仿土拨鼠矿难救灾机器人控制系统关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤矿安全生产事故频发不仅造成了生命财产的损失,还影响国家声誉和社会安定。矿难一旦发生,如何展开事故救援以最大限度地挽回人民的生命和财产损失,一直是世界各国研究的热点问题。灾害矿井环境复杂、空间受限、而且充满了爆炸性气体,这些特点不仅使救援工作难以展开,而且还会给参与救援的人员带来伤害,在救援过程中由于救援不力造成更大伤亡或救援人员伤亡的事件时有发生。随着机器人技术和智能技术的发展,让机器人代替人进入灾害矿井探测事故现场的巷道结构、温度、瓦斯和一氧化碳等有毒气体的浓度等环境参数,并将信息传送到指挥机构,对于救援工作的展开具有重要的参考意义,人员营救机器人还能够携带药品、食物、水、生命探测仪等救援物资直接参与人员营救。
     当前的矿难机器人主要以轮式和履带式机器人为主,这类机器人的环境适应能力有限,体积较大,无法进入狭小空间,特别是遇到堵塞区域时无法继续前行,影响救援工作的进行。本文设计了仿土拨鼠矿难救灾机器人,该机器人采用六足行走,地形适应能力强,同时还具备蠕动和掘进功能,能够在狭小空间中穿行,在遇到堵塞区域时能够进行掘进,减少了环境探测的盲区。基于仿土拨鼠矿难机器人平台,本文对其控制系统若干关键问题进行研究,具体包括以下内容:
     对机器人六足运动、颈部运动以及蠕动运动等运动形式下的机器人运动学和动力学进行分析,建立相应的运动学和动力学模型,为运动控控制器的设计奠定模型基础。
     在对机器人六足行走步态进行分析的基础上,提出了一种基于BSLIP (双足弹簧一质量倒立摆)模型和足底压力反馈的机器人本体运动控制方法,设计了相应的动力学控制器,该控制方法控制精度高,工程实现简单。
     机器人在狭小空间内依靠撑紧机构和腰部机构的协调运动实现蠕动,蠕动过程中撑紧力的大小对机器人蠕动效率具有决定性的影响,撑紧力过小容易产生“打滑”,过大则能量损失大。本文提出了一种基于最小能量损失的机器人蠕动控制方法,该方法根据蠕动轨迹来计算最优撑紧力的大小,进而求解驱动电机的驱动力矩,最大程度地减小能量损失。
     对机器人的掘进过程进行了分析,给出了机器人实现掘进运动的实现流程’并对掘进过程中颈部运动控制方法进行了研究,提出了一种基于动力学前馈补偿的颈部运动控制方法,该控制方法能够克服负载力矩对控制精度的影响,提高了不确定环境下掘进控制的精度。
     根据爆炸性气体环境对机器人控制系统硬件的要求,研究了仿土拨鼠矿难救灾机器人控制系统硬件平台的搭建和控制系统软件的幵发。研制了具有六足行进功能的矿难救灾机器人样机,并开发了基于分层递阶式体系结构的控制系统软件,样机实验表明该机器人具有良好的地形适应性,能够满足复杂环境下运动稳定性的要求。
     本文的研究对于矿难救灾机器人控制系统理论研究和工程实践具有重要参考意义。
Recurrent mining accidents not only caused loss of life and property but alsobring negative effects to the social stability and. governmental reputation. When mineaccident occurs, how to conduct the emergency rescue to recover the loss of life andproperty by the greatest extent is always a hot issue studied by many countires. Thedisaster mine has the following features: complex environment, confined space, iflledwith explosive gas, these features make it very difficult to the rescue work and bringthe injury to succors. The accidents of casualties to trapped miners and injury tosuccors caused by poor rescue frequently occurred. With the development of robotand intelligence technology, the robot can replace human to enter into disaster mineand collect the information such as temperature, the structures of roadway, density ofgas and carbon monoxide and send this information to command organization, theseworks have important signiifcance to the rescue work. In addition the rescue robot caneven carry food,water, medicine, life detection instrument and so on to take part inthe work of life rescue directly.
     Currently, mine rescue robot mainly includes tracked robot and legged robot,theenvironment adaptation of these kinds of robots is not good and the scale is large. Sothey can not enter into narrow space,especially they can not move ahead when theyare faced with bottleneck area, that will influence the progress of rescue work. Wedesigned a groundhog mine rescue robot with six legs. The terrain adaptation of thisrobot is good, and it can crawl in narrow space and drift ahead in ruins, so this robotcan decrease the fields of the blind area of detection. The thesis searched the keytechnologies of the control system for groundhog mine rescue robot, the main work ofthe thesis is as follows:
     The thesis studies the kinematics and dynamics of the different types of motionsuch as body motion, neck motion and crawl motion of the groundhog mine rescuerobot,and establishes the kinematic and dynamic models. This work lays thefoundation of motion controller of the robot.
     Analyze the gait of six legged robot. Propose a motion control method based onBSLIP(Bipedal Spring-Loaded Inverted Pendulum) and plantar pressure, and design adynamics controller, the control method has high control accuracy and the engineerrealization is simple.
     The designed robot crawls through the coordination of the motion of the tightening mechanism and the waist. The tightening force has decisive influence to the efficiency of crawl motion, too small force will make the robot slip, and too large force will induce too large power loss. The thesis proposes a crawl motion controll method, this method can obtain the optimized tightening force according to the crawl track, and the driving torque of the motor is obtained. This method can decrease the energy loss to the greatest degree.
     Study the process of drift ahead, present the realization flow of drift ahead, and study the control method of neck motion in the process of drift ahead. Propose a control method of neck motion based on dynamic feed-forward compensation, this method can eliminate the ill effects of load torque and improve the control accuracy under the uncertain environment.
     Study the hardware and software of the rescue robot control system according to the requirement of explosive gas atmosphere. Develops prototype of mine rescue robot which can run using six legs, and develops control system software based on hierarchic control architecture. The results of test show that the designed robot has virtue of strong adaptation to complex terrain and can meet the requirement of motion stability in complicated envirement.
     The research result of the thesis can provide a valuable reference to the theoretical studies and engineering practice of mine rescue robot control system.
引文
[1]刘朝乾.201L我国煤矿安全现状及安全事故原因分析[习-.科技资讯.第28期;160160.
    [2]国家煤矿安全监察局网站,事故査询。http://media.chinasafety.gov.cn:8090/iSystem/shigumain.jsp.
    [3]安全监管总局政策法规司.国务院批复河南省平顶山市宝丰县周庄镇王庄煤矿“今16”特别重大瓦斯爆炸事故处理结果。
    [4]王勇,朱牮,王永胜等.2007。煤矿救灾机器人研究现状及需耍重点解决的技术问题[J].煤矿机械,28 (4): 107-109。
    [5] Rapid Response Investigation of Robots for Post-Accident Safety Assessment [EB/OL].2012.1,14. http://robotics.sandia.gov/minerobot.html.
    [6] Mine Rescue Robot, http://www.msha.gov/sagomine/robotdetails.asp. 2012.1.14.
    [7] Gemini-Scout mine rescue robot to lead the way to trapped miners. 2011.8。16.http://www.gizrnag.com/gemini-scout-niine-rescue-robot/19543/.
    [8] http://www.ri.emu.edu/researchtdlid=509&d;=261_projec_eiai.html?project_menui_.
    [.9] http://www.ir.cmu.edu/researchjprojectdilt一eta.html?projec」d=493&menuid二261一.
    [10]/民网。“深入矿井探源发图煤iiflf救机器人诞生”.2006.06.30. 一http://scitech.peoplexom.cn/GB/1057/4546129.html.
    [11]我国符台矿用抢险探测机器人在唐山市研制成功,2009.06.08, http://www.most.gov.cn/gnwkjdt/200906/t2009060571141t_.hm.
    [12]王争。2007。井下探测机器人控制系统研制及其运动性能分板[D]。哈尔滨:哈尔滨工业大学.
    [13]我院车辆工程系研制的煤矿井卜探测机器人样机亮相笫六屈中傅会,http://mc.tyut.edu.cn/dwgk/List.asp?ID=297
    [14] “井下救援机器人研制成功能够进行生命探测”.腾讯网,http://tech.qq.cOm/a/2009 i 202/000087.htm.
    [15] R Altendorfer, N Moore, H .Komsuoglu. Buehler and HB. Brown, et al. 2001. RHex: ABiologically Inspired Hexapod Runner [J]. Autonomous Robots, 11(3):207-213.
    [16] R Blickhan,Full R. 1993. Similarity in multilegged locomotion: Bouncing like a monopode[J]. Journal of Comparative Physiology A, 173(5):509-517,
    [17] TM Kubow, RJ Full. 1998. The role of the mechanical system in control: A hypothesis ofself-stabilization in hexapedal runners [C], Annual Meeting of theSociety-for-Experimental-Biology, 354:849-861.
    [18] J Schmitt, P Holmes. 2000, Mechanical models for insect locomotion: Dynamics and stabilityin the horizontal plane I: Theory; II: Application [J]. Biological Cybernetics,83(6):501-515and 517-527.
    [19]张彦斐,宫金良,李为民,高峰.2005.—种6 @由度冗余驱动jf?联机器人运动学分析及仿真[.I].机械工程学报,41⑶:144-148.
    [20] AI. Dagg, Ade Vos. 1968. The Walking Gait of some Speccies of Pecora [J]. J. Jounral ofZoology, 155:103-110.
    [21] Zhiying Wang, Xilun Ding, 2011. Alberto Rov&tta, Alessandro Giusti. Mobility analysis ofthe typical gait of radial symmetrical six-legged robot [J], Mechatronics, 21:1133-1146.
    [22] SM. Song, KJ Waldron. 1989. Machines That Walk: The Adaptive Suspension Vehicle [M].Cambridge,MA: MIT Press.
    [23] D Todd. 1985. Walking Machines: An Introduction to Legged Robots [M], Koran page,London.
    [24] M Ahmadi, M Buehler. 1999. The ARL Monopod II Running Robot: Control and Energetics
    [C]. IEEE Intenrational Conference on Robotics and Automation, 1689-1694.
    [25] K Inagaki. 1996. On leg arrangement of a hexapod walking machine with a disable leg [Cj.Proceedings of International Conference on Control, Automation, Robotics and Vision,1495-1499.
    [26] JM Yang, JH Kim. 1998. Fault-tolerant locomotion of the hexapod robot [J], IEEE Trans.Syst. Man Cybern. 28:109-116.
    [27] Saranli, Uluc, Koditschek Daniel E. 2003. Template based control of hexapedal running [C],Proceeclings-IEEE International Conference on Robotics and Automation, 1:1374-1379.
    [28] Dan Zhang, Lihui Wang,2006. Ebrahim Esmailzaden. PKM capabilities and applicationsexploration in a collaborative virtual environiBcnt [J]. Robotics and Computer-IntegratedManufacturing, 22:384-395.
    [29]郑仁成.2006. 5-UPS/PRPU并联机床的冗余驱动研究[D],秦皇岛:燕山大学.
    [30]郭辉.2004。基于ADAMS的3-RPS型并联机器人虚拟样机技术的研究[D].沈阳:东」匕大学
    [31]郝秀清,胡福生,郭宗和,陈建涛.2006.基下‘ADAMS的3-PPT并联机构运动学和动力学仿真[J].机械设计,23 (9): 9-11。
    [32] U Saranli. 2002. Dynamic locomotion with a hexapod robot [D]. Michigan, USA: MichiganUniversity。
    [33] RM Alexander, AS Jayes. 1978. Vertical movement in walking and running [J]. Jounral ofZoology, London, 185:27-40.
    [34] M Raibert. 1986. Legged robots that balance [M]. MIT Press series in artiifcial intelligence。MIT Press,Boston.
    [35] P Gregorio, M Ahmadi, M Buehler. 1997. Design, control, and energetics of an electricallyactuated legged robot [J]. Transactions on Systems, Man, and Cybenretics, 27(4):626-634.
    [36] G Zeglin. 1999. The Bow Leg Hopping Robot [D]. Pittsburgh,USA: Carnegie MellonUniversity。
    [37] JW Hurst, J Chestnutt; A Rizzi. 2007. Design and philosophy of the BiMASC, a highlydynamic biped [C]? IEEE Conference on Robotics and Automation,1-10:1863-1868,
    [38J P Holmes. 1990. Poincare, celestial mechanics, dynamical-systems theory and “cha”os [J].Physics Reports, 193(3):137-163.
    [39] WJ. Schwind. 1998. Spring Loaded Inverted Pendulum Running: A Plant Model [D]. AnnArboi, Michigan, USA: University of Michigan.
    [40] H Geyer, A Seyfarth, R Bhckhan. 2005. Spring-mass running: simple approximate solutionand application to gait stability [J]. Jounral of Theoretical Biology, 232(3):315-328.
    [41] O Arslan, U Saranli, O Morgul. 2009. An aproximate stance map of the spirng mass hopperwith gravity correction for nonsvnimctric locomotions [C]. IBEE intcrnationai conference onRobotics and Automation, 1829-] °、34.
    [42] MM Ankarali, O Arslan, U Saranli. 2009. An analytical solution to the stance dynamics ofpassive spring-loaded inverted pendulum with damping [C]. International Conference onClimbing and Walking Robots and The Support Technologies lor Mobile Machines,.
    [43] Ankarali Mustafa Mert. 2010. Control of hexapedal pronking through a dynamicallyembedded spring loaded inverted template [D]. Ankara, Turkey; Middle East TechnicalUniversity.
    [44] O Arslan. 2009. Model Based Methods for the Control and Planning of Running Robots [D].Ankara, Turkey; Bilkent University.
    [45] WJ Schwind,DE Koditschek. 2000. Approximating the stance map of a 2 dof monopodrunner [JJ. Journal of Nonlinear Science, 10(5):533-568.
    [46] T Hartley, R Veillette, G Cook. 1996. Techniques in deadbeat and one-step ahead control. InDigital control systems implementation and computational techniques Control and dynamicsystems & advances in theory and applications [M]. Vol. 79,NY: Acadcinic Press (chapter 3).
    [47] M Ahmadi,M Buehler。1999. The ARL Monopod II Running Robot" Control and EnergeticsfC]. IEEE Intenrational Conference on Robotics and Automation, 1689-1694,
    [48] J. Guckenheimer and S. Johnson. Planar hybrid systems? In Hybrid Systems II, Leciure Notesin Computer Science, pages 202-225。Springe]'-Verlag,1999.
    [49] S Soyguder, H Alii. 2012. Kinematic and dynamic analysis of a hexapodwalking-running—bounding gait robot and control actions [J]. Computers and ElectircalEngineering, 38(2):444-458.
    [50] A Cheer, MR Koehl. 1987. Paddles and Rakes: Fluid Flow through Bristled Appendages ofSmall Organism [J]. Journal of Theoretical Biology. 129(1):17 ?39
    [51] RJ Full.1997. Invertebrate Locomotor Systems in Handbook of Physiology [M]. OxfordUniversity Press, 232-260.
    [52] GM. Hugh. 1952. Locomotion: Terrestrial。Academic Press Inc3 281-288
    [53] FL Ch'ernousko. 2000. The wavelike motion of a multilink system on a hoirzontal plane [1],Journal of Applied Mathematics and Mechanics,64(4):497-508.
    [54] RA Merz, DR Edwards. 1998. Jointed Setae-Their Role in Locomotion and Gait Transitionsin Polychaete Worms [J]. Journal of Experimental Marine Biology andEcology, 228(2):273?290.
    [55] S Hirose. 1993. Biologically Inspired Robot-Snake-like Locomotors and Manipulators [M],Oxford, UK,: Oxford University Press.
    [56] S Hirose, A Moirshima. 1990. Design and control of a mobile robot with an articulated body[J],Int.J.Robot.Res, 9(2'):99-114.
    [57] NMostagheIsTDavis. 1998.动力分析中库仑摩檫力的表达式[J].世界地震工程,14(1); 85-88-
    [58]孙即祥编著8 2008.现代模式识别(第2版)。北京:高等教育出版社。
    [59] Jinsong Wang? Jim Wu? Liping Wang Lipingj Zheng You- 2009. Dynamic feed-forwardcontrol of a parallel kinematic machine [J]. Mechatronics, 19(3):313-324.
    [60] M Honegger, R Brega,G Schweitzer. 2001. Application of a nonlinear adaptive controller toa 6 dof parallel manipulator [J]. Control Engineering Practice,9(2): 159-167.
    [61] CC Nguyen, SS Antrazi, ZL Zhou, JCE Campbell. 1993. Adaptive control of a Stewartplatform-based manipulator [J]. Jounral of Robotic Systems, 10(5):657-687.
    [62] F Caccavale, B Siciliano, L Villani. 2003. The tricept robot: dynamics and impedance control ,[J]. IEEE-ASME TRANSACTIONS ON MECHATRONICS,8(2):263-268.
    [63] NI ICim, CW Lee, PI I Chaag. 19:/8. Sliding mode contiol with perturbation estimation:application to motion control of parallel manipulator [J]. Control Engering Practice,6(11):1321-1330.
    [64] MR Sirouspours SE Salcudean. 2001. Nonlinear control of hydraulic robots [J]. IEEE TransRobotic Autom, 17(2):173-182.
    [65] M Grotjahn, B Heimann.2002. Model-based feed-forward control in industiral robotics [J].Intenrational Jounral of Robotics Research, 21(1):99-114.
    [66] Z Geng, LS Haynes. 1991. Dynamic control of a parallel link manipulator using CMACneural network [C]. Proceedings of Oie IEEE international symposium on intelligent control.411-416.
    [67] Li Y, Liu Y. 2006. Online fuzzy iogic control for tipover avoidance of autonomous redundantmobile manipulators [J]. Intearalional Jounral of Vehicle Autonomous Systems nts 4(1):24-43.
    [68] T Huang, JP Mei,ZX Lia XM Zhao,DG Chetwynd, 2005。A method for estimatingservomotor parameters of a parallel robot for rapid pick-and-place o"perations [J]. ASME JMech Dess 127(4):596-601.
    [69] B Dasgupta, TS Mruthyunjaya, 1998. ANewton-Euler fornuilation for the inverse dynamicsof the Stewart platform manipulator [J]. Mech Mach Theory, 33(8):1135-1152.
    [70] JY Kang, DH Kim,KI Lee. 1996. Robust tracking control of Stewart platform [C].Proceedings of the 35th conference on decision and control, 3:3014-3019.
    [71] YTing, YS Chen, SM Wang. 1999, Task-space control algorithm for Stewart platform [C].Proceedings of the 38th IEEE conference on decision and control, 3857-3862,
    [72]徐华,贾培发,赵雁南,2003.幵放式机器人控制器软件体系结构研究进展⑴.髙技术通讯,13 (1); 100-105.
    [73]刘娟.2003.基丁-时空信息与认识模型的移动机器人导航机制研究[D].长沙:巾南大学》
    [74] JNilsson. 1980. Pirnciples of Artifical Intelligence [M]. Palo Alto: Tioga PublishingCompany,
    [75]蔡6兴,徐光佑.2004.人工智能及其应用[M].北京:清华大学出版社.
    [76]蔡自兴,贺汉根,陈虹.2009.未知环境中移动机器人导航控制理论与方法[M].北京:科学出版社.
    [77] RA Brooks, JH Connel.1987. Asynchronous distributed control system for a mobile robot [CJ.SPIE,s Cambridge Symposium on Optical and Opto-Electronic Engineeirng Proceedings,77-84.
    [78] RC Arkin. 1990. Integrating behavioral, perceptual and world knowledge in reactivenavigation [J]. Robotics and Autonomous Sysetems,6(1-2):105-122.
    [79] E Gat. 1991. Robust low-computation sensor-clriven control for task-directed navigation [C].International Conference on Robotics and Automation, 3:2482-2489.
    [80] RP Bonasso. 1991. Integrating reaction plans and layered competences through synchronouscontrol [C]. International Joint Conference on Artiifcial Intelligence, 2:1225-1231.
    [81] CJ H onnell 1992. SSS: A hybrid architecture applied to robot navigation [C]. InternationalConference on Robotics and Automation, 3:2719-2724.
    [82]闻道.2003.防爆电气设备的防爆型式[J].电气防爆,03期:39-40.
    [83]全国防爆电气设备标准化技术委员会.2000.爆炸性气位环境用电气设备第4部分:本质安全型"i" (GB3836.4-2000).
    [84]广州致远电子有限公司.2008. EPC-8900产品用户手册V1.01.广州致远电子有限公司.
    [85]郭巧.1999.现代机器人学[M].北京:北京理工大学出版社.
    [86]北京博创兴盛机器人技术有限公司.2010. Pi_oMotionBDMC2803/3606/3610直流伺服驱动器使用手册.北京博创兴盛机器人技术有限公司.
    [87]周立功等编著.2003.增强型80C51单片机速成与实践[M]。北京:北京航空航天大学出版社.
    [88]史久根,张培仁,陈真勇.2004. CAN现场总线系统设计技术[M].北京:国防工业出版社.
    [89]潭民,徐德,侯增广,王硕’曹志强.2007.先进机器人控制[M].北京:高等教育出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700