大变形软岩流变性态及其在隧道工程结构中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石流变与岩石工程长期稳定与安全密切相关。岩石流变力学试验是了解岩石流变力学特性的重要手段。进行室内三轴流变试验研究了风化破碎软弱岩石的流变特性。在考虑岩石流变时效特性的基础上,运用理论解析和数值模拟手段对收敛约束法进行了较系统深入的研究。并利用正交试验设计方法探讨了隧道支护结构的优化设计。
     论文主要研究工作集中在以下几个方面:
     (1) 采用全自动三轴流变试验机对厦门东通道海底隧道风化槽/囊地段岩石进行了三轴压缩流变试验,研究了岩石在不同围压和不同应力水平作用下轴向应变随时间的变化规律。通过对试验数据的拟合,表明幂律型蠕变模型可以用来较好的模拟该类岩石除第三阶段蠕变以外的蠕变行为。
     (2) 分别从围岩特征曲线和支护特征曲线出发,对收敛约束法进行了较为系统的研究。总结给出了围岩特征曲线的确定方法,包括理论解析法、数值方法和现场实测法。利用数值方法,分别对厦门东通道海底隧道进行了二维弹塑性、粘弹塑性、考虑应变软化的粘弹塑性和三维粘弹塑性分析,得到相应的围岩特征曲线,并比较了它们之间的异同之处。在假设支护材料行为符合弹性—理想塑性的前提下,总结给出了喷射混凝土支护、锚杆支护、钢拱支护和组合式支护的支护刚度方程,讨论了构成组合式支护的各单一支护的设置时间和边界条件发生变化时,组合式支护刚度的计算方法。在此基础上,给出了支护效果的评价方法。针对收敛约束法中初始位移(支护设置前的洞壁径向位移)难以确定的问题,给出了利用LDP线确定初始位移的方法以及LDP线的计算方法。
     (3) 通过对乌鞘岭隧道开挖过程中洞室围岩变形、围岩压力、支护应力等监测数据的分析,探讨了乌鞘岭隧道围岩“挤入型”大变形的机理、成因。将模拟乌鞘岭隧道实际开挖过程的三维粘弹塑性数值分析结果与现场实测结果进行比较,论证了采用幂律型蠕变模型描述乌鞘岭隧道围岩流变的可行性。
     (4) 隧道开挖后,影响围岩应力、变形状态和洞室稳定性的因素主要就是围岩自身物理力学性质、开挖洞室的大小和形状、以及支护设置时间和支护刚度。本文利用统计学中的正交试验设计方法,综合考虑初次、二次支护的支护时间
Rheology of rock is closely related to the long-term stability and safety of rock engineering. Rheological mechanical experiment of rock is an important means to know about the rheological properties of rock. Triaxial rheological experiment is done to study the rheological properties of soft rock which is rotten and cracked. With considering the rheology of rock, the comprehensive method of theoretical analysis and numerical simulation is adopted to study convergence-confinement method, and the method of orthogonal experimental design is used to discuss optimization of tunnel support system.
    In this dissertation, the main investigation work focuses on the following several aspects.
    (1) In order to know about the rheological properties of rock specimens in Xiamen Undersea Tunnel Project, A series of triaxial compression rheological experiments were carried out on the rock servo-controlling rheology testing machine. Based on the experimental results, the variance law of axial strain of specimens with time under different confining pressures and different deviatoric stresses is investigated. By comparing the experimental results and the results predicted from the use of power law creep model, it is shown that power creep model can be used to simulate the primary creep and the secondary creep of the rock specimens.
    (2) Ground Characteristic Curve (GCC) and Support Characteristic Curve (SCC) are both investigated to know about convergence-confinement method comprehensively. Methods of determining GCC are being given, which include theoretical analysis, numerical simulation, and field measurement. By 2-D and 3-D numerical simulation with different material models, the corresponding ground characteristic curves of Xiamen Undersea Tunnel are obtained and compared each other. Under the hypothesis that a support has an ideal elastic-perfectly plastic behaviour, the expressions of the stiffness of shotcrete lining, radial anchored bolts, steel sets and compound support are given. Furthermore, the stiffness of compound
引文
[1] 孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.15~562
    [2] 孙钧,侯学渊.地下结构[M].北京:科学出版社,1987.1~303
    [3] 孙钧,汪炳鑑.地下结构有限元法解析[M].上海:同济大学出版社,1986.163~285
    [4] 孙钧.地下工程设计理论与实践[M].上海:上海科学技术出版社,1996.97~191
    [5] Haupt M.. A constitutive law for rock salt based on creep and relaxation tests[J]. Rock Mechanics and Rock Engineering, 1991, 24: 179~206
    [6] 李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,14(1):39~47
    [7] 陈智纯,缪协兴,赵鹏.软岩流变过程中的超常现象分析[J].煤炭学报,1995,20(2):135~138
    [8] 杨淑碧,徐进,董孝璧.红层地区砂泥岩互层状斜坡岩体流变特性研究[J].地质灾害与环境保护,1996,7(2):12~24
    [9] 邱贤德,庄乾城.岩盐流变特性的研究[J].重庆大学学报(自然科学版),1995,18(4):96~103
    [10] 邱贤德,姜永东,阎宗岭,等.岩盐的蠕变损伤破坏分析[J].重庆大学学报,2003,26(5):106~109
    [11] 邱贤德,姜永东,张兰.岩盐流变特性与卸荷损伤本构关系研究[J].中国井矿盐,2003,34(4):21~23
    [12] 张向东,郑雨天,吕兴亚,等.软弱岩体Berger模型及井巷流变地压[J].中国有色金属学报,1997,7(1):13~17
    [13] 张向东,郑雨天,肖裕行.第三系软弱岩体蠕变理论[J].东北大学学报(自然科学版),1997,18(1):31~35
    [14] Z. Chen, M.L. Wang, T. Lu. STUDY OF TERTIARY CREEP OF ROCK SALT[J]. JOURNAL OF ENGINEERING MECHANICS, ASCE, 1997, (1): 77~82
    [15] 缪协兴,陈至达.岩石材料的一种蠕变损伤方程[J].固体力学学报,1995,16(4):343~346
    [16] 邓广哲,朱维申.岩体裂隙非线性蠕变过程特性与应用研究[J].岩石力学与工程学报,1998,17(4):358~365
    [17] 任建喜.单轴压缩岩石蠕变损伤扩展细观机理cT实时试验[J].水利学报,2002,(1):10~15
    [18] 杨春和,陈锋,曾义金.盐岩蠕变损伤关系研究[J].岩石力学与工程学报,2002,21(11):1602~1604
    [19] Sun Jun. A study on 3-D nonlinear theological behaviour of soft rocks[A]. In: He-Hua Zhu, Jin-Chun Chai, Mao-Song Huang, eds. Practice and advance in geotechnical engineering. Shanghal:2002,10
    [20] 朱定华,陈国兴.南京红层软岩流变特性试验研究[J].南京工业大学学报,2002,24(5):77~79
    [21] 张向东,李永靖,张树光.软岩蠕变理论及其工程应用[J].岩石力学与工程学报,2004,23(10):1635~1639
    [22] 巫德斌,徐卫亚,朱珍德.泥板岩流变试验与粘弹性本构模型研究[J].岩石力学与工程学报,2004,23(8):1242~1246
    [23] 刘建忠,杨春和,李晓红.万开高速公路穿越煤系地层的隧道围岩蠕变特性的试验研究[J].岩石力学与工程学报,2004,23(22):3794~3798
    [24] 丁志坤,吕爱钟.岩石粘弹性非定常蠕变方程的参数辨识[J].岩土力学,2004,25(增):37~40
    [25] H.J. Liao, W.C. Pu, J.H. Yin, et al. NUMERICAL MODELING OF THE STRAIN RATE EFFECT ON THE STRESS-STRAIN RELATION FOR SOFT ROCK USING A 3-D ELASTIC VISCO-PLASTIC MODEL[J]. Int. J. Rock Mech. Mine. Sci., 2004, 41(3): 1~6
    [26] M. Gasc-Barbier, S. Chanchole, P. Berest. Creep behaviour of Bure clayey rock[J]. Applied Clay Science, 2004, 26: 449~458
    [27] 宋飞,赵法锁,李亚兰.石膏角砾岩蠕变特性试验研究[J].水文地质工程地质,2005,(3):94~96
    [28] 严仁俊,裴小彬,罗鑫,等.四川三叠系盐岩蠕变规律实验研究[J].西部探矿工程,2005,(4):93~94
    [29] Ito H, Sasajima S. A ten-year creep experience on small rock specimens[J]. Int. J. Rock Mech. Mine. Sci. and Geomech. Abstr.. 1987. 24(2): 113~121
    [30] 陈宗基,康文法.岩石的封闭应力、蠕变和扩容及本构方程[J].岩石力学与工程学报,1991,10(4):199~312
    [31] 夏熙伦,徐平,丁秀丽.岩石流变特性及高边坡稳定性流变分析[J].岩石力学与工程学报,1996,15:312~322
    [32] 杨建辉.砂岩单轴受压蠕变试验现象研究[J].石家庄铁道学院学报,1995,8(2):77~80
    [33] 徐平,夏熙伦.三峡工程花岗岩蠕变断裂与Ⅰ—Ⅱ型断裂试验研究[J].长江科学院院报,1995,12(3):31~36
    [34] 徐平,夏熙伦.三峡工程花岗岩蠕变特性试验研究[J].岩土工程学报,1996,18(4):63~67
    [35] Sun Jun, Hu Y Y. Time-dependent effects on the tensile strength of saturated granite at Three Georges Project in China[J]. Int. J. Roch Mech. Mine Sci., 1997, 34: 323~337
    [36] 陈有亮,孙钧.岩石的流变断裂特性[J].岩石力学与工程学报,1996,15:323~327
    [37] 陈有亮,刘涛.岩石流变断裂扩展的力学分析[J].上海大学学报(自然科学版),2000,6(6):491~496
    [38] 陈有亮.岩石蠕变断裂特性的试验研究[J].力学学报,2003,35(4):480~484
    [39] E. Maranini, M. Brignoli. Creep behaviour of a weak rock: experimental characterization[J]. Int. J. Rock Mech. Mine. Sci., 1999, 36: 127~138
    [40] Fujii Y, Kiyama T. Circumferential strain behaviour during creep tests of brittle rocks[J]. Int. J. Roch Mech. Mine Sci., 1999, 6: 323~337
    [41] 李建林.岩石拉剪流变特性的试验研究[J].岩土工程学报,2000,22(3):299~303
    [42] 朱合华,叶斌.饱水状态下隧道围岩蠕变力学性质的试验研究[J].岩石力学与工程学报,2002,21(12):1791~1796
    [43] 赵永辉,何之民,沈明荣.润扬大桥北锚碇岩石流变特性的试验研究[J].岩土力学,2003,24(4):583~586
    [44] 黄炳香,邓广哲,王广地.温度影响下北山花岗岩蠕变断裂特性研究[J].岩土力学,2003,24(增):203~206
    [45] 李化敏,李振华,苏承东.大理岩蠕变特性试验研究[J].岩石力学与工程学报,2004,23(22):3745~3749
    [46] 徐卫亚,杨圣奇,杨松林.绿片岩三轴流变力学特性的研究(Ⅰ):试验结果[J].岩土力学,2005,26(4):531~537
    [47] 徐卫亚,杨圣奇,谢守益.绿片岩三轴流变力学特性的研究(Ⅱ):模型分析[J].岩土力学,2005,26(5):693~698
    [48] 郭志.临界等速流变剪应力的确定方法[J].堪察科学技术,1994,(4):24~26
    [49] 张奇华,彭光忠.链子崖危岩体软弱夹层的蠕变性质研究[J].岩土力学,1997,18(1):60~64
    [50] 朱子龙,李建林,王康平.三峡工程岩石拉剪蠕变断裂试验研究[J].武汉水利电力大学学报,1998,20(3):16~19
    [51] 丁秀丽,刘建,刘雄贞.三峡船闸区硬性结构面蠕变特性试验研究[J].长江科学院院报,2000,17(4):30~33
    [52] 周火明,徐平,王复兴.三峡永久船闸边坡现场岩体压缩蠕变试验研究[J].岩石力学与工程学报,2001,20(增):1882~1885
    [53] 徐平,丁秀丽,全海.溪洛渡水电站坝址区岩体蠕变特性试验研究[J].岩土力学,2003,24(增):220~226
    [54] 沈明荣,朱根桥.规则齿形结构面的蠕变特性试验研究[J].岩石力学与工程学报,2004,23(2):223~226
    [55] 陈沅江,吴超,潘长良.一种软岩结构面流变的新力学模型[J].矿山压力与项板管理,2005,(3):43~45
    [56] Lombardi G.. Some Comments on the Convergence-Confinement Method[J]. Underground Space, 1980, 4(4): 249~258
    [57] Ladanyi B.. Use of the Long-Term Strength Concept in the Determination of Ground Pressure on Tunnel Linings[C]. In: Proceedings of the Third International Congress on Rock Mechanics. Denver: 1974. 1150~1156
    [58] Ladanyi B.. Direct Determination of Ground Pressure on Tunnel Lining in a Nonlinear Viscoelastic Rock[C]. In: Underground Rock Engineering, 13th Canadian Rock Mechanics Symposium. Toronto: 1980. 126~132
    [59] Daemen J.J.K. Tunnel Support Loading Caused by Rock Failure: [Ph. D. Thesis]. Minneapolis: University of Minnesota, 1975
    [60] Howells M.. Analysis of Tunnel Stability by the Convergence-Confinement Method[J]. Underground Space, 1980, 4(6): 368~369
    [61] Gesta P., Kerisel J., Londe P., et al. Tunnel Stability by Convergence-Confinement Method[J]. Underground Space, 1980, 4(4): 225~232
    [62] Duddeck H.. On the Basic Requirements for Applying the Convergence-Confinement Method[J]. Underground Space, 1980, 4(4): 241~247
    [63] Brown E. T., Bray J. W., Ladanyi B., et al. Ground Response Curves for Rock Tunnels[J]. Journal of Geotechnical Engineering, 1983, 109(1): 15~39
    [64] Eisenstein Z., Heinz H., Negro A.. On Three-Dimensional Ground Response to Tunnelling[J]. ASCE. Geotech Ⅲ. Tunnelling in Soils and Rocks, 1984, 107~127
    [65] Eisenstein Z., Branco P.. Convergence-Confinement Method in Shallow Tunnels[J]. Canadian Tunnelling, 1990, 77~83
    [66] 郑雨天,朱华满.巷道围岩特性曲线的测定与应用[J].煤炭学报,1990,15(1):25~31
    [67] 王贵君.流变性围岩—支护系统特性的模型实验研究.中国岩石力学与工程学会数值计算与模型实验专业委员会:岩土力学数值方法的工程应用[M].上海:同济大学出版社,1990
    [68] 黎本裕(日本).低强度围岩中隧道最小开挖设计法的建议[J].马积薪译.隧道译丛,1994,(1):19~27
    [69] K. Kitagawa, T. Kumeta, T. Ichizyo, et al. Application of Convergence Confinement Analysis to the Study of Preceding. Displacement of a Squeezing Rock Tunnel[J]. Rock Mech and Rock Engineering, 1991, 24(1): 31~51
    [70] V.Labiouse.采用“收敛—约束”法分析点锚固锚杆在深埋岩石隧洞中的支护效果[J].贾海宴译.世界隧道,1995,(4):59~67
    [71] Bernaud D., Rousset G.. The 'New Implicit Method' for Tunnel Analysis[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1996. 20(9): 673~690
    [72] T B Celestino,M C B Guimaraes..考虑岩体和喷混凝土与时间相关性的隧道设计[J].周德培译.世界隧道,1995,(2):52~54
    [73] 胡玉银.考虑岩石扩容性的洞周弹脆性收敛线的确定[J].地下空间,1994,14,(2):83~88
    [74] D. Peila, P.P. Oreste, G. Rabajoli, et al. The Pretunnel Method, a New Italian Technology for Full-face Tunnel Excavation: a Numerical Approach to Design[J]. Tunnelling and Underground Space Technology, 1995, 10(3): 367~374
    [75] D. Peila, P. P. Oreste. AXISYMMETRIC ANALYSIS OF GROUND REINFORCING IN TUNNELLING DESIGN[J]. Computers and Geotechnics, 1995, 17: 253~274
    [76] P. P. Oreste, D. Peila. Radial Passive Rockbolting in Tunnelling Design with a New Convergence-confinement Method[J], Int. J. Rock Mech. Mine. Sci. & Geomech. Abstr., 1996, 33(5): 443~454
    [77] P. P. Oreste, D. Peila. Modelling Progressive Hardening of Shotcrete in Convergence-Confinement Approach to Tunnel Design[J]. Tunnelling and Underground Space Technology, 1997, 12(3): 425~431
    [78] 黄运飞.基坑土体自承支护的基本原理[J].岩土工程技术,1997,(1):30~34
    [79] 金丰年.考虑时间效应的围岩特征曲线[J].岩石力学与工程学报,1997,16(4):344~353
    [80] P. Roussev. Calculation of the Displacements and Pacher's Rock Pressure Curve by the Associative Law for the Fluidity-Plastic Flow[J]. Tunnelling and Underground Space Technology, 1998, 13(4): 441~451
    [81] 陈庆敏,袁亮.考虑岩石破裂后变形特性的巷道围岩特征曲线[J].辽宁工程技术大学学报(自然科学版),1998,17(2):151~155
    [82] C. Carranza-Torres, C. Fairhurst. Application of the Convergence-Confinement Method of Tunnel Design to Rock Masses that satisfy the Hoek-Brown failure criterion[J]. Tunnelling and Underground Space Technology, 2000, 15(2): 187~213
    [83] 陈建勋,楚锟,王天林.用收敛—约束法进行隧道初期支护设计[J].西安公路交通大学学报,2001,21(2):57~59
    [84] 张素敏,朱永全,景诗庭.收敛约束原理在隧道位移稳定性判据中的应用[J].铁道标准设计,2004,(8):38~40
    [85] 张素敏,宋玉香,朱永全.隧道围岩特性曲线数值模拟与分析[J].岩土力学,2004,25(3):455~458
    [86] 李明,刘永.巷道围岩位移特性曲线预测的自适应神经模糊推理方法及应用[J].矿业安全与环保,2005,32(3):49~51
    [87] 中铁大桥勘测设计院有限公司.厦门东通道工程施工图设计阶段工程地质综合勘察报告[R].2004
    [88] Kiyama H., Fujimara H., Nishimura T., et al. Theoretical construction of bearing characteristic curve in tunnelling[J]. J. Soc. Mat. Sci. Japan, 1992, 41(463): 417~423
    [89] Fairhurst C., Daemen J. J. K.. Practical inferences from research on the design of tunnel supports[J]. Underground Space, 1980, 4: 297~311
    [90] Yamatomi J., Mogi G., Yamaguchi U. Supporting effects of tunnel face[C]. In: Proceedings of the 8th Japan Symposium on rock mechanics. 1990. 261~266
    [91] Stille H., Holmberg M., Nord G.. Support of weak rock with grouted bolts and shotcrete[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1989, 26: 99~113
    [92] Pan Y. W., Dong J. J.. Time-dependent tunnel convergence-Ⅱ, Advance rate and tunnel-support interaction[J]. Int. J. Rock Mech. Min. Sci. & Geomech. Abstr., 1991, 28: 477~488
    [93] Ladanyi B., Gill D. E.. Design of tunnel linings in a creeping rock[J]. Int. J. Min. & Geological Eng., 1988, 6: 113~126
    [94] Minh D. N., Habib P., Guerpillon Y.. Time dependent behaviour of a pilot tunnel driven in hard marls. ISRM/BGS. Cambridge. 1984. 453~459
    [95] 曹刃.隧洞围岩—支护系统相互作用机理的时间效应:[硕士学位论文].上海:同济 大学,1985
    [96] 朱合华,杨林德.天荒坪抽水蓄能电站地下厂房试验洞掘进面空间效应分析[J].工程勘察,1994,(3):1~6
    [97] Hak Joon Kim. Estimation for Tunnel Lining Loads: [Ph. D. Thesis]..Edmonton: University of Alberta, 1997
    [98] 刘保国,杜学东.圆形洞室围岩与结构相互作用的粘弹性解析[J].岩石力学与工程学报,2004,23(4):561~564
    [99] F. I. Shalabi. FE analysis of time-dependent behavior of tunneling in squeezing ground using two different creep models[J]. Tunnelling and Underground Space Technology, 2005, 20: 271~279
    [100] 冯夏庭,马平波.基于数据挖掘的地下硐室围岩稳定性判别[J].岩石力学与工程学报,2001,20(3):306~309
    [101] 刘高,聂德新,韩文峰.高应力软岩巷道围岩变形破坏研究[J].岩石力学与工程学报,2000,19(6):726~730
    [102] 曾亚武,赵震英.地下洞室模型试验研究[J].岩石力学与工程学报,2001,20(增):1745~1749
    [103] P. P. Oreste. Analysis of structural interaction in tunnels using the convergence-confinement approach[J]. Tunnelling and Underground Space Technology, 2003, 18: 347~363
    [104] Chern, J. C., F. Y. Shiao, C. W. Yu. An empirical safety criterion for tunnel construction[C]. In: Regional Symposium on Sedimentary Rock Engineering. Taipei, Taiwan. 1998. 222~227
    [105] 何满潮.软岩工程力学的理论与实践.见:煤炭工业部科技教育司,等编.中国煤矿软岩巷道支护理论与实践.北京:中国矿业大学出版社,1996.20~34
    [106] 吴翊,李永乐,胡庆军.应用数理统计[M].长沙:国防科技大学出版社,1995.235~262
    [107] 铁道第一勘察设计院,等.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究[R].2004
    [108] 宋德彰.锚喷支护对改善隧洞围岩岩性力学机制的研究:[硕士学位论文].上海:同济大学,1986
    [109] 石家庄铁道学院.乌鞘岭隧道结构安全性评价及变形控制基准研究报告[R].2004
    [110] Yuanming Lai, Ziwang Wu, Yuanlin Zhu, et al. Elastic visco-plastic analysis for earthquake response of tunnels in cold regions[J]. Cold Regions Science and Technology, 2000, 31: 175~188
    [111] P. Egger. Design and Construction Aspects of Deep Tunnels (with particular emphasis on strain softening rocks)[J]. Tunnelling and Underground Space Technology, 2000, 15(4): 403~408
    [112] M. Hisatake. Effects of steel fiber reinforced high-strength shotcrete in a squeezing tunnel[J]. Tunnelling and Underground Space Technology, 2003, 18: 197~204
    [113] R. Corthesy, M. H. Leite, D. E. Gill, et al. Stress measurements in soft rocks[J]. Engineering Geology, 2003, 69: 381-397
    [114] H.L. Dai, X. Wang, G.X. Xie, et al. Theoretical model and solution for the rheological problem of anchor-grouting a soft rock tunnel[J]. International Journal of Pressure Vessels and Piping, 2004, 81: 739-748
    [115] H L Dai, X Wang, G X Xie. The Building of Theoretical Model and Analysis of Deformations of a Anchor-grouting Soft Rock Tunnel[J]. Earth & Space, ASCE, 2004, 711-718
    [116] P. Weidinger, A. Hampel, W. Blum, et al. Creep behaviour of natural rock salt and its description with composite model[J]. Materials Science and Engineering, 1997, A234-236: 646-648
    [117] J.F. Shao, Q.Z. Zhu, K. Su. Modeling of creep in rock materials in terms of material degradation[J]. Computers and Geotechnics, 2003,30:549-555
    [118] M.E. Belardinelli. Creep Event Sequences and Time Dependent Fault Parameters[J]. Phys. Chem. Earth, 1996, 21(4): 253-256
    [119] S. Heusermann, O. Rolfs, U. Schmidt. Nonlinear finite-element analysis of solution mined storage caverns in rock salt using the LUBBY2 constitutive model[J]. Computers and Structures, 2003, 81: 629-638
    [120] I. Paraschiv-Munteanu, N.D. Cristescu. Stress relaxation during creep of rocks around deep boreholes[J]. International Journal of Engineering Science, 2001,39:737-754
    [121] B. Bennett, P. Branco, K.Y.Lo, et al. PERFORMANCE OF A TUNNEL IN SQUEEZING ROCK AND REHABILITATION STRATEGIES[J]. GEOTECHNICAL ENGINEERING FOR TRANSPORTATION PROJECTS, ASCE, 2004,1439-1447
    [122] Weatherby J.R., Munson D.E., Arguello J.G.. Three-dimensional finite element simulation of creep deformation of rock salt[J]. Engineering Computations, 1996,13(8): 82-105
    [123] E. Eberhardt. Numerical modeling of three-dimensional stress rotation ahead of an advancing tunnel face[J]. International Journal of Rock Mechanics & Mining Sciences, 2001,38: 499-518
    [124] S. Pietruszczak, D. Lydzba, J. F. Shao. Description of Creep in Inherently Anisotropic Frictional Materials[J]. JOURNAL OF ENGINEERING MECHANICS, ASCE, 2004, (6): 681-690
    [125] Jin Feng, Zhang Chuhan, Wang Gang, et al. Creep Modeling in Excavation Analysis of a High Rock Slope[J]. JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING, ASCE, 2003, (9): 849-857
    [126] T. I. Addenbrooke, D. M. Potts. Twin Tunnel Interaction: Surface and Subsurface Effects[J]. The International Journal of Geomechanics, 2001,1(2): 249-271
    [127] R. Bhasin, E. Grimstad. The Use of Stress-strength Relationships in the Assessment of Tunnel Stability[J]. Tunnelling and Underground Space Technology, 1996,11(1): 93-98
    [128] Fu-Shu Jeng, Meng-Chai Weng, Tsan-Hwei Huang, et al. Deformational characteristics of weak sandstone and impact to tunnel deformation[J]. Tunnelling and Underground Space Technology, 2002, 17:263~274
    [129] S. Sakurai. Lessons Learned from Field Measurements in Tunnelling[J]. Tunnelling and Underground Space Technology, 1997, 12(4): 453~460
    [130] W. D. Ortlepp. The behaviour of tunnels at great depth under large static and dynamic pressures[J]. Tunnelling and Underground Space Technology, 2001, 16:41~48
    [131] Weishen Zhu, Shucai Li, Shuchen Li, et al. Systematic numerical simulation of rock tunnel stability considering different rock conditions and construction effects[J]. Tunnelling and Underground Space Technology, 2003, 18:531~536
    [132] C. Carranza-Torres, C. Fairhurst. The elasto-plastic response of undergronnd excavations in rock masses that satisfy the Hoek-Brown failure criterion[J]. International Journal of Rock Mechanics and Mining Sciences, 1999, 36:777~809
    [133] D. E. Gill, M. H. Leite, D. Labrie. Designing mine pillars with the convergence-confinement method[J]. International Journal of Rock Mechanics & Mining Sciences, 1994, 31(6): 687~698
    [134] S. Pelizza, D. Peila, P.P. Oreste. A new approach for ground reinforcing design in tunneling. In: M.E.A. Salam, eds. Tunnelling and ground conditions. Proc. Congress. Cairo: 1994. 517~522
    [135] Plichon J. N.. Analysis of Tunnel Stability by the Convergence-Confinement Method[J]. Underground Space, 1980, 4(6): 384~388
    [136] 郑雨天,朱浮声.巷道围岩特性曲线量测原理和方法[J].煤炭学报,1995,20(2):130~134
    [137] K. Kovafi..新奥法是否存在?一新奥法的错误原理[J].王彬译.世界隧道,1995,(5):11~22
    [138] D.贝尔纳,G.鲁赛.分析深埋支护隧洞的收敛约束法的新方法[J].崔跃萍译.世界隧道,1995,(2):12~18
    [139] 王祥秋,杨林德,高文华.软弱围岩蠕变损伤机理及合理支护时间的反演分析[J].岩石力学与工程学报,2004,23(5):793~796
    [140] 李青麒.软岩蠕变参数的曲线拟合计算方法[J].岩石力学与工程学报,1998,17(5):559~564
    [141] 李青麒.某工程试验洞的有限元流变计算分析[J].岩土力学,1996,17(3):37~42
    [142] 徐平,杨挺青.岩石流变试验与本构模型辨识[J].岩石力学与工程学报,2001,20(增):1739~1744
    [143] 王贵君,孙文若.硅藻岩蠕变特性研究[J].岩土工程学报,1996,18(6):55~60
    [144] 王贵君.节理裂隙岩体中不同埋深无支护暗挖隧洞稳定性的离散元法数值分析[J].岩石力学与工程学报,2004,23(7):1154~1157
    [145] 王贵君.盐岩层中天然气存储洞室围岩长期变形特征[J].岩土工程学报,2003,25(4):431~435
    [146] 陈胜宏,Peter Egger,熊文林.加锚节理岩体流变模型及三维弹粘塑性有限元分析 [J].水利学报,1998,(9):41~47
    [147] 杨松林,张建民,黄启平.节理岩体蠕变特性研究[J].岩土力学,2004,25(8):1225~1228
    [148] 杨延毅.裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究[J].工程力学,1994,11(2):81~90
    [149] 李云鹏,王芝银,丁秀丽.流变荷载试验曲线的模型辨识及其应用[J].石油大学学报(自然科学版),2005,29(2):73~77
    [150] 刘保国,张清.秦岭Ⅱ线隧道围岩在不同温度下蠕变变形的有限元分析[J].山东科技大学学报(自然科学版),2001,20(4):95~98
    [151] 赵法锁,张伯友,彭建兵,等.仁义河特大桥南桥台边坡软岩流变性研究[J].岩石力学与工程学报,2002,21(10):1527~1532
    [152] 夏才初,孙钧.蠕变试验中流变模型辨识及参数确定[J].同济大学学报,1996,24(5):498~503
    [153] 刘晶辉,王山长,杨洪海.软弱夹层流变试验长期强度确定方法[J].堪察科学技术,1996,(5):3~7
    [154] 郑榕明,陆浩亮,孙钧.软土工程中的非线性流变分析[J].岩土工程学报,1996,18(5):1~13
    [155] 陈沅江,潘长良,王文星.软岩流变的一种新的试验研究方法[J].力学与实践,2002,24(4):42~45
    [156] 曹树刚,边金,李鹏.软岩蠕变试验与理论模型分析的对比[J].重庆大学学报,2002,25(7):96~98
    [157] 卢爱红,茅献彪,张晓春.软岩巷道的时间效应模拟[J].矿山压力与顶板管理,2004,(3):1~7
    [158] 万志军,周楚良,罗兵全.软岩巷道围岩非线性流变数学力学模型[J].中国矿业大学学报,2004,33(4):468~472
    [159] 王红伟,王希良,彭苏萍.软岩巷道围岩流变特性试验研究[J].地下空间,2001,21(5):361~364
    [160] 沈振中,徐志英.三峡大坝地基花岗岩蠕变试验研究[J].河海大学学报,1997,25(2):1~7
    [161] 肖洪天,周维垣,杨若琼.三峡永久船闸高边坡流变损伤稳定性分析[J].土木工程学报,2000,33(6):94~98

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700