷基咔唑侧链的三聚芴分子。这类齐聚物保持了三聚芴体系优良的发光特性,而且表现了更稳定的无定形态性质。咔唑的引入降低了氧化电势,提高了HOMO能级,降低了空穴注入的势垒。由于这些齐聚物具有无定形态的性质,并且具有较高的分子量,它们的薄膜可以实现溶液旋涂加工。特殊的电化学聚合性质,使它们能够通过电化学聚合的方法得到了高发光效率的电沉积薄膜,这样的薄膜也可以用作电致发光器件的制备。
     为了进一步提高三聚芴的发光效率和稳定性,刚性的联苯被引入这个体系,设计并合成了一系列具有螺芴三聚体为主链,烷氧基咔唑取代基团为侧链的齐聚物。这些齐聚物表现了更优异的发光性质,更重要的是芴9号碳上全芳香的取代基团增强了它们对光降解和热处理的抵抗能力。不过由于整个分子结构刚性的增强,使它们很难通过溶液加工形成平整的薄膜。进一步使用柔性的己基侧链取代刚性的联苯以后,这样的分子又可以通过溶液加工得到平整的薄膜,说明分子结构的刚柔性对成膜能力有着至关重要的影响。
Organic light-emitting diodes (OLED) have attracted great attentions of the science and industry fields because of their excellent performance. The molecular glasses with amorphous properties have attracted much attention in many electroluminescent materials. The molecular glasses were fabricated by various methods to gain homogeneous, uniform and stable films, which obviously enhance EL performance. Hence, it is very important that design and synthesis of molecular glasses suited LED devices.
     Fluorene-based oligomers have attracted considerable attentions because they may be functional as model compounds for polyfluorenes (PFs). The oligomers with well-defined structure and excellent optoelectronic performance can reveal the research method of polymers and the relationships between structures and properties, and were used in electroluminescent devices and other optoelectronic devices. The fluorene trimer with spirobifluorene unit exhibited blue emitting with high quantum yields and excellent thermal stability. However, intense crystallization tendency of this compound may result in a quite rough surface of its thin film, because the flexible groups is absent in molecular structure. Aiming at restraining crystallization tendency, and keeping the excellent optical and thermo- properties, a series of fluorene-based trimers with different substitutes at C-9 of fluorene were synthesized, their photophysical, electrochemical, morphological and electroluminescent properties were carefully investigated.
     Firstly, the flexible hexyl groups were introduced into molecular structure of fluorene trimers, and the four trimers with rigid aromatic substitutes and flexible alkyl substitutes were synthesized and characterized. These trimers with same photophysical properties exhibited blue emitting with high quantum yields in solution and films, respectively. The electrochemical analysis revealed that different substitutes have not effect on electronic structure. The power XRD and DSC analusis demonstrated that the morphologies of four trimers are found to largely depend on their substitute, from crystalline of full aromatic or full alkyl substituted trimers to amorphous glass of mixed aromatic and alkyl substituted trimers. Furthermore, the films of molecular glasses are very stable during thermal annealing. In blue LED of these trimers with CIE (x=0.16, y=0.07), maximum brightness is 800 cd m-2,maximum external quantum efficiency is 2.9% and. In white LED combined rubrene, the molecular glass T4 showed good white emitting with CIE (x=0.32, y=0.37) and excellent EL performance (maximum brightness is 9500 cd m-2 and maximum efficiency is 6.15 cd A-1). The results indicate the advantage of molecular glasses in OLEDs.
     Secondly, in order to fabricate films by spin-coated method, carbazole groups were introduced into fluorene trimers as substitutes, and a series of fluorene-based trimers with peripheral carbazole functional alkyl-substitution were synthesized. These compounds showed optical properties similar to fluorene trimers and stable amorphous properties with high Tg (143°C). Through incorporating carbazole units, the first oxidation potential was significantly reduced and the HOMO energy level was heightened, indicating an increased hole inject ability of the new compounds. Due to they have amorphous properties and high molecular weight, the films can be fabricated by spin-coated method. Furthermore, after thermal annealing a smooth surface (Rms:0.215 nm) have less effect. The more efficient and deep blue OLED devices have been achieved by using spin-coating film as emitter. The carbazole can be easily oxidized and subsequently electropolymerized under relatively low potential, which has no effect on the compounds backbone. By electrochemical reactions between the carbazyl radical cation, their electrochemically deposited films with strong fluorescence were gained, which offered a method of grafting light-emitting materials onto substrates for LEDs fabrication, and such devices with rather high efficiency (0.72%) and luminance (4224 cd m-2) have been achieved.
     Lastly, in order to more enhance luminescent efficiency and thermal stability, the rigid spirobifluorene units were introduced into molecular structure of fluorene trimers, and a novel series of fluorene trimers with spirobifluorene backbone and peripheral alkoxyl-substituted carbazole functional groups are synthesized. They exhibite excellent luminescent properties, in particular the efficiencies in films are above 80%. The aromatic substitutes on 9-position of fluorene can increase glass transition temperature and can effectively restrain the photodegradation. However, the smooth films were not gained by spin-coated method, and the films surface with rather roughness were observed even though using eyes. It is possible reason that the backbone has too rigid and the peripheral flexible alkyls were not enwind effectively resulting in enough glutinosity. Understanding relationship between molecular structure and film formed stability, the flexible hexyl groups were introduced as substitute instead of rigid spirobifluorene. By structural modification, this novel compound can form smooth film in the progress of spin-coated method, and OLED device were fabricated.
引文
[1] C. W. Tang, S. A. Vanslyke, “Organic electroluminescent diodes”, Appl. Phys. Lett., 1987, 51, 913.
    [2] A. Kraft, A. C. Grimsdale, A. B. Holmes, “Electroluminescent conjugated polymers-seeing polymers in a new light”, Angew. Chem. Int. Ed., 1998, 37, 402.
    [3] C. W. Tang, S. A. Vanslyke, C. H. Chen, “Electroluminescence of doped organic thin films”, J. Appl. Phys., 1989, 65, 3610.
    [4] J. Kido, K. Hongawa, K. Okuyama, K. Nagai, “White light-emitting organic electroluminescent devices using the poly(N-vinylcarbazole) emitter layer doped with three fluorescent dyes”, Appl. Phys. Lett., 1994, 64, 815.
    [5] D. Braun, A. J. Heeger, “Electroluminescence from light-emitting diodes fabricated from conducting polymers”, Thin Solid Films, 1992, 216, 96.
    [6] J. Kido, M. Kohda, K. Okuyama, K. Nagai, “Organic electroluminescent devices based on molecularly doped polymers”, Appl. Phys. Lett., 1992, 61, 761.
    [7] J. L. Bredas, J. Cornil, A. J. Heeger, “The exciton binding energy in luminescent conjugated polymers”, Adv. Mater., 1996, 8, 447.
    [8] C. J. Brown, A. Ballabio, J. L. Rupert, R. G. Lafreniere, M. Grompe, R. Tonlorenzi, H. F. Willard, “A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome”, Nature, 1991, 349, 38.
    [9] F. F. Lange, “Chemical solution routes to single-crystal thin films”, Science, 1996, 273, 5277.
    [10] R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burroughes, R. N. Marks, C. Taliani, D. D. C. Bradley, D. A. Dos Santos, J. L. Bredas, M. Logdlund, W. R. Salaneck, “Electroluminescence in Conjugated Polymers”, Nature, 1999, 397, 121.
    [11] D. Braun, A. J. Heeger, “Visible light emission from semicon-ducting polymer diodes”, Appl. Phys. Lett., 1991, 58, 1982.
    [12] E.-M. Han, L.-M. Do, N. Yamamoto, M. Fujihira, “Crystallization of organic thin films for electroluminescent devices”, Thin. Solid. Films, 1996, 273, 202.
    [13] K. A. Higginson, X.-M. Zhang, F. Papadimitrakopoulos, “Thermal and morphological effects on the hydrolytic stability of aluminum tris(8-hydroxyquinoline) (Alq3)”, Chem. Mater., 1998, 10, 1017.
    [14] M. D. Joswick, I. H. Campbell, N. N. Barashkov, J. P. Ferraris, “Systematic investigation of the effects of organic film structure on light emitting diode performance”, J. Appl. Phys., 1996, 80, 2883.
    [15] L.-M. Do, M. Oyamada, A. Koike, E.-M. Han, N. Yamamoto, M. Fujihira, “Morphological change in the degradation of Al electrode surfaces of electroluminescent devices by fluorescence microscopy and AFM”, Thin. Solid. Films, 1996, 273, 209.
    [16] Y. Shirota, “Organic materials for electronic and optoelectronic devices”, J. Mater. Chem., 2000, 10, 1.
    [17] L.-M. Do, E.-M. Han, Y. Niidome, M. Fujihira, T. Kanno, S. Yoshida, A. Maeda, A. J. Ikushima, “Observation of degradation processes of Al electrodes in organic electroluminescence devices by electroluminescence microscopy, atomic force microscopy, scanning electron microscopy, and Auger electron spectroscopy”, J. Appl. Phys., 1994, 76, 5118.
    [18] Y. Kuwabara, H. Ogawa, H. Inada, N. Nona, Y. Shirota, “Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4,4-Tri(N-carbazolyl)triphenylamine (TCTA) and 4,4,4-Tris(3-methylphenyl phenylamino)triphenylamine (m-MTDATA), as hole-transport materials”, Adv. Mater., 1994, 6, 677.
    [19] J. H. Burroughes, D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burnsan, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature, 1990, 347, 539.
    [20] K. Komvopoulos, B. Wei, S. Anders, A. Anders, I. G. Brown, “Surface modification of magnetic recording heads by plasma immersion ion implantation and deposition”, J. Appl. Phys., 1994, 75, 1656.
    [21] D. Adam, P. Schuhmacher, J. Simmerer, “Fast photoconduction in the highly ordered columnar phase of a discotic liquid crystal”, Nature, 1994, 371, 141.
    [22] P. F. Smith, P. Gerroir, S. Xie, A. M. Hor, Z. Popovic, M. L. Hair, “Degradation of organic electroluminescent devices. Evidence for the occurrence of spherulitic crystallization in the hole transport layer”, Langmuir., 1998, 14, 5946.
    [23] P. Fenter, F. Schreiber, V. Bulovic, S. R. Forest, “Thermally induced failure mechanisms of organic light emitting device structures probed by X-ray specular reflectivity”, Chem. Phys. Lett., 1997, 277, 521.
    [24] W.-J. Shen, R. Dodda, C.-C. Wu, F.-I. Wu, T.-H. Liu, H.-H. Chen, C. H. Chen, C.-F. Shu, “Spirobifluorene-linked bisanthracene: an efficient blue emitter with pronounced thermal stability”, Chem. Mater., 2004, 16, 930.
    [25] P. W. Wang, Y. J. Liu, C. Devadoss, P. Bharathi, J. S. Moore, “Electroluminescent diodes from a single component emitting layer of dendritic macromolecules”, Adv. Mater., 1996, 8, 237.
    [26] J. Louie, J. F. Hartwig, A. J. Fry, “Discrete high molecular weight triarylamine dendrimers prepared by palladium-catalyzed amination”, J. Am. Chem. Soc., 1997, 119, 11695.
    [27] J. Bettenhausen, P. Strohriegl, “Efficient synthesis of starburst oxadiazole compounds”, Adv. Mater., 1996, 8, 507.
    [28] Y. Shirota, T. Kobata, N. Noma, “Starburst molecules for amorphous molecular materials. 4,4′,4″-tris(N,N-diphenylamino)triphenylamine and 4,4′,4″-tris[N-(3-methylphenyl)-N-phenylamino]triphenylamine”, Chem. Lett., 1989, 18, 1145.
    [29] S. J. Wang, W. J. Oldham, J. R. A. Hudack, G. C. Bazan, “Synthesis, morphology, and optical properties of tetrahedral oligo(phenylenevinylene) materials”, J. Am. Chem. Soc., 2000, 122, 5695.
    [30] J. Salbeck, N. Yu, J. Bauer, F. Weiss?rtel, H. Bestgen, “Low molecular organic glasses for blue electroluminescence”, Synth. Met., 1997, 91, 209.
    [31] F. Steuber, J. Staudigel, M. St?ssel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weiss?rtel, J. Salbeck, “White light emission from organic LEDs utilizing spiro compounds with high-temperature stability”, Adv. Mater., 2000, 12, 130.
    [32] T. P. I. Saragi, T. Fuhrmann-Lieker, J. Salbeck, “Comparison of charge-carrier transport in thin films of spiro-linked compounds and their corresponding parent compounds”, Adv. Funct. Mater., 2006, 16, 966.
    [33] T. P. I. Saragi, T. Spehr, A. Siebert, T. Fuhrmann-Lieker, J. Salbeck, “Spiro compounds for organic optoelectronics”, Chem. Rev., 2007, 107, 1011.
    [34] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. MacKay, R. H. Friend, P. L. Burn, A. B. Homes, “Light-emitting diodes based on conjugated polymers”, Nature, 1990, 347, 539.
    [35] A. B. Holmes, D. D. C. Bradley, A. R. Brown, P. L. Burn, J. H. Burroughes, R. H. Friend, N. C. Greenham, R. W. Gymer, D. A Halliday, R. W. Jackson, A. Kraft, J. H. F. Martens, K. Pichler, I. D. W. Samuel, “Photoluminescence and electroluminescence in conjugated polymeric systems”, Synth. Met., 1993, 55-57, 4031.
    [36] G. Yu, J. Wang, J. McElvain, A. J. Heeger, “Large-area, full-color imagesensors made with semiconducting polymers”, Adv. Mater., 1998, 10, 1431.
    [37] F. Wurthner, C. Thalacker, S. Dieke, C. Tschierske, “Fluorescent J-type aggregates and thermotropic columnar mesophases of perylen bisimide dyes”, Chem. Eur. J., 2001, 7, 2245.
    [38] C. C. Wu, M. C. Delong, Z. V. Vardeny, J. P. Ferraris, “Structualand optical studies of distyrylbenzene singl crystals”, Synth. Met., 2003, 137, 939.
    [39] F. He, H. Xu, B. Yang, Y. Duan, L. Tian, K. Huang, Y. Ma, S. Liu, S. Feng, J. Shen, “Oligomeric phenylenevinylene with cross dipole arrangement and amorphous morphology: enhanced solid-state luminescence efficiency and electroluminescence performance”, Adv. Mater., 2005, 17, 2710.
    [40] C. Hosokawa, H. Higashi, H. Nakamura, T. Kusumoto, “Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant”, Appl. Phys. Lett., 1995, 67, 25.
    [41] K. O. Cheon, J. Shinar, “Bright white small molecular organic light-emitting devices based on a red-emitting guest–host layer and blue-emitting 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl”, Appl. Phys. Lett., 2002, 81, 1738.
    [42] W. Xie, J. Hou, S. Liu, “Blue and white organic light-emitting diodes based on 4,4-bis(2,2-diphenylvinyl)-1,1-biphenyl”, Semicond. Sci. Technol., 2003, 18, 42.
    [43] Y. F. Zhang, G. Cheng, Y. Zhao, J. Y. Hou, S. Y. Liu, “White organic light-emitting devices based on 4,48-bis(2,28-diphenyl vinyl)-1,18-biphenyl and phosphorescence sensitized 5,6,11,12-tetraphenylnaphthacene”, Appl. Phys. Lett., 2005, 86, 011112.
    [44] W.-C. Shena, Y.-K. Sua, L.-W. Jib, “High bright white organic light-emitting diode based on mixing orange and blue emission”, Journal of Crystal Growth, 2006, 293, 48.
    [45] S. J. Wang, W. J. Oldham, R. A. Hudack, G. C. Bazan, “Synthesis, morphology, and optical properties of tetrahedral oligo(phenylenevinylene) materials”, J. Am. Chem. Soc., 2000, 122, 5695.
    [46] K.-T. Wong, Y.-Y. Chien, R.-T. Chen, C.-F. Wang, Y.-T. Lin, H.-H. Chiang, P.-Y. Hsieh, C.-C. Wu, C. H. Chou, Y. O. Su, G.-H. Lee, S.-M. Peng, “Ter(9,9-diarylfluorene)s: highly efficient blue emitter with promising electrochemical and thermal stability”, J. Am. Chem. Soc., 2002, 124, 11576.
    [47] C.-C. Wu, T.-L. Liu, W.-Y. Hung, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y-M. Chen, Y.-Y. Chien, “Unusual nondispersive ambipolar carrier transport and high electron mobility in amorphous ter(9,9-diarylfluorene)s”, J. Am. Chem. Soc., 2003, 125, 3710.
    [48] C.-C. Wu, Y.-T. Lin, K.-T. Wong, R.-T. Chen, Y.-Y. Chien, “Efficient organic blue-light-emitting devices with double confinement on terfluorenes with ambipolar carrier transport properties”, Adv. Mater., 2004, 16, 61.
    [49] C.-C. Wu, T.-L. Liu, Y.-T. Lin, W.-Y. Hung, T.-H. Ke, K.-T. Wong, T.-C. Chao, “Influences of oligomer length on carrier-transport properties of oligofluorenes”, Appl. Phys. Lett., 2004, 85, 1172.
    [50] C.-C. Wu, W.-G. Liu, W.-Y. Hung, T.-L. Liu, K.-T. Wong, Y.-Y. Chien, R.-T. Chen, T.-H. Hung, T.-C. Chao, Y-M. Chen, “Spiroconjugation-enhanced intermolecular charge transport”, Appl. Phys. Lett., 2005, 87, 052103.
    [51] R. G. Clarkson, M. Gomberg, “SPIRANS WITH FOUR AROMATIC RADICALS ON THE SPIRO CARBON ATOM”, J. Am. Chem. Soc., 1930, 52, 2881.
    [52] N Johansson, J. Salbeck, J. Bauer, F. Weissortel, P. Broms, A. Andersson, W. R. Salaneck, “Solid-state amplified spontaneous emission in some spiro-type molecules: a new concept for the design of solid-state lasing molecules”, Adv.Mater., 1998, 10, 1136.
    [53] T. Spehr, R. Pudzich, T. Fuhrmann, J. Salbeck, “Highly efficient light emitters based on the spiro concept”, Org. Electron., 2003, 4, 61.
    [54] J. Salbeck, M. Sch?rner, T. Fuhrmann, “Optical amplification in spiro-type molecular glasses”, Thin Solid Films, 2002, 417, 20.
    [55] Y.-H. Kim, D-.C. Shin, S.-H. Kim, C.-H. Ko, H.-S. Yu, Y.-S. Chae, S.-K. Kwon, “Novel blue emitting material with high color purity”, Adv. Mater., 2001, 13, 1690.
    [56] D. Katsis, Y. H. Geng, J. J. Ou, S. W. Culligan, A. Trajkovska, S. H. Chen, L. J. Rothberg, “Spiro-linked ter-, penta-, and heptafluorenes as novel amorphous materials for blue light emission”, Chem. Mater., 2002, 14, 1332.
    [57] H. Lee, J. Oh, H. Y. Chu, J.-I. Lee, S. H. Kim, Y. S. Yang, G. H. Kim, L.-M. Do, T. Zyung, J. Lee, Y. Park, “Synthesis of regio- and stereoselective alkoxy-substituted spirobifluorene derivatives for blue light emitting materials”, Tetrahedron, 2003, 59, 2773.
    [58] J. Salbeck, H. Spreitzer, H. Schenk, F. Weissortel, H. Riel, W. Riess, “Temperature stability of OLEDs using amorphous compounds with spiro-bifluorene core”, Proc. SPIE, 1999, 3797, 316.
    [59] J. Salbeck, F. Weissortel, J. Bauer, “Spiro linked compounds for use as active materials in organic light emitting diodes”, Macromol. Symp., 1997, 125, 121.
    [60] F. Steuber, J. Staudigel, M. Stossel, J. Simmerer, A. Winnacker, H. Spreitzer, F. Weissortel, J. Salbeck, “White light emission from organic LEDs utilizing spiro compounds with high-temperature stability”, Adv. Mater., 2000, 12, 130.
    [61] S. P. Stanforth, “Catalytic cross-coupling reactions in biaryl synthesis”, Tetrahedron, 1998, 54, 263.
    [62] J. Pei, J. Ni, X.-H. Zhou, X.-Y. Cao, Y.-H. Lai, “Regioregular head-to-tailoligothiophene-functionalized 9,9'-spirobifluorene derivatives. 2. NMR characterization, thermal behaviors, and electrochemical properties”, J. Org. Chem., 2002, 67, 8104.
    [63] J. Pei, J. Ni, X.-H. Zhou, X.-Y. Cao, Y.-H. Lai, “Head-to-tail regioregular oligothiophene-functionalized 9,9'-spirobifluorene derivatives. 1. Synthesis”, J. Org. Chem., 2002, 67, 4924.
    [64] W.-L. Yu, J. Pei, W. Huang, “Spiro-functionalized polyfluorene derivatives as blue light-emitting materials”, Adv. Mater., 2000, 12, 828.
    [65] K.-S. Lee, Y.-H. Kim, Y. Lee, J. Jang, S.-K. Kwon, J. Polym. Sci. Pol. Chem., 2005, 43, 2316.
    [66] F.-I. Wu, D. Rajasekhar, D. S. Shu, C.-F. Shu, “Synthesis and characterization of spiro-linked poly(terfluorene): a blue-emitting polymer with controlled conjugated length”, J. Mater. Chem., 2002, 12, 2893.
    [67] Y. Wu, J. Li, Y. Fu, Z. Bo, “Synthesis of extremely stable blue light emitting poly(spirobifluorene)s with suzuki polycondensation” Org. Lett., 2004, 6, 3485.
    [68] Y. Wu, J. Zhang, Z. Bo, “Synthesis of monodisperse spiro-bridged ladder-type oligo-p-phenylenes”, Org. Lett., 2007, 9, 4435.
    [69] D.-C. Shin, Y.-H. Kim, H. You, S.-K. Kwon, “Sterically hindered and highly thermal stable spirobifluorenyl-substituted poly(p-phenylenevinylene) for light-emitting diodes”, Macromolecules, 2003, 36, 3222.
    [70] C. D. Müller, A. Falcou, N, Reckefuss, M. Rojahn, V. Wiederhirn, P. Rudati, H. Frohne, O. Nuyken, H. Becker, K. Meerholz, “Multi-colour organic light-emitting displays by solution processing”, Nature, 2003, 421, 829.
    [71] G. Zeng, W.-L. Yu, S. -J. Chua, W. Huang, “Spectral and thermal spectral stability study for fluorene-based conjugated polymers”, Macromolecules, 2002, 35, 6907.
    [72] Q. Hou, Q. Zhou, Y. Zhang, W. Yang, R. Yang, Y. Cao, “Synthesis and electroluminescent properties of high-efficiency saturated red emitter based on copolymers from fluorene and 4,7-di(4-hexylthien-2-yl)-2,1,3-benzothiadiazole”, Macromolecules, 2004, 37, 6299.
    [73] J. Teetsov, M. A. Fox, “Photophysical characterization of dilute solutions and ordered thin films of alkyl-substituted polyfluorenes”, J. Mater. Chem., 1999, 9, 2117.
    [74] J.-A. Cheng, C. H. Chen, C. H. Liao, “Solution-processible small molecular organic light-emitting diode material and devices based on the substituted aluminum quinolate”, Chem. Mater., 2004, 16, 2862.
    [75] J. Qiao, L. D. Wang, J. F. Xie, G. T. Lei, G. S. Wu, Y. Qiu, “Strongly luminescent binuclear aluminium chelate with polymer-like molecular packing and solution-processibility”, Chem. Commun., 2005, 4560.
    [76] S.-C. Chang, G. He, F.-C. Chen, T.-F. Guo, Y. Yang, “Degradation mechanism of phosphorescent-dye-doped polymer light-emitting diodes”, Appl. Phys. Lett., 2001, 79, 2088.
    [77] J. E. Dubois, A. Desbene-Morvernay, P. C. Lacaze, “Polaromicrotribometric (PMT) and IR, ESCA, EPR spectroscopic study of colored radical films formed by the electrochemical oxidation of carbazoles : Part II. N-vinylcarbazole”, J. Electroanal. Chem., 1982, 132, 177.
    [78] A. Desbene-Morvernay, P. C. Lacaze, J. E. Dubois, “Polymer-modified electrodes as electrochromic material: Part IV. Spectroelectrochemical properties of poly-N-vinylcarbazole films”, J. Electroanal. Chem., 1983, 152, 87.
    [79] Y. Shirota, T. Kakuta, H. Kanega, H. Mikawa, “Rectification and photovoltaic properties of a schottky barrier cell using electrochemically-doped poly(N-vinylcarbazole)”, J. Chem. Soc. Chem. Commun., 1985, 553, 1201.
    [80] R. G. Compton, F. J. Davis, S. C. Grant, “Electrostatic streaming current developed in the turbulent flow through a pipe”, J. Electroanal. Chem., 1986, 16, 239.
    [81] G. Mengoli, M. M. Musiani, B. Schreck, S. Zecchin, “Electrochemical synthesis and properties of polycarbazole films in protic acid media”, J. Electroanal. Chem., 1988, 246, 73.
    [82] M. Skompska, L. M. Peter, “Electrodeposition and electrochemical properties of poly(N-vinylcarbazole) films on platinum electrodes”, J. Electroanal. Chem., 1995, 383, 43.
    [83] M. Skompska, A. R. Hillman, “Electrochemical quartz crystal microbalance studies of the electrodeposition and subsequent cross-linking of poly(N-vinylcarbazole) films”, J. Electroanal. Chem., 1997, 433, 127.
    [84] R. Sarawathi, A. R. Hillman, S. J. Martin, “Mechanical resonance effects in electroactive polycarbazole films”, J. Electroanal. Chem., 1999, 460, 267.
    [85] P. Marrec, C. Dano, N. Guentner-Simonet, J. Simonet, “The anodic oxidation and polymerization of carbazoles and dicarbazoles N-substituted by polyether chains”, Synth. Met., 1997, 89, 171.
    [86] G. Inzelt, “Formation and redox behaviour of polycarbazole prepared by electropolymerization of solid carbazole crystals immobilized on an electrode surface”, J. Soled State. Electrochem., 2003, 7, 503.
    [87] M. Sonntag, P. Strohriegl, “Novel 2,7-linked carbazole trimers as model compounds for conjugated carbazole polymers”, Chem. Mater., 2004, 16, 4736.
    [88] A. L. Kanibolotsky, R. Berridge, P. J. Skabara, I. F. Perepichka, D. D. C. Bradley, M. Koeberg, “Synthesis and properties of monodisperse oligofluorene-functionalized truxenes: highly fluorescent star-shaped architectures”, J. Am. Chem. Soc., 2004, 126, 13695.
    [89] J. F. Ambrose, L. L. Carpenter, R. F. Nelson, “Electrochemical and spectroscopic properties of cation radicals”, J. Electrochem. Soc., 1975, 122, 876.
    [90] A. Desbene-Monvemay, P. C. Lacaze, J. Dubois, “Polaromicrotribometric (PMT) and IR, ESCA, EPR spectroscopic study of colored radical films formed by the electrochemical oxidation of carbazoles: Part I. carbazole and n-ethyl, n-phenyl and n-carbazyl derivatives”, J. Electroanal. Chem., 1981, 129, 229.
    [91] A. Desbene-Monvemay, P. C. Lacaze, M. Delamar, “A quantitative study of cross-linking in electrodeposited carbazole films using tetrabutylammonium tribromide bromination and XPS analysis”, J. Electroanal. Chem., 1992, 334, 241.
    [92] M. Li, S. Tang, F. Shen, M. Liu, W. Xie, H. Xia, L. Liu, L. Tian, Z. Xie, P. Lu, M. Hanif, D. Lu, G. Cheng, Y. Ma, “Electrochemically deposited organic luminescent films: the effects of deposition parameters on morphologies and luminescent efficiency of films”, J. Phys. Chem. B, 2006, 110, 17784.
    [93] M. Li, S. Tang, F. Shen, M. Liu, W. Xie, H. Xia, L. Liu, L. Tian, Z. Xie, P. Lu, M. Hanif, D. Lu, G. Cheng, Y. Ma, “Highly luminescent network films from electrochemical deposition of peripheral carbazole functionalized fluorene oligomer and their applications for light-emitting diodes”, Chem. Commun., 2006, 3393.
    [94] M. Li, S. Tang, D. Lu, F. Shen, M. Liu, H. Wang, P. Lu, M. Hanif, Y. Ma, “Electrochemical deposition of patterning and highly luminescent organic films for light emitting diodes”, Semicond. Sci. Technol., 2007, 22, 855.
    [95] M. A. Baldo, D. F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M. E. Thompson, S. R. Forrest, “High efficiency phosphorescent emission from organic electroluminescent devices”, Nature, 1998, 395, 151.
    [96] U. Scherf, E. J. W. List, “Semiconducting polyfluorenes - towards reliable structure-property relationships”, Adv. Mater., 2002, 14, 477.
    [97] D. Marsitzky, R. Vestberg, P. Blainey, B. T. Tang, C. J. Hawker, K. R. Carter, “Self-encapsulation of poly-2,7-fluorenes in a dendrimer matrix”, J. Am. Chem. Soc., 2001, 123, 6965.
    [98] M. Gaal, E. J. W. List, U. Scherf, “Excimers or emissive on-chain defects?”, Macromolecules, 2003, 36, 4236.
    [99] M. Kreyenschmidt, G. Klaerner, T. Fuhrer, J. Ashenhurst, S. Karg, W. D. Chen, V. Y. Lee, J. C. Scott, R. D. Miller, “Thermally stable blue-light-emitting copolymers of poly(alkylfluorene)”, Macromolecules, 1998, 31, 1099.
    [100] J. I. Lee, G. Kl?rner, R. D. Miller, “Oxidative stability and its effect on the photoluminescence of poly(fluorene) derivatives: end group effects”, Chem. Mater., 1999, 11, 1083.
    [101] U. Lemmer, S. Heun, R. F. Mahrt, U. Scherf, M. Hopmeier, U. Siegner, E. O. G?bel, K. Müllen, H. B?ssler, “Aggregate fluorescence in conjugated polymers”, Chem. Phys. Lett., 1995, 240, 373.
    [102] V. Cimrová, U. Scherf, D. Neher, “Microcavity devices based on a ladder-type poly(p-phenylene) emitting blue, green, and red light”, Appl. Phys. Lett., 1996, 69, 608.
    [103] V. N. Bliznyuk, S. A. Carter, J. C. Scott, G. Kl?rner, R. D. Miller, D. C. Miller, “Electrical and photoinduced degradation of polyfluorene based films and light-emitting devices”, Macromolecules, 1999, 32, 361.
    [104] X. Gong, P. K. Iyer, D. Moses, G. C. Bazan, A. J. Heeger, S. S. Xiao, “Stabilized blue emission from polyfluorene-based light-emitting diodes: elimination of fluorenone defects”, Adv. Funct. Mater., 2003, 13, 325.
    [105] W. Zhao, T. Cao, J. M. White, “On the origin of green emission in polyfluorene polymers: the roles of thermal oxidation degradation and crosslinking”, Adv. Funct. Mater., 2004, 14, 783.
    [106] C. Y. Chi, C. Im, V. Enkelmann, A. Ziegler, G. Lieser, G. Wegner, Chem. Eur. J., 2005, 11, 6833.
    [107] X.-H. Zhou, Y. Zhang, Y.-Q. Xie, Y. Cao, J. Pei, “Effect of fluorenone units on the property of polyfluorene and oligofluorene derivatives: synthesis, structure-properties relationship, and electroluminescence”, Macromolecules, 2006, 39, 3830.
    [108] L. Liu, S. Tang, M. Liu, Z. Xie, W. Zhang, P. Lu, M. Hanif, Y. Ma, “Photodegradation of polyfluorene and fluorene oligomers with alkyl and aromatic disubstitutions”, J. Phys. Chem. B, 2006, 110, 13734.
    [109] E. J. W. List, R. Guentner, de F. P. Scandiucci, U. Scherf, “Electron transport in thin-film transistors from an n-type conjugated polymer”, Adv. Mater., 2002, 14, 374.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700