库水作用下滑坡流固耦合作用及变形研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
三峡库区是滑坡等地质灾害多发地带。自2003年135m蓄水伊始,到2006年156m蓄水位以来,绝大多数滑坡经受到了库水位作用的考验没有复活。但库水位波动对滑坡的稳定性和变形破坏失稳的影响机制仍为迫切需要解决的重要应用课题之一。论文选取三峡库区三大滑坡之一的巴东县黄土坡滑坡前缘临江崩滑堆积体及深部滑带土作为研究对象。在流变试验的基础上,对滑带土的流变特性和长期强度进行了研究,建立了应力—应变—时间三者关系的蠕变方程,为滑坡的建模和稳定数值计算奠定力学基础;另外,将前缘崩滑堆积体作为渗流场以及其与应力场耦合分析的工程实例,建立了三峡库区典型的地质—渗流场—应力场三位一体的耦合计算的概化模型,对不同工况下的滑坡的流固耦合作用进行了理论上和数值模拟分析。
     总之,滑坡滑带土的流变性以及滑坡渗流场与应力场耦合作用的研究是当前岩土工程和工程地质界研究的热点。本文正是建立在这一内在因素和外在因素分析基础之上,进行了以下主要内容的研究:
     1.滑坡区的工程地质特征是研究滑坡的形成、变形、破坏机制的基础,也是建立地质—渗流场—应力场三位一体的耦合计算的概化模型的基本前提。重点研究了黄土坡滑坡区的工程地质条件,以及前缘临江崩滑堆积体的空间组成结构、软弱层的物质成分及物理力学性质等。
     2.三峡库区一些滑坡的变形与复活的控制因素在于滑带土的力学特性强度损伤积累和时间效应,这一内在的地质力学机理与外在的地面变形演化过程彼此呼应。因此,影响滑坡稳定性的一个重要因素在于滑动带土的长期蠕变效应。对滑坡滑带土的蠕变特性进行研究并建立适合该滑坡蠕变特性的应力、应变和时间三者关系的方程就显得十分必要。研究了黄土坡滑坡1#崩滑体TP3平硐处的深部滑带土的长期蠕变特性,建立适合该滑坡的蠕变特性的Buger's方程,并对参数进行了无约束非线性回归辨识。基于滑带土的常规试验和蠕变试验研究,得到了瞬时强度与残余强度破坏包络线,滑带土的峰值强度包线与长期强度包线。
     3.推导了多孔介质饱和.非饱和、稳定-非稳定渗流问题的微分方程以及方程的有限元格式,用有限元分析程序对库水位变化下引起含泥化夹层(软弱带)的斜坡的饱和—非饱和渗流场进行了全面的分析,包括水位波动的动态自由面的变化特征和坡体内孔隙水压力(基质吸力)、体积含水量、稳定性系数等的变化规律,最后应用到黄土坡滑坡前缘的非饱和渗流场的研究中。主要成果有:①库水位上升或是下降,不同水力特征的层状岸坡内在开始前几个时步内总形成一个楔形的非饱和区(位于相对弱透水层与坡面相交部位)和两个渗流自由面。这与Rulon和Freeze(1985)用类似结构砂坡来研究降雨入渗时在坡体内形成的双自由面相似。②岩土体的饱和渗透系数、土水-特征函数以及坡体的结构特征等共同决定了水位升降过程中岸坡内孔隙水压力和浸润线的分布。模拟结果可作为对库岸尤其对于含弱透水层边坡的稳定性评价及岸坡的排水加固提供参考依据。
     4.根据库水位波动对滑坡产生的力学作用,总结出库水位下降引起的三种类型孔隙水压力。据不同的水文地质条件,归纳并分析了地下水对斜坡稳定性影响的力学机制的三种模式:潜水含水层模式、纯承压含水层模式和承压水与潜水含水层的混合模式。阐述了非饱和土力学理论,将其应用于滑坡的稳定分析中。对传统极限平衡分析方法进行延拓,将考虑基质吸力对抗剪强度贡献的Morgenstern-Price条分法应用到岸坡的稳定性计算中。结果表明:在库水位下降过程中,稳定性系数总体变化趋势是先减然后递增,然后趋于达到一个稳定的常数;总存在一个最小的稳定性系数,它对应一个最危险水位,一般发生在库水位开始下降后10-15米左右。通过比较考虑基质吸力与不考虑基质吸力对滑动面的抗剪贡献所计算的稳定性系数,前者计算的稳定性系数稍大,一般要大0.5%左右。
     5.阐述并严格地推导了Terzaghi准三维固结和Biot三维固结微分方程,并对其进行比较分析。对基于虚功原理的渗流场和应力场的微分方程进行空间域及时间域离散,充分考虑双场耦合作用,推导出以位移增量和孔隙水压力增量为方程域变量的饱和—非饱和岩土体耦合固结控制方程。
     6.基于滑坡区的工程地质特征,考虑不同岩性物理特性及水力学参数在空间上的差异性,建立了三峡库区典型的地质—渗流场—应力场的耦合计算概化模型。通过对五种典型工况下的黄土坡滑坡1#崩滑堆积体的应力场与渗流场耦合的FEM模拟分析,得出以下几点结论:①蓄水前,仅在前缘浅层极小区域出现塑性区,说明总体上,浅层与深层滑坡均稳定。在库水位蓄水过程中,前缘的最大剪应力随库水位上升而变大,方向几乎与滑动面倾向一致,而且剪应力集中带有向浅层滑坡体后缘扩展的趋势。位移场及变形集中分布在高应变梯度带的滑动面上,且呈前缘位移大的牵引式变形,塑性区有沿浅层滑带向后缘扩展趋势。当库水位175m时,模拟成果表明,塑性区有向后缘纵深处发展贯通趋势,已对深部滑体的稳定性产生了影响;②由于耦合计算充分考虑了库水位作用下的应力边界和水头边界的变化,坡体内的渗透的体积力以及坡外的库水压力,在快速蓄水和泄水工程中,模拟结果表现出不同于单场计算的孔压场,具有明显的Cryer效应;③通过工况五的的数值模拟以及基于极限平衡法的稳定性计算,得出的滑坡的位移场、塑性区扩展趋势以及稳定性变化趋势。得出影响滑坡稳定性变化趋势的主要力学机制:库水位下降前期,作用在滑带上的有效应力的增加以及基质吸力对抗剪强度增加对滑坡稳定性的有利影响小于渗透力和超孔压力对滑坡的不利影响,而后期(本例中t≥6d)前者对滑坡稳定性的有利影响大于后者对滑坡的不利影响。这正是影响滑坡稳定性变化趋势的主要力学机制。
The Three Gorges area is a region prone to geological hazards such as landslides. Thestability is controlled under the interior and exterior factors. Over the period of 2003 and 2006,the reservoir water level has risen from initial 135m to 156m, and the majority of landslides haveexperienced the challenge without failures and reactivation. However, it is still urgent to researchon the failure and reactivation mechanism of landslide induced by the reservoir water fluctuation.This paper takes the front collapsed debris of Huangtupo landslide, which is one of the greatestlandslides in There Gorges area, and the deep slip bands as the major study objects. On one hand,based on the creep test of the slip band soil, which mostly control the stability of the landslide,the research focus on the attributes of rheology and long-term strength. The proper creepconstitutive creep equations are established which set up mechanics base for further geologicalmodel and numerical simulations. On the other hand, taking the front debris of Huangtupolandslides as the numerical simulation engineering background, the research on the coupledhydraulic and mechanics actions are conducted in theory and in numerical simulations under 5different typical engineering cases.
     Moreover, the research on the rheology attributes of slip band and the coupled hydraulicand mechanical action are the popular and challenging problems currently in the field ofgeotechnical engineering and engineering geology. The following major problems are researchedwith respect to the interior and exterior factors:
     1. The characteristics of the engineering geological conditions of Huangtupo landslide areanalyzed, and the emphasis is put on the research of the front debris slipped body. The spatialdistribution, composition and the physical characteristic of the weak layer (slip band) are studiedin details, which are the preconditions for establishment of simulation model.
     2. As matter of results, large-scale landslide's deformations and revival controlling factorsin Three Gorges reservoir lie in the mechanics characteristic of slip band's strength damageaccumulation and its time-depended effects. This interior geological mechanics conforms withthe exterior deformation evolvement. So the major factor influencing the landslide stability liesin slip band's long-term strength effects. It is very necessary to research on the mechanicsattributes of slip band soil and urgent to establish the proper stress-strain-time constitutive of it. In this chapter, the long-term rheology behavior of slip band soil, which is sampled from theexplorative cave TP3 in Huangtupo landslide, is studied. The Burger's creep model andparameter's non-restrain regressions are conducted, which can properly represent thestress-strain-time creep attributes. Based on the creep test, the envelope equations of transientstrength and residual strength, and the envelope equations of peak strength and long-termstrength are established.
     3. The differential equations and FEM equations for saturated-unsaturated, steady-unsteadyseepage in porous medium are deduced. Aimed to the type of slope containing marl interlayer,applied the FEM program to saturated-unsaturated, steady-unsteady seepage numerical analysis,the dynamic changes of free surface, the distributions of pore water pressure including thenegative suctions, volumetric water content and the variation law of FOS of slope are discussedand researched systematically. Finally, the results and conclusions are applied to the fronts ofHuangtupo landslide's unsaturated seepage research. The main conclusions are following:①whenever impounding or sluicing of the reservoir, in the seepage numerical simulationcalculations, the interlayer (containing different layer of hydraulic conductivity) type of slopetakes on the wedge-shaped unsaturated zone and a double flee surface during the front time steps,which conforms the facts that the same conclusions were obtained using such experimentsotherwise under the conditions of rainfall infiltration conducted by Rulon and Freeze in 1985.②The saturated hydraulic conductivity, the characteristic curve of soil-water, and the characteristicof slop structural combination together determine the free surface and pore water pressuredistributions. Hence, the modeling results can provide evidences for the evaluating of slopestability and the design of water chaining and enforcement measurement for such type slope.
     4. According to the mechanical actions under the condition of reservoir water fluctuations,three typical pore water pressures are concluded. And in light of different hydrologicalgeological conditions, three mechanics patterns influencing the FOS for the ground water inslope are summed up as: preatic aquifer model, confined aquifer model, preatic and confinedcombined aquifer model. Introduced unsaturated soil mechanics theory into slope stabilityanalysis, the traditional limit equilibrium analysis is extended to consider thesaturated-unsaturated soil mechanics. The Morgenstem-Price stability method, which fullyallows for the contribution to anti-strength from suction, is applied to ideal reservoir slopestability evaluation. The results shows that during the water drawdown, there exists a minimumFOS and its general variation trend is firstly decrease rapidly then increase to a constantgradually. The FOS reflects the most dangerous water level, generally equal to a less 10-15mcontrasted with initial level. By contrast the FOS calculated via considering the slice bottom'ssuctions contributions and not involved it, it shows that the former is normally greater 0.5%thanthe latter.
     5. The Terzaghi qusi-3D consolidation theory and Biot true 3D consolidation differentialequations are rigidly deduced and demonstrated. The difference between them are compared andanalyzed. Based on the virtual work principles, the discretizations of FEM equations in timedomain and spatial domain of seepage and stress field are conducted. And considering the double field interactions effects, the saturated-unsaturated FEM formations and the coupled hydraulicand mechanics field FEM formations are deduced in the form of displacement incrementalvariable and pore water pressure incremental variable.
     6. The last not the least, based on the fully insight into the engineering geological andhydro-geological conditions present in the second chapter in details, considering the differentstrength characteristic of the lithology and variations of hydraulic conductivity of landslides, thetypical geology-seepage-stress combined coupled simulation model are established. Via of 5typical engineering cases, the FEM coupled simulation analysis is carried on the fronts ofHuangtupo landslide in Three Gorges region. The conclusions are reached as following:①Before reservoir impounding, the yield zone just exists in front shallow section in very smallscale, which shows the shallow and deep landslides are stable as a whole. However, with thewater level rising, the maximum shear stress in front are increasing with time, and its principaldirections are almost parallel with the slip bands, and the stress centralized zones extendsbackwards to the landslide. The displacements and strains concentrates on the highstrain-gradients slip band zones, which show the deformation belongs to the front traction type.When water level rise to 175m, the simulation results show that yield zone extends backwardsand run-through the deep slip band, which can account for the influence on the deep wholelandslide's stability.②Due to the coupled simulation calculations allowing for the variation ofhead boundary and stress boundary under the level drawdown, during the process of impoundingand sluicing, the modeling pore water pressure results different from the single field calculationresults, and it takes on the Cryer's effects, that is excess pore water pressure occurs on thebottom near the slip band.③Though the simulation and the calculations in engineering case 5, itshows that the trends of extend, the deformation field and the FOS calculated based on the limitequilibrium are well conformed. And we can reach the following conclusion: During theprophase in case 5, the positive contributions coming from the increment of effective stress andunsaturated seep suctions are less then the negative contributions coming from the hydraulicpressure and excess pore water pressure, and subsequently, vice versa, which is the realmechanism of the FOS of landslide influenced by the water level.
引文
[1] Prevost, Jean-Herve (1976). Undrained stress-sWain-time behavior of clays [J]. ASCE, Journal of the Geotechnical Engineering Division, 102(12): 1245-1259.
    [2] Murayarna Sakuro (1983). Formulation of stress-strain-time behavior of soils under deviatoric stress condition [J]. Soils and Foundations, 23(2): 43-57.
    [3] Yoginder P. Vaid, Richard G. Campanella (1977). Time-dependent Behavior of undisturbed clay[J]. Journal of the Geotechnical Engineering Division(ASCE), 103(GT7): 693-709.
    [4] Edward Kavazanjian, James K. Mitchell (1980). Time-dependent deformation behavior of clays [J]. Journal of the Geotechnical Engineering Division (ASCE). 106(GT6): 611-630.
    [5] 陈铁林,陈生水,周成,沈珠江粘十的流变特性分析[[J].岩土工程学报.2001,23(3):279-283.
    [6] 韩爱果,聂德新,任光明等大型滑坡滑带十剪切流变特性研究[J].工程地质学报,2001,9(4):345-348
    [7] 刘品辉,王山长,杨洪海.软弱夹层流变试验长期强度确定方法[J].勘察科学技术,1996(5):3-7.
    [8] 宋克强,崔中兴,袁继国等.古刘滑坡的蠕变特征及其预报分析[[J].岩土工程学报,1994,16(4):56-64.
    [9] 王文星,张继业.雾江滑坡滑动面粘土蠕变试验及积分蠕变方程[J].中南工业大学学报,1996,27(4):392-395.
    [10] Masahiro Chigira. Long-term gravitational deformation of rocks by mass rock creep[J]. Engrg. Geo. 32: 157-184.
    [11] 晏同珍等著.滑坡学.武汉:中国地质大学出版社,2000.
    [12] 孙广忠.孙广忠地质工程文选.北京,兵器工业出版社,1997:316~321.
    [13] 四川处地理学会滑坡专业委员.滑坡分析与防治.中国科学院成都地理研究所编.科学技术文献出版社重庆分社,1984.
    [14] 三峡库区巴东县城黄土坡前缘斜坡稳定性预测与防治对策研究,中国地质大学(武汉),1997.
    [15] 唐辉明,马淑芝,刘佑荣,贾洪彪.三峡工程库区巴东县赵树岭滑坡稳定性与防治对策研究[J].地球科学-中国地质大学学报,2002,27(5):621~626.
    [16] 唐辉明,晏鄂川,胡新丽著.工程地质数值模拟的理论与方法.武汉:中国地质大学出版社,2000,11.
    [17] 胡新丽,唐辉明,马淑芝等.基于NMR的库区滑坡三维稳定性数值模拟[J].地球科学——中国地质大学学报,2006,31(2):279-284.
    [18] 徐则民,杨立中,渗流场与应力场相互关系研究中应注意的两个问题[J].矿物岩石,1998,18(1):102~107.
    [19] 张伟.渗流场及其与应力场的耦合分析和工程应用[D].武大博士学位论文,2004,5.
    [20] 郭玉龙.渗流—与应力耦合作用对边坡稳定性影响的研究[D].武汉理工大学硕十学位论文,2005.
    [21] 柴军瑞,仵彦卿.均质土坝渗流场与应力场耦合分析的数学模型[J].陕西水力发电,1997,13(3):4~7.
    [22] 柴军瑞,李守义.三峡库区泄滩滑坡渗流场与应力场耦合分析[J].岩石力学与工程学报,2004,23(8):1280~1284.
    [23] 陈庆中,张弥,冯星梅.应力场、渗流场和流场耦合系统定边值定初值问题的变分原[J].岩石力学与工程学报,1999,18(5):550~553.
    [24] 丁秀丽,付敬,张奇华.三峡水库水位涨落条件下奉节南桥头滑坡稳定性分析[J].岩石力学与工程学报,2004,23(17):2913~2919.
    [25] 汪斌,唐辉明.含弱透水层岸坡地下水渗流特征的数值模拟[J].岩土力学,2006增刊,27(130):193~197.
    [26] CC维亚洛夫.杜余培泽.土力学的流变原理[M].北京:科学出版社.1987.
    [27] 沈珠江,赵魁芝.堆石坝流变变形的反馈分析[J].水利学报,1998(6):1-6.
    [28] 安关峰.软土蠕变对隧道影响的三维有限元研究[J].土木工程学报,2001,34(5):85-89.
    [29] 王祥秋,陈秋南,王文星.两种地基土非线性流变特性与模型理论研究[J].湘潭大学自然科学学报,2003,23(2):106:112.
    [30] 陈宗基.Structure mechanics ofclay.中国科学,1959,8(1):41-45.
    [31] 徐志英.考虑土骨架蠕变的三相固结结理论[J].水利学报,1964(4).
    [32] Keedwell M J. Rheology and Soil Mechanics[M]. Elsevier Applied Science Publisher Ltd., London/Newyork. 1984.
    [33] 肖化文,土体的时间效应与沉降计算[D].河海大学学位论文,1996.
    [34] 李军世,孙钧.上海淤泥质粘土的Mesri蠕变模型[J].土木工程学报,2001,34(6):7479.
    [35] Mitchell J K, Campanella R G, Singh A(1968). Soil creep as a rate process[J]. Journal of Soil Mechanics and Engineering Foundations,: 231-253.
    [36] Christensen R W, Wu T H(1964). Analysis of clay deformation as a rate process[J]. Journal of the Soil Mechanics and Foundations Division(ASCE), 90(SM6): 125-127.
    [37] Bazant Z P, Ozaydin K, Krizek B J(1975). Microplane model for creep of anisotropic clay[J]. Journal of Engineering Mechanics Division(ASCE), 101(EMI): 57-78.
    [38] 施斌,王宝军,宁文务.各向异性粘土蠕变的微观力学模型[J].岩土工程学报,19(5):7-13.
    [39] 施斌,姜洪涛,邵莉等.速率过程理论在粘性土蠕变模拟中的应用[J],水利学报,2002,(11):66-73.
    [40] Broadbent C D, Ko K C. Rheologic aspects of rock slope failures. In: Cording E J. Stability of rock Slopes, 1971, 573~593.
    [41] 湖北省地质灾害防治工程勘察设计院,《三峡库区巴东县黄土坡滑坡的监测年报,2003.
    [42] P·C·Yang H.Sokobiki(日).蠕动滑坡变形的预报[J].路基工程,1996(69):78-83.
    [43] 詹美礼,钱家欢,陈续禄.软土流变特性试验及流变模型[J].岩土工程学报,1993,15(3):54-62.
    [44] 史玉成.软土的流变特性及三轴应力松弛实验仪的应用[J].岩土工程师,1992,4(1);1-6.
    [45] Singh A, Mitchell J K. General stress-strain-time function for soils[J]. Journal ofthe Soil Mechanics and Foundations division, ASCE, 1968, 94(SM1): 21-46.
    [46] Mesri G, Retires-Cordero E, Shields D R et al. (1981). Shear stress-strain-time behaviour of clays[J]. Geotechnique, 31(4): 537-552.
    [47] 李军世,林咏梅.上海淤泥质粉质粘土的Singh—Mitchell蠕变模[J].岩土力学,2000,21(4):363-366.
    [48] J G Zhu, J H Yin. Drained creep behavior of soft Hong Kong Marine deposits(2001). Geotechnique. 51 (5): 471-474.
    [49] Zischinsky U. On the deformation of high slopes. Proc first Int Congr Roch Mech. Lissobon, 1966.
    [50] 钱家欢,殷宗泽.土工原理与计算[M].第2版.北京:水利电力出版社,1993.
    [51] 郑孝玉,曹炳兰.滑坡时间预报的试验研究.长春科技大学学报,2000,30(2):170~172.
    [52] 王琛.土流变性质研究与滑坡三维非线性有限元数值模拟[D].四川大学博士学位论文,2003.
    [53] 王琛,胡德金,刘浩吾.三峡泄滩滑坡滑动带土的Singh—Mitchell蠕变方程[J].四川大学学报,2003(5)
    [54] 王琛,胡德金,刘浩吾等.三峡泄滩滑坡体滑动带土的蠕变试验研究[J].岩土力学,2003,24(6):1007~1010.
    [55] 王琛,刘浩吾等.三峡泄滩滑坡滑动带土的改进Mesri蠕变模型.西南交通大学学报.2003(61).
    [56] 徐卫亚,杨圣奇等.岩石非线性黏弹塑性流变模型(河海模型)及其应用[J].岩石力学与工程学报,2006,25(3):433~447.
    [57] 刘建华.土流变性质研究与滑坡三维非线性有限元数值模拟[D].山东大学博士学位论文,2006.
    [58] 毛昶熙主编,渗流计算分析与控制,中国水利水电出版社,2003.
    [59] 杜延龄,许国安.渗流分析的有限单元法和电网络法,中国水利水电出版社,1992.
    [60] Richards, L. A. Capillary conduction of liquids through porous medium. J. Physics, vol. 1931.
    [61] 朱伯芳著.有限单元法原理与应用.中国水利水电出版社,2000.8.
    [62] 王元汉,李利娟编著.有限元法基础与程序设计.华南理工大学出版社.2001.2
    [63] Richard L. Cooley. Some new procedures for numerical solution of variably saturated flow problems. Water Resources Research..
    [64] Neuman, S. P. Galerkin approach to saturated-unsaturaed flow in porous media. Finite elements in fluids. Viscous flow and hydrodynamic, London: Wiley, 1974, Vol. 1.: 201-217.
    [65] Neuman, S. P, Saturated-unsarurated seepage by finite elements. Proc. ASCE, Hydraulics Div., 1973, 99(12): 2233—2250.
    [66] Freeze R.A. and Cherry J.A., Groundwater englewood cliff. N J: Prentice-Hal, 1979.
    [67] W.C.Desai Main Approaches to problems of fluid in fractured rock masses. Int. Assoc. Hydrogeol. 17.1985.
    [68] Remson, I, Hornberger, G. M. and Molz, F. J. Numerical methods in sub surface hydrology. Wiley-Interscience, 1971.
    [69] S. P. Neuman, T. N. Narasimhan and P. A. Witherspoon Application of Mixed Explicit-Implicit Finite Element Method to Nonlinear fusion-Type Problems, Finite Elements in Water Resources, PentechPress, London, Plymouth, 1977.
    [70] Neuman S.P., Galerkin approach to saturated-unsaturated flow in porous media. Finite elements in fluids. Viscous Flow and Hydrodynamical, 1974.
    [71] Neuman S.P., Galerkin approach to saturated-unsaturated flow in porous media. Finite elements in fluids. Viscous Flow and Hydrodynamical, 1974.
    [72] 赤井浩一,大西有三,有限要素法对饱和一非饱和渗流问题的解析,土木学会论文报告集,NO.264.
    [73] Papagiannakis, A.T and Fredlund, D. G A steady state model for flow in saturated-unsaturated soils. Can. Geotech. J., vol. 21, no. 13, 19.
    [74] D.G弗雷德隆德和H拉哈尔佐合,陈仲颐等译,1998,非饱和土力学,中国建筑工业出版社.
    [75] Genuchten, M. T. A closed form equation for conductivity of unsaturated soils. Soil Sci. Soc.Am., J. prediction the hydraulic 44, 1980.
    [76] Lam, L. and Fredlund D. G. Saturated-unsaturated transient finite element seepage model for geotechnical engineering. Adv. Water Resources, vol. 7 1984.
    [77] 汪自力,李莉等,饱和一非饱和渗流模型在多层自由面渗流分析中的应用,人民黄河,1997,01.
    [78] 黄俊,苏向明.土坝饱和一非饱和渗流数值分析方法研究,岩土工程学报,1990(5).
    [79] 张家发,李思慎,叶自桐。高边坡山体饱和和非饱和渗流场的初步分析。人民长江。1998,29(1).
    [80] 陈善雄,陈守义.考虑入渗和蒸发影响的土坡稳定性分析方法,岩石力学,Vol.22,No.4,2001(12).
    [81] 吴梦喜,高莲士.饱和一非饱和土体非稳定渗流数值分析.水利学报,1999(12).
    [82] 吴梦喜,张学勤。有自由面渗流分析的虚单元法。水利学报,1994年第8期
    [83] 朱岳明,龚道勇等.三维饱和非饱和渗流场求解及其逸出面边界条件处理。水科学进展,2003(1).
    [84] 刘洁,毛昶熙.堤坝饱和与非饱和渗流计算的有限单元法,水利水运科学研究,1997(9).
    [85] Noorlshad 3. Coupled thermal-hydraulic-mechanical phenomena In saturated fractured porous. Numerical approach. J. Geoph.Res. 1989(B12).
    [86] Oda. M. Permeability tensor for discontinuous rock masses. Geotechnique. 1985 (4).
    [87] Noorlshad J.A Coupled thermal-draulic-mechancal phenomena In saturated fractured porous. Numberical approach. J. Geoph.. Res. 1989 (B12).
    [88] Oda. M. Permeability tensor for discontinuous rock masses. Geotechnique. 1985 (4).
    [89] Witherspoon. A. etc. New approaches to problems of fluid in fractured rock masses. Proc. U. S. Symp. Rock. Mech. 22"d, 1981.
    [90] Ng, C. W.wand Shi, Q. A numerical investigation of the stability of unsaturated soil slopes subjected to transient seepage. Computer and Geotechnics, Vol. 22, no. 1, 1998.
    [91] 件彦卿.岩上体系统渗流场与应力场耦合的连续介质模型,西安公路交通大学学报,1996(1).
    [92] 柴军瑞.大坝及其周围地质体中渗流场与应力场耦合分析,岩石力学与工程学报,2000(6).
    [93] 王媛.裂隙岩体渗流与应力耦合分析的四自由度全耦合法,水利学报.1998(7).
    [94] 周创兵.岩石节理非饱和渗流特性研究,水利学报,1998(3).
    [95] 陈平,张有天裂隙岩体渗流与应力耦合分析,岩石力学与工程学报.1994(4).
    [96] 杨延毅,周维垣裂隙岩体非线性流变性态与裂隙损伤扩展过程关系研究,工程力学,1994(2).
    [97] 盛金昌,速宝玉.裂隙岩体渗流应力耦合研究综述,岩土力学,1998(2).
    [98] 朱珍德.裂隙岩体的渗流场与损伤场耦合分析模型及其工程应用,长江科学院院报,1999(5).
    [99] 沈振中,三峡大坝坝基粘弹性应力场与渗流场耦合分析,工程力学,2000(1).
    [100] Biot, M. A. General theory of three-dimension-consolidation[J]. Jour Appl Phys, 1942, 12: 155—164.
    [101] Biot, M. A. Theory of elasticity and consolidation for a porous anisotropic solid[J]. Jour Appl Phys, 1954, 26: 182-191.
    [102] Biot M. A. Theory of deformation of porous viscoelastic anisotropic solid [J]. J Appl phys, 1956, 27 (5): 203-215.
    [103] 平扬,白世伟,徐燕平.深基坑工程渗流渗流—应力耦合分析数值模拟研究,岩土力学,2001(3).
    [104] 徐则民.基于水一力耦合理论超深隧道围岩渗透性预测,成都理工学院学报.2001(2).
    [105] 杨志锡,叶为民,杨林德各向异性饱和土体的渗流耦合分析和数值模拟,岩石力学与工程学报,2002(10).
    [106] 李培超,孔祥言,卢德唐.饱和多孔介质流固耦合渗流的数学模型,水动力学研究与进展A辑,2003(4).
    [107] 张玉军.饱和—非饱和介质水.应力耦合的研究[J].岩石力学与工程学报,2005,24(17):3045-3051.
    [108] 张延军,王恩智,王思敬.非饱和土中的流固耦合研究[J].岩土力学,2004,25(6):999-1004.
    [109] 张均锋,孟祥跃,朱而干.水位变化引起分层边坡滑坡的实验研究[J].岩石力学与工程学报,2004,23(16):2676~2680.
    [110] Green, R. E. and Corey, J. C. 1971. Caculation of hydraulic conductivity: a further evaluation of some predictive methods. Soil science society of American Proceeedings.vol35, pp, 3-8.
    [111] User's guide for the Geoslope soft. Geoslope office soft, international Ltd. Calgary Alberta, Canada.
    [112] J.贝尔.多孔介质流体力学,中国建筑出版社,1996.
    [113] Noorishad J. A finite element method for coupled stress and flow analysis In fractured rock mass. Int. J Rock Mech.Min. Set. Geomech. Abstr. 1982
    [114] 罗元华,孙雄.不同应力状态下地层渗透系数的变化及其对流体运移影响的数值模拟研究,地球学报:中国地质科学院院报,1998(2).
    [115] Schreer B A, Zhan X. A fully coupled model for water flow and airflow in deformable porous media[J]. Water Resources Research, 1993, 29: 155-167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700