脑外科手术辅助用智能导管及操作系统研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前脑血管外科微创手术由于缺乏必要的教学手段,该技术非常难以掌握,世界上只有少数医院的少数医生能进行该手术。随着科技的发展,机械、集成电子技术飞速猛进,应用当今的技术手段解决微创介入手术存在的问题已经成为当前科技人员的研究热点,致力于该方面的研究不仅在于提高手术的质量,而且在于提高手术的安全性、手术的精度以及手术的效率等方面。
     本文以血管介入手术作为应用背景,针对脑外科手术辅助用智能导管以及导管操作系统展开研究,该系统一旦研究成功可实现降低操作失误率,提高手术质量的应用目标。本文总结了该领域目前所遇到的若干瓶颈,针对医生操作机器人进行血管介入手术时,无法感觉到血管和导管之间的触觉力,主动导管在血管分叉时是否能准确地进入目标血管分支,导管触觉力信息的反馈,以及导管输送机械装置的可靠性等诸多方面问题都进行了深入分析和研究,具体内容主要包括以下几个方面:
     结合在心血管中的应用,本文选用动态性能良好的压电材料聚偏二氟乙烯(PVDF)作为触觉力传感器的敏感材料,分析了该种材料的压电特性,设计了相应的电荷放大电路,对其进行电学和力学模型的建立,最终建立了触觉力传感器的数学模型。本文还对PVDF传感器阵列进行了有限元分析,通过聚类分析并应用遗传算法对PVDF触觉传感器阵列进行了最优方法设计,设计了3×3式PVDF传感器阵列,并进行了相应的实验研究,最终将设计的由3个PVDF触觉传感器构成的触觉传感器群应用到所研究开发的导管操作系统中,进行了相应的实验研究。在控制导管运动的驱动器的研究中,本文分别对两种形式材料的驱动器进行了分析研究,一种是形状记忆合金(SMA)驱动器的设计和研究,对SMA驱动器的电热驱动机理进行了分析,建立了温度动力学模型,并对该模型进行了仿真实验,设计了智能导管的SMA驱动器;另一种是目前流行的离子导电聚合物薄膜(ICPF)集成传感驱动器的研究,分析了该种驱动器的挠度输出和端部输出特性,进行了驱动器建模和驱动器端部力传感器建模,并对传感驱动器的鲁棒性进行了分析以及实验校正,该种驱动器克服了直通耦合、环境噪声等影响。本文还针对神经外科手术用导管操作系统进行了研究,首先介绍了一种主-从遥控导管操作系统,该系统是通过一个控制手柄来控制从动装置端来完成导管的推进操作的,但该种装置无法构成整个导管的力反馈,所以提出了一种线性步进机械装置(LSM)的新型导管操作系统设计,该系统主要基于医生操作的现实感对导管操作系统进行设计,并构成了完整的力反馈系统。这种新型线性步进机械装置结构的主-从导管机械传送装置,可以防止出现打滑现象,更易于操作和消毒,并在系统中易于实现远程控制,可以给医生带来很强的操作感,比老型操作系统更有优势,更便于医生操作。
     脑外利手术辅助用智能导管操作系统可以辅助医生进行导管插入,通过计算机控制装置来实现导管的前进、后退与旋转,还可以检测导管在运动过程中的运动阻力,操作者根据触觉力信息的反馈来调整导管的运动,从而给出相应的回应操作,以避免导管损伤血管。
     该套系统还可以作为外科手术医生的实验教学系统,在实现未来的完善研究后,便可以很好地解决手术中插管难度高、危险性大的问题,从而可以极大程度上减少医生的工作强度,提高手术的成功率。
At the present time, due to the lack in the necessary instruction methods of cerebral vascular minimally invasive surgery, surgical techniques are very hard to master to the degree that few surgeons in few hospitals across the world can conduct this operation. With the fast development of technology, mechanism and integrated electronics, applying the current technical means to minimally invasive surgery has become central issue of present researchers. This research can improve not only the quality of the operation, but also the security, precision and efficiency of the operation etc.
     Setting in the application of vascular interventional operation, this paper carries research on the smart catheter and its operating system assisted in brain surgery. Once the study of the system succeeds, it can reduce operating error rate and. raise the application. This paper summarizes several current bottlenecks encountered in this field; for instance, the surgeons cannot feel the tactile force between blood vessel and catheter when the they operate the robot, whether the active catheter can precisely enter into the anticipant embranchment of the blood vessel when the catheter in arterial bifurcation conditions, the feedback of tactile force information and the reliability of transporting machine for the catheter. All the problems above are carried thorough analysis and research in this paper, and it mainly includes the following aspects:
     The tactile sensor is researched in this paper, combining its application in angiocarpy, we chose piezoelectric material Polyvinylidene Fluoride (PVDF) with good dynamic performance as sensitive material of sensors, analyzed piezoelectric characteristics of this material and designed the corresponding charge amplifier circuit, established electrical and mechanical models. Eventually the mathematical model of the tactile force sensor is established and tactile sensor clusters consisting of three PVDF tactile sensors are designed and tested. Besides, the finite element analysis on PVDF array is carried on, cluster analysis and genetic algorithms are also used to optimize the design of tactile sensor array, and then a 3 X 3 PVDF sensor array is designed and corresponding experiments are carried on. Furthermore, in the research of actuator which control the motion of the catheter, two types of material for actuator are analyzed separately, one is the design and research on shape memory alloy (SMA) actuator, the electrothermal driving principle of SMA actuator is analyzed, the model of temperature kinetics is established, and a simulation experiment is carried on this model, the SMA actuator of active catheter is developed; the other one is the research on currently popular Ionic conducting polymer film (ICPF) integrated sensory actuator, the characteristic of bending output and tip output are analyzed, a actuator model and a force sensor model of the end actuator is built, the robustness of senor is analysed and a experimental verification is carried on, it overcomes the influence of feedthrough coupling and enviromental noises, and so on. Finally, operating system of catheter for neurosurgery is researched, first we introduced a master-slave remote catheter operating system which utilizes a handle to control the slave-side to complete the propulsion manipulate of catheter, but this device can not constitute the entire catheter force feedback, therefore we propose a new catheter operating system design based on linear stepping mechanism (LSM), the catheter operating system is designed mainly based on the reality of a doctor operating system on the catheter, and the complete force feedback system is constituted. The structure of a new type linear step mechanism can prevent slip and easy for operate and antisepsis, and it is easy for remote control in the system, it can give the surgeon a strong sense of the operation, it has more advantages than old systems and is more convenient for the doctor.
     The active catheter operating system assisted in brain surgery can help surgeon to perform catheter insertion, it can realize the forward, backward and rotation of the catheter by the computer control equipment, and it can inspect the kinetic resistance of the catheter in the course of motion. The manipulator adjust the motion of the catheter according to the feedback of the tactile force information, and then give the relevant response operate in order to avoid damage to the blood vessel.
     The system can also be used as an experimental teaching system of the surgeon, after finishing the improvement of the future work, we can have a good solution to the high difficulty in insertion and the big danger problems, which can largely reduce the working strength of the surgeon and improve the success rate of the operation.
引文
[1]郭绍红.微创外科的概念、现状与未来.中国微创外科杂志,2002,(S1):39-41页
    [2]景在平,冯翔.微创技术在血管外科领域的应用:进展及存在的问题.中国实用外科杂志,2001,(1):35-38页
    [3]王党校,张玉茹,王永光,马晓鹏,钟朝辉.机器人辅助内镜手术系统的设计与开发.机器人,2002,(4):335-341页
    [4]陈寅,林良明,高立明,颜国正.微型电子机械系统应用于微创外科手术的研究.中国医疗器械杂志,2000,(5):283-286页
    [5]Kwoh YS, Hou J, Jonckheere EA, Hayati S. A robot with improved absolute positioning accuracy for CT guided stereotactic brain surgery. IEEE Transactions on Biomedical Engineering 1988,35(2):153-160P
    [6]D. L. Rothbaum, J. Roy, P. Berkelman, G. Hager, D. Stoianovici, R.H. Taylor, L. L. Whitcomb, M. Howard Francis, and J. K. Niparko. Robot-assisted stapedotomy: micropick fenestration of the stapes footplate. Otolaryngology—Head and Neck Surgery,2002,127:417-426P
    [7]Taylor RH, Stoianovici D. Medical robotics in computer-integrated surgery. IEEE Transactions on Robotics and Automation 2003,19(5):765-781P
    [8]Aiko Yoshizawa,Jun Okamoto,Hiroshi Yamakawa,Masakatsu G.Fujie.Robot surgery based on the physical properties of the brain-physical brain model for planning and navigation of a surgical robot. Proceedings of the 2005 IEEE International Conference on Robotics and Automation,2005:904-911P
    [9]Shuxiang Guo, Tatsuya Nakamtra, Toshio Fukuda, Keisuke Oguro, and Makoto Negoro, Micro Active Catheter Using ICPF Actuator Characteristic Evaluation. Proceedings of IEEE the 22nd Annual International Conference on Industrial Electronics, Control, and Instrumentation,1996:1312-1317P
    [10]F. Arai, R. Fuijimura, T. Fukada, M. Negoro.New catheter driving method using linear stepping mechanism for intravascular neuronsurgery. Proceeding of the 2002 IEEE International Conference on Robotics & Automation, Washington DC, May 2002,3: 2944-2949P
    [11]F. Arai, M. Tanimoto, T. Fukuda, K. Shimojima, H. Matsuura, M Negoro, Multimedia tele-surgery using high speed optical fiber network and its application to intravascular neurosurgery, Proceeding of the 1996 IEEE International Conference on Robotics and Automation, Minnesota USA,1996,1:878-883P
    [12]Rafael Valencia-Garcia, Rodrigo Martinez-Bejar, Alessandro Gasparetto. An intelligent framework for simulating robot-assisted surgical operations. Expert Systems with Applications,2005,28(3):425-433P
    [13]Cyrus Raoufi, Andrew A.Goldenberg, Walter Kucharczyk. Control paradigm and design for a novel mr-compatible tele-robotic system for MRI-guided neurosurgery. Proceedings of the 2007 IEEE International Conference on Mechatronics and Automation,2007:1445-1451P
    [14]http://world.huanqiu.com/roll/2008-05/116546.html
    [15]Weiting Liu, A. Menciassi, S. Scapellato, P. Dario, and Yuquan Chen. A biomimetic sensor for a crawling minirobot. Robotics and Autonomous Systems.2006:1-15P
    [16]Tamas Haidegger, Tian Xia, Kazanzides. Accuracy improvement of a neurosurgical robot system. Proceedings of the 2nd Biennial IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, BioRob 2008,2008: 836-841P
    [17]Sungmin Seung, Byungjeon Kang, Hongmo Je, Jongoh Park, Kyunghwan Kim,Sukho Park.Tele-operation master-slave system for minimal invasive brain surgery.2009 IEEE International Conference on Robotics and Biomimetics,2009:177-182P
    [18]Yuichi Nakazato, Yukihiro Sonobe, Shigeki Toyama. Development of an In-pipe micro mobile robot using peristalsis motion.Journal of Mechanical Science and Technology, 2010,24(1):51-54P
    [19]ChangHo YU, Hiroyuki Kosukegawa, Keisuke Mamada, Kanju Kuroki, Kazuto Takashima, Kiyoshi Yoshinaka, et al. Development of an in vitro tracking system with poly (vinyl alcohol) hydrogel for catheter motion. Journal of Biomechanical Science and Engineering,2010,5(1):11-17P
    [20]丑武胜,王田苗.面向脑外科微创手术的医疗机器人系统.机器人技术与应用,2003,(4):18-21页
    [21]翟伟明,赵雁南等.机器人辅助无框架定位脑外科手术系统.高技术通讯,2005,15(4):33-36页
    [22]唐粲,王田苗,丑武胜,负超.脑外科机器人控制系统的设计和实现.机器人,2004,26(6):543-547,552页
    [23]陈国栋,贾培发,刘艳.位姿闭环控制的高精度脑外科机器人.清华大学学报(自然科学版),2007,47(1):131-134页
    [24]陈国栋,贾培发,王荣军.光学定位脑外科机器人系统及其空间配准.仪器仪表学报,2007,28(3):499-503页
    [25]汪洋,张玉茹,曹永刚.基于任务灵活性的脑外科机器人机构设计.机械设计与研究,2007,23(2):47-51页
    [26]Da Liu, Linan Cong, Jingmeng Liu, Dong Xu. The research on the control system of the minimally invasive surgical robot.2008 IEEE International Conference on Robotics, Automation and Mechatronics, RAM 2008:592-597P
    [27]徐红星,骆英,柳祖亭PVDF压电薄膜的应用进展.江苏理工大学学报,1999,(5):88-91页
    [28]具典淑,周智,欧进萍.基于PVDF的金属构件裂纹监测研究.压电与声光,2004,(6):245-248页
    [29]罗志增,王人成.仿生假手触滑觉研究.传感技术学报,2003,(3):233-237页
    [30]姜明文,王人成,罗志增,金德闻,张济川.具有触滑觉功能的肌电假手.清华大学学报(自然科学版),2004,44:1051-1053页
    [31]卢朝洪,梅涛,骆敏舟,汪小华.一种用于机器人手爪的PVDF接触力传感器设计.压电与声光,2006,6(3):311-313页
    [32]刘伟庭,朱丹华,陈裕泉,王立人.具有外体和本体感知能力智能蠕动模块.传感技术学报,2006,(4):1157-1161页
    [33]Zheng Chen, Yantao Shen, Ning Xi, and Xiaobo Tan, Integrated sensing for ionic polymer-metal composite actuator using PVDF thin films. Smart Materials and Structures,2007:262-271P
    [34]Yantao Shen, U. C. Wejinya, Ning Xi, Craig A. Pomeroy, and Yonghui Xue. Characterization of Living Drosophila Embryos using Micro Robotic Manipulation System. International Conference on Intelligent Robots and Systems. Beijing, China. October 9-15,2006:568-573P
    [35]陈震,郝丽娜,薛定宇,徐心和,刘艳梅.基于压电智能材料悬臂梁力传感器研究进展.2007中国控制与决策学术年会论文集,2007:353-356页
    [36]Hosoda, K, Tada, Y, Asada, M.. Anthropomorphic robotic soft fingertip with randomly distributed receptors. Robotics and Autonomous Systems.2006,54(2):104-109P
    [37]Jingang Yi. A Piezo-Sensor-Based "Smart Tire" System for Mobile Robots and Vehicles. IEEE/ASME Transactions on Mechatronics.2008,13(1):95-103P
    [38]Jingang Yi, Hong Liang. A PVDF-Based Deformation and Motion Sensor:Modeling and Experiments. IEEE Sensor Journal,2008,8(4):384-391P
    [39]J. Dargahi, W. F. Xie, Peng Ji. An experimental teletaction system for sensing and teleperceptionof human pulse. Mechatronics,2008:1-13P
    [40]Mohammadreza Ramezanifard, Saeed Sokhanvar, Javad Dargahi, Wen-Fang Xie, Muthukumaran Packirisamy. Graphical Reproduction of Tactile Information of Embedded Lumps for MIS Applications. Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems,2008:247-252P
    [41]S. Hurlebaus, U. Sto "bener, L. Gaul.Vibration reduction of curved panels by active modal control. Computers and Structures.86 (2008):251-257P
    [42]Seung-Chan Choi, Jae-Sang Park, Ji-Hwan Kim. Active damping of rotating composite thin-walled beams using MFC actuators and PVDF sensors. Composite Structures 76 (2006):362-374P
    [43]吴锦武,张加林,姜哲,王云.通过阵列传感器获取固定板声辐射模态伴随系数.振动与冲击.2008(1):104-110页
    [44]N. Narayanan, A. Bonakdar, J. Dargahi, M. Packirisamy, and R. Bhat.Design and analysis of a micromachined piezoelectric sensor for measuring the viscoelastic properties of tissues in minimally invasive surgery. Smart Mater. Struct.2006: 1684-1690P
    [45]Mohammad Ameen Qasaimeh, Saeed Sokhanvar, Javad Dargahi, and Mojtaba Kahrizi.PVDF-Based Microfabricated Tactile Sensor for Minimally Invasive Surgery.Journal of microelectromechanical systems.2009:195-207P
    [46]Zhe Xu, Xiajing Shi, Susan Lu. Integrated sensor array optimization with statistical evaluation. Sensors and Actuators.2010:239-244P
    [47]Akira Kimoto, Shintarou Fujisaki, Naoki Sugitani. A proposal of new layer sensor based on PVDF film for material identification. Sensors and Actuators, A:Physical. 2010,161(1-2):23-28P
    [48]Javad Dargahi, Siamak Najarian, Kayvan Najarian. Development and three-dimensional modelling of a biological-tissue grasper tool equipped with a tactile sensor. Canadian Journal of Electrical and Computer Engineering,2005,30(4): 225-230P
    [49]Byungjune Choi, Sanghun Lee, Hyouk RyeolChoi, SungchulKang. Development of anthropomorphic robot hand with tactile sensor:SKKU hand Ⅱ. IEEE International Conference on Intelligent Robots and Systems,2006:3779-3784P
    [50]Xu Chen, Aiguo Song. Tactile detection system using PVDF sensor.2009 International Workshop on Intelligent Systems and Applications, ISA 2009:1-3P
    [51]J. Dargahi, W.F.Xie, Peng Ji. An experimental teletaction system for sensing and teleperception of human pulse. Mechatronics,2008,18(4):195-207P
    [52]Dirk Goegcr, Nico Ecker, Heinz Woern. Tactile sensor and algorithm to detect slip in robot grasping processes.2008 IEEE International Conference on Robotics and Biomimetics, ROBIO 2008,2008:1480-1485P
    [53]Y. Shen, U.C. Wejinya, N. Xi, C.A. Pomeroy. Force measurement and mechanical characterization of living Drosophila embryos for human medical study. Proceedings of the Institution of Mechanical Engineers, Part H:Journal of Engineering in Medicine, 2007,221(2):99-112P
    [54]Papakostas T.V., Lima J., Lowe M.. A large area force sensor for smart skin applications. Proceedings of IEEE Sensors.2002,1(2):1620-1624P.
    [55]Ryu Jaewook, Park Jungyul, Kim Byungkyu, Park Jong-Oh. Design and fabrication of a largely deformable sensorized polymer actuator. Biosensors and Bioelectronics,2005, 21(5):822-826P.
    [56]Minyan Shi, Theory and Application of Robotics in Teleoperation and Medical Systems, The Faculty of School of Engineering and Applied Sciences University of Virginia, August,1999
    [57]刘国栋,连广宇,孙增析.空间遥操作机器人力反馈实验系统的研究与实现.机器人.2001,23(5):411-415页
    [58]Wei ting Liu, A. Menciassi, S. Scapellato, etc. A biomimetic sensor for a crawling minirobot. Robotics and Autonomous Systems.2006,54 (7):513-528P.
    [59]Mukat T.. Development of soft areal tactile sensors for symbiotic robots using semiconductor pressure sensors. Proceedings 2004 IEEE International Conference on Robotics and Biomimetics,2004:96-100P.
    [60]J. Guo, N. Xiao, S. Guo and T. Tamiya, A Force Display Method for a Novel Catheter Operating System. Proceedings of 2010 IEEE International Conference on Information and Automation,2010:782-786P.
    [61]Carsten Preusche, Tobias Ortmaier, Gerd Hirzinger, Teleoperation Concepts in Minimal Invasive Surgery, Control Engineering Practice,2002,10:1245-1250P
    [62]芮延年,顾军,许春山等编著.机器人技术及其应用.北京:化学工业出版社,2008:13-23
    [63]高志刚.形状记忆合金的应用.现代制造技术与装备,2007,(1):44-45,58页
    [64]罗子文,薛伟辰,李杰.形状记忆合金的驱动性能研究进展.测控技术,2006,25(8):1-4页
    [65]Arun S V,Gregory D B, Stephen B O,Modeling the dynamic behavior of a shape memory alloy actuated catheter.Smart Materials and Structures,2008,17(4):1-14P
    [66]付宜利,颜增翼,刘浩.形状记忆合金驱动导管机器人的动力学仿真研究.高技术通讯,2010,20(5):499-504页
    [67]Qin Chang-jun, Ma Pei-sun, Yao Qin. A prototype micro-wheeled-robot using SMA actuator. Sensors and Actuators,2004:94-99P
    [68]王嵩,曹志奎.一种基于SMA的管道里蠕动机器人及其反馈控制.传动技术,2005,19(1):29-31页
    [69]Byungkyu Kim, Moon Gu Lee, Young Pyo Lee, YongIn Kim, GeunHo Lee. An earthworm-like micro robot using shape memory alloy actuator. Sensors and Actuators,2006,125:429-437P
    [70]M. Toualbia, N. Chaillet, A. Bourjault. In-Pipe Microrobot System based on Shape Memory Alloy Actuators.4th Japan-France Congress & 2nd Asia-Europe Congress on Mechatronics.1998,1:272-277P
    [71]Menciassi A, Gorini S, Pernorio G et al. A SMA actuated artificial earthworm. IEEE International Conference on Robotics and Automation, New Orleans, USA:IEEE, 2004:3282-3287P
    [72]Ayers J, Wilbur C, Olcott C. Lamprey Robots. International Symposium on Aqua Biomechanisims,2000:186-192P
    [73]Ayers J, Witting J, Wilbur C. Biomimetic Robots for Shallow Water Mine Countermeasures. Autonomous Vehicles in Mine Countermeasures Symposium. Monterey,2000:57-61P
    [74]Colgate J E, Lynch K M. Mechanics and Control of Swimming:A Review. IEEE Journal of Oceanic Engineering,2004,29(3):660-673P
    [75]Sfakiotakis M, Lane D M, Davies J C. Review of Fish Swimming Modes for Aquatic Locomotion. IEEE Journal of Oceanic Engineering,1999,24(2):237-252P
    [76]Shinjo N, Swain G W. Use of a Shape Memory Alloy for the Design of an Oscillatory Propulsion System. IEEE Journal of Oceanic Engineering,2004,29(3):750-755P
    [77]祝捷,曹志奎,马培荪.关于微型六足机器人躯体柔性化的研究.机械与电子,2003,1:29-31页
    [78]祝捷,曹志奎,马培荪.SMA驱动的微型双三足步行机器人作全方位运动的研究.传动技术,2002,4:11-15页
    [79]Kaneko M, Abe M, Tanie K. A hexapod walking machine with decoupled freedoms. IEEE, Robotics and Automation,1985,1(4):183-190P
    [80]Ayers J. Underwater walking. A rth roped Structure& Development,2004,33: 347-360P
    [81]Safak K K, Adams G G. Modeling and simulation of an artificial muscle and its application to biomimetic robot posture control. Robotics and Autonomous Systems, 2002,41:225-243P
    [82]S. Guo, T. Fukuda, K. Kosuge, F. Arai, M. Negoro, Micro-catheter system with active guide wire, in:Proceedings of IEEE International Conference on Robotics and Automation,1995:79-84P
    [83]M. Shahinpoor, K. Kim, Ionic polymer-metal composites:IV. Industrial and medical applications, Smart Mater. Struct,14(2005) 197-214P
    [84]G.-H. Feng, R.-H. Chen, Fabrication and characterization of arbitrary shaped_IPMC transducers for accurately controlled biomedical applications, Sens. Actuators A:Phys. 2008,143:34-40P
    [85]B.-K. Fang, M.-S. Ju, C.-C.K. Lin, A new approach to develop ionic polymer-metal composites (IPMC) actuator:fabrication and control for active catheter systems, Sens. Actuators A:Phys.2007,137:321-329P
    [86]W.J. Yoon, P.G. Reinhall, E.J. Seibel, Analysis of electro-active polymer bending:a component in a low cost ultrathin scanning endoscope, Sens. Actuators A:Phys.2007, 133:506-517P
    [87]S. Guo, T. Fukuda, K. Asaka, A new type of fish-like underwater microrobot, IEEE/ASME Trans. Mechatron.2003,8 (1):136-141P
    [88]B. Kim, J. Ryu, Y. Jeong, Y. Tak, B. Kim, J.-O. Park, A ciliary based 8-legged walking micro-robot using cast IPMC actuators, in:Proceedings of IEEE International Conference on Robots and Automation,2003:2940-2945P
    [89]B. Kim, D.-H. Kim, J. Jung, J.-O. Park, A biomimetic undulatory tadpole robot using ionic polymer-metal composite actuators, Smart Mater. Struct.14 (2005) 1579-1585.
    [90]X. Tan, D. Kim, N. Usher, D. Laboy, J. Jackson, A. Kapetanovic, J. Rapai, B. Sabadus, X. Zhou, An autonomous robotic fish for mobile sensing. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, Beijing, China,2006: 5424-5429P
    [91]J.W.L. Zhou, H.-Y. Chan, T.K.H. To, K.W.C. Lai,W.J. Li, Polymer MEMS actuators for underwater micromanipulation, IEEE/ASME Trans. Mechatron.2004,9 (2):334-342P
    [92]S. Tadokoro, S. Yamagami, M. Ozawa, Soft micromanipulation device with multiple degrees of freedom consisting of high polymer gel actuators, in:Proceedings of IEEE International Conference on Micro-Electro Mechanical Systems,1999:37-42P
    [93]R. Lumia, M. Shahinpoor, Microgripper design using electroactive polymers, in:Smart Structures and Materials 1999:Electroactive Polymer Actuators and Devices,1999: 322-329P
    [94]Z. Chen,Y. Shen, N. Xi, X. Tan, Integrated sensing for ionic polymer-metal composite actuators using PVDF thin films, Smart Mater. Struct.2007,16:S262-S271P
    [95]T. Nguyen, N. Goo, V. Nguyen, Y. Yoo, S. Park, Design, fabrication, and experimental characterization of a flap valve IPMC micropump with a flexibly supported diaphragm, Sens. Actuators A,2008,141:640-648P
    [96]Z. Chen, X. Tan, A control-oriented, physics-based model for ionic polymer-metal composite actuators, in:Proceedings of the 46th IEEE Conference on Decision and Control, NewOrleans, LA,2007:590-595P
    [97]J. Dosch, D. Inman, E. Garcia, A self-sensing piezoelectric actuator for collocated control, J. Intell. Mater. Syst. Struct.1992,3:166-185P
    [98]C. Bonomo, C.D. Negro, L. Fortuna, S. Graziani, D. Mazza, Characterization of IPMC strip sensorial properties:preliminary results, in:Proceedings of International Symposium on Circuits and Systems,2003, Ⅳ-816-Ⅳ-819P
    [99]K. Farinholt, D. Leo, Modeling of electromechanical charge sensing in ionic polymer transducers, Mech. Mater.36 (2004) 421-33P
    [100]A. Punning, M. Kruusmaa, A. Aabloo, Surface resistance experiments with IPMC sensors and actuators, Sens. Actuators A 133 (2007) 200-209P
    [101]A. Punning, M. Kruusmaa, A. Aabloo, A self-sensing ion conducting polymer metal composite (IPMC) actuator, Sens. Actuators A 136 (2007) 656-664P
    [102]K. M. Newbury, Characterization, modeling, and control of ionic polymer transducers, Ph.D. thesis, Virginia Polytechnic Institute and State University,2002.
    [103]Iskandar Petra, David J. Holding, Keith J. Blow, Betty Tam, Xianghong Ma, The Design of A Flexible Digit Towards Wireless Tactile Sense Feedback,2002
    [104]Y. Haga, Y. Tanahashi, M. Esashi. Small diameter active catheter using shape memory alloy. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS), 1998:419-424P
    [105]Hironobu Takizawa, Hiroshi Tosaka, Ryo Ohta, Shinji Kaneko, Yasuhiro Ueda. Development of a microfine active bending catheter equipped with MIF tactile sensors. Proceedings of the IEEE Micro Electro Mechanical Systems (MEMS),1999:412-417P
    [106]Saliha Boudjabi, Antoine Ferreira, Alexandre Krupa. Modeling and vision-based control of a micro catheter head for teleoperated in-pipe inspection. Proceedings of the 2003 IEEE International Conference on Robotics and Automation,2003,3:4282-4287P
    [107]Yoshihiko Koseki, Noriho Koyachi, Tatsuo Arai. Development of a spiral micro-structure for an active catheter. Advanced Robotics,2000,14(5):407-409P
    [108]Yan Bailly, Yacine Amirat. Modeling and control of a hybrid continuum active catheter for aortic aneurysm treatment. Proceedings of the 2005 IEEE International Conference on Robotics and Automation,2005:924-929P
    [109]T. Mineta, T. Mitsui, YWatanabe, S.Kobayashi, Y.Haga,; M. Esashi. Batch fabricated flat meandering shape memory alloy actuator for active catheter. Sensors and Actuators, A:Physical,2001,88(2):112-120P
    [110]陈大国,沈杰,言勇华.机器人辅助导管插入系统技术进展.中国医疗器械杂志,Chinese Journal of Medical Instrumentation,2010,(1):35-38页
    [111]Weixing Feng, Shuxiang Guo, Changmin Chi, etal. Realization of a catheter driving mechanism with micro tactile sensor for intravascular neurosurgery. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics,2006:1628-1633P
    [112]董永贵编著.传感技术与系统.第一版.北京:清华大学出版社,2006:229-234页
    [113]徐红星,骆英,柳祖亭PVDF压电薄膜的应用进展.江苏理工大学学报(自然科学版).1999,20(5):88-91页
    [114]赵东升PVDF压电薄膜传感器的研制.物理测试.2007,25(1):23-26页
    [115]李争彩,林书玉.聚偏氟乙烯的性能以及和压电陶瓷的比较.菏泽学院学报.2007,29(2):51-54页
    [116]王利恒,周锡元PVDF传感器动态压电特性的试验研究.工业建筑,2006:55-58页
    [117]舒方法,石俊.基于PVDF压电薄膜的脉搏测量系统研究.压电与声光.2008,(2):124-126页
    [118]S. Hosseini, S. Najarian, S. Motaghinasab, A. Golpaygani, and S. Torabi.Prediction of tumor existence in the virtual soft tissue by using tactile tumor detector. Amer. J. Appl.2008:483-489P
    [119]M. Hosseini, S. Najarian, S. Motaghinasab, and J. Dargahi. Detection of tumours using a computational tactile sensing approach,.Int. J. Med.Robot. Comput. Assisted Surg. Dec.2006:333-340P
    [120]欧贵宝,朱加铭编著.材料力学(第一版),哈尔滨:哈尔滨工程大学出版社,2003:87-89页
    [121]Yiyang Liu, Peng Yu, Yuechao Wang, Zaili Dong and Ning Xi. The Modeling And Experiments of A PVDF Mirco-Force Sensor. Proceedings of the 3rd IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems. January 6-9, Sanya, China.2008: 60-64P
    [122]Richard Moreau, Minh Tu Pham, Ruimark Silveira, Tanneguy Redarce, Xavier Brun, Olivier Dupuis. Design of a new instrumented forceps:Application to safe obstetrical forceps blade placement. IEEE Transactions on Biomedical Engineering,2007,54(7): 1280-1290P
    [123]Chiharu Ishii, Kosuke Kobayashi, Yusuke Kamei, Yosuke Nishitani. Robotic forceps manipulator with a novel bending mechanism. IEEE/ASME Transactions on Mechatronics,2010,15(5):671-684P
    [124]Shahram Payandeh, Jason Rothe, Ash Parameswaran. Design and development of actuating system for diagnostics application in minimally invasive surgery (MIS). Annual Reports of the Research Reactor Institute, Kyoto University,2001,4: 3473-3476P
    [125]Xiaona Wang, Max Q.-H Meng. An inchworm-like locomotion mechanism based on magnetic actuator for active capsule endoscope.2006 IEEE International Conference on Intelligent Robots and Systems,2006:1267-1272P
    [126]Wataru Makishi, Tadao Matunaga, Yoichi Haga, Masayoshi Esash. Active bending electric endoscope using shape memory alloy coil actuators. Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics,2006:217-219P
    [127]John D.W. Madden, Nathan A.Vandesteeg, Patrick A. Anquetil, Peter G.A. Madden, Arash Takshi, Rachel Z. Pytel, et al. Artificial muscle technology:Physical principles and naval prospects. IEEE Journal of Oceanic Engineering,2004,29(3):706-728P
    [128]K.Yang, C.L. Gu. A novel robot hand with embedded shape memory alloy actuators. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2002,216(7):737-745P
    [129]M.Moallem, J. Lu. Experimental results for nonlinear flexure control using Shape Memory Alloy actuators. Proceedings-2004 IEEE International Conference on Robotics and Automation,2004,2004(4):3653-3658P
    [130]Kyu-Jin Cho, Harry Asada. Multi-axis SMA actuator array for driving anthropomorphic robot hand. Proceedings of the 2005 IEEE International Conference on Robotics and Automation,2005:1356-1361P
    [131]K.Yang, C.L. Gu. Research on novel shape memory alloy multi-fingered humanoid hand. Proceedings of the Institution of Mechanical Engineers, Part C:Journal of Mechanical Engineering Science,2007,221(9):1131-1140P
    [132]S. Saadat, J.Salichs, M. Noori, Z. Hou, H. Davoodi, I. Bar-on, et al. An overview of vibration and seismic applications of NiTi shape memory alloy. Smart Materials and Structures,2002,11(2):218-229P
    [133]M. Moallem, Jun Lu. Application of shape memory alloy actuators for flexure control:Theory and experiments. IEEE/ASME Transactions on Mechatronics,2005, 10(5):495-501P
    [134]Mark L. Guckert, Michael D. Naish, Rajni V. Patel. Position control of a spherical joint using feedback linearization for SMA wire actuators.2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM2010,2010: 1350-1355P
    [135]Mohammad Elahinia, Hashem Ashrafiuon. Nonlinear control of a shape memory alloy actuated manipulator. Journal of Vibration and Acoustics, Transactions of the ASME, October 2002,124(4):566-575P
    [136]Danny Grant, Vincent Hayward. Variable structure control of shape memory alloy actuators. IEEE Control Systems Magazine,1997,17(3):80-88P
    [137]Kwang J. Kim, Mohsen Shahinpoor. Ionic polymer-metal composites:Ⅱ. Manufacturing techniques. Smart Materials and Structures,2003,12(1):65-79P
    [138]Zheng Chen, Xiaobo Tan, Mohse Shahinpoor. Quasi-static positioning of ionic Polymer-metal composite (IPMC) actuators. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2005,1:60-65P
    [139]Zheng Chen, Yantao Shen, Ning Xi, Xiaobo Tan. Integrated sensing for ionic polymer-metal composite actuators using PVDF thin films. Smart Materials and Structures,2007,16(2):S262-S271P
    [140]Zheng Chen, Xiaobo Tan. A control-oriented, physics-based model for ionic polymer-metal composite actuators. Proceedings of the 46th IEEE Conference on Decision and Control,2007:590-595P

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700