湖相软土物理力学特性及蠕变特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工后沉降的大小关系到线路的平顺以及行车的舒适和安全。软土蠕变是引起工后沉降的一个重要因素,研究软土的工程特性及其蠕变特性有重要意义。本文以某高速铁路为工程背景,对阳澄湖地区的软粘土展开一系列试验研究,并以试验结果为基础对该地区软土的工程特性和蠕变特性进行了较为系统的研究。获得以下成果:
     (1)基于最小二乘原理,以数理统计分析为手段,分析了阳澄湖地区软土物理指标、力学指标和物理力学指标之间的相关性,得出了相关参数间的回归方程。
     (2)基于一维压缩蠕变试验,分析了影响软土次固结特性的因素。研究表明:该地区软土的次固结系数与先期固结压力的相关性不大;次固结系数和固结压力的关系曲线可以用双曲线拟合;增大加荷比可以减小次固结系数;预压可以显著地减小次固结系数;加载时间间隔越长,次固结系数越小。
     (3)根据一维压缩蠕变试验结果,建立了软土次固结蠕变模型;把试验值与新建模型计算值进行了比较分析,并分析了超载预压减小次固结沉降的原因。结果表明:新建模型能反映软土次固结蠕变特性,能够预测次固结沉降随时间的发展。
     (4)基于一维应力状态下的广义开尔文蠕变模型,运用非线性最小二乘原理,反演分析了三维应力状态下的广义开尔文蠕变模型,其物理意义明确,提供了一种探求软土三维蠕变参数的新途径。
Post-construction settlement plays a significant role in line smoothness, driving comfort and safety of railway. Creep of soft soil is an important factor leading to post-construction settlement. Therefore, it is significant to study the engineering property of soft soil as well as its creep. Based on the background of high-speed railway, a series of tests were conducted to investigate the properties of soft clay in Yangcheng Lake area. On the basis of the test results, the engineering properties and creep of soft soil in YangCheng Lake area were studied systematically and the achievements were obtained as follows:
     (1) Based on least square principle and with the method of mathematical statistical analysis, the correlations among physical properties index and mechanical properties index of soft soil in Yangcheng Lake area were analyzed. Accordingly, the correlation equation among these parameters was obtained.
     (2) On the basis of the one-dimensional compression creep test, the factors which impact the secondary consolidation coefficient of soft soil were analyzed. The research result show that:①the secondary consolidation coefficient of soft soil in this area had no significant correlation with pre-consolidation pressure;②The curves of relationship between secondary consolidation coefficient and consolidation pressure can be better fitted with a hyperbolic curve;③The secondary consolidation coefficient decreases with load ratios increase;④Preloading can reduce the secondary consolidation coefficient significantly;⑤Secondary consolidation coefficient decreases with the extension of the load time interval.
     (3) According to one-dimensional compression creep test results, the model was established to simulate the secondary consolidation of soft soils creep. The comparison of experimental values and calculation values was conducted to analyze the reason that preloading with overload make the secondary consolidation settlement decreased. Further, the analysis results show that the new presented model can reflect the creep property of secondary consolidation of soft soil, also can predict the development of secondary consolidation settlement with time.
     (4) Based on one-dimensional generalized Kelvin creep model at stress state and the least square principle, the inverse analysis was conducted to analyze parameters of the generalized Kelvin creep models at 3d stress state. The physical meaning of this method is clear, and this study provides a new way to analyze the 3d creep parameters of soft soil.
引文
[1]铁建设[2003]13号,京沪高速铁路设计暂行规定[S].
    [2]中国铁道科学研究院.铁建设[2006]158号客运专线铁路无砟轨道铺设条件评估技术指南[S].北京:中国铁道出版社,2006.
    [3]A.M.Freudenthal.Safety of structure[J].Trans. ASCE,1947:112
    [4]Cornell,C.A.A Normative Second-Moment Reliability Theory for Structural Design Solid Mechanics Division[J]. Univ.of Waterloo,1969,V22:75-79
    [5]Cornell,C.A.First-Order uncertainty Analysis of Soil deformation and stability[J]. Pro.lst Int.Conf.on Application of statistics and Probability,1971:129-144
    [6]Rackwitz,R.,Fiessler,B.Structural reliability under random Sequences[J]. Computers and Structure,1977,V9:22-28.
    [7]Fcjino Y,Lind N.C.Prof-Load Factors and Reliability.Journal of the Structural Division[J].ASCE,1977,V103(4):853-870.
    [8]Vanmareke.E.H.(1977a).Probabilistic Modeling of Profiles[J]. Geotech.Engrgy Div ASCE,1977,V103(11):1227-1246.
    [9]Vanmarcke.E.H.(1977b).Reliability of earth slope[J].Geotech.Engrg.Div ASCE, 1977,V103(11):1247-1265.
    [10]Asaoka&Grivas, D.A(1982).Spatial variability of the undrained strength of elays.Jounal of Geoteehniea Engineering, ASCE,108(s):743-756.
    [11]高大钊.岩土工程设计安全度指标及其应用.工程勘察,1996,(1):1-6
    [12]高大钊.地基土力学性质指标的可靠性分析与取值.同济大学学报,1985,4:59-67.
    [13]高大钊.土的抗剪强度指标的统计方法.工程勘察,1986,4.
    [14]高大钊,曾朱家.桩基竖向承载力的分项系数研究.同济大学学报,1991,19(1):43-49.
    [15]高大钊.软土地基承载力的确定方法.同济大学学报,1995,23(3):259-264
    [16]冷伍明,赵善锐土工参数不确定性的计算分析[J].岩土工程学报,1996,18(4):40-47.
    [17]张征,刘淑春,鞠硕华岩土参数空间变异性分析原理与最优估计模型[J].岩土工程学报,1996,18(4):40-47.
    [18]李晓勇.太原粉质粘土强度指标的空间概率特征研究[J].岩土工程学报,2000,22(6):668-672.
    [19]杨强,陈新,周维垣.抗剪强度可靠度分析[J].岩石力学与工程学报,2002,21(6):868-873.
    [20]土力学的流变原理[苏]C.C.维亚洛夫著
    [21]殷宗泽等编著.土工原理[M].北京:中国水利水电出版社,2007.
    [22]Geuze E.C.W.A and TanTiong-Kie. The Mechanical Behaviour of clays, Proc 2nd International Congress on Rheology,1953.67-71.
    [23]陈宗基Strueture Mechanics of Clay中国科学1959,8(1).41~45.
    [24]黄文熙.土的工程性质[M].北京:水利电力出版社,1983.
    [25]孙钧著.岩土材料流变及其工程应用,北京:中国建筑工业出版社,1999.
    [26]施斌,王宝军,宁文务.各向异性粘性土蠕变的微观力学模型.岩土工程学报,1992,19(3):7-13.
    [27]陈冬元.上海地区饱和粘土蠕变微观机理及其流变模型与工程计算的研究[D]上海:同济大学,1993.
    [28]郭培军,李克训.砂土振动蠕变与长期强度研究[J].岩土工程学报,1995,17(1):53-59.
    [29]吴紫汪,马巍,蒲毅彬等冻土蠕变变形形态特征的细观分析[J].岩土工程学报,1997,19(3):1-6.
    [30]JianHua Yin, James Graham,Elastic Viscoplastic modeling of the time dependent stress-strain behaviour of soils[J]. Can.Geotech 36,736-745
    [31]殷建华.等效时间和岩土材料的粘弹塑性模型[J].岩石力学与工程学报,1999,18(2).124-128
    [32]李军世,孙钧.上海淤泥质粘土的一维固结—蠕变问题[J].同济大学学报,1999,27(4):389-392.
    [33]李军世,孙钧.上海淤泥质粘土的Mesri蠕变模型[J].土木工程学报,2001,34(6):74-79.
    [34]许宏发,钱七虎,吴华杰等.确定软土流变模型参数的回归反演法[J].岩土工程学报,2003,25(3):365-367.
    [35]冯紫良,范厚彬.软土流变试验的数值模拟[J].同济大学学报,2003,21(4):379-382.
    [36]高彦斌.饱和软粘土一维非线性流变—固结耦合分析[J].工程力学,2006,23(8):116-121.
    [37]朱鸿鹄,陈晓平等.考虑排水条件的软土蠕变特性及模型研究[J].岩土力学,2006,27(5):694-698.
    [38]王立忠,但汉波.K0固结软黏土的弹黏塑性本构模型[J].岩土工程学报,2007,29(9):1344-1354.
    [39]王元战,王婷婷,王军.滨海软土非线性流变模型及其工程应用研究[J].岩土力学,2009,30(9):2679-2685.
    [40]Tayor D W, Merchant W. A theory of clay consolidation accounting for secondary compressions [J]. Journal of Mathematics and Physics,1940,19(23):167.
    [42]陈宗基.固结及次固结时问效应的单维问题[J].土木工程学报,1958,5(1):1-3.
    [43]Bjerrum L. Embankments on soft ground, Proceedings of the specialty conference on perfor-mance of earth and earth-suppoaed structures [J]. Purdue University,ASCE,1972.2:1-54
    [44]Mesri, Godlewski P M. Time and Stress-compressibility Interrelationship [J]. Journal of the Geotechnical Engineering Division, ASCE,1977,103(5):417-430.
    [45]Mesri G.Castro A. Ca/Cc concept and Ko during secondary compression [J]. Journal of the Geotechnical Engineering,1987,113(3):230-247.
    [46]Nash D F T, Sills G C, Davison L R. One-dimensional consolidation testing for soft clay from Bothkennar[J]. Geotechnique,1992,42(2):241-256.
    [47]殷宗泽,张海波,朱俊高等.软土的次固结[J].岩土工程学报,2003,25(5):521-526.
    [48]廖红建,苏立君,白子博明等.次固结沉降对压缩时间曲线的影响研究[J].岩土力学,2002,23(5):536-540.
    [49]高彦斌,朱合华,叶观宝等.饱和软粘土一维次压缩系数Ca值的试验研究[J].岩土工程学报,2004,26(4):459-463.
    [50]周秋娟,陈晓平.软土次固结特性试验研究[J].岩土力学,2006,27(3):404-408.
    [51]余湘娟,殷宗泽,董卫军.荷载对软土次固结影响的试验研究[J].岩土工程学报,2007,29(6):913-916.
    [52]缪林昌,张军辉,陈艺南.江苏海相软土压缩特性试验研究[J].岩土工程学报,2007,29(11):1711-1714.
    [53]邵光辉,刘松玉.海相结构软土的次固结研究[J].岩土力学,2008,29(8):2057-2062.
    [54]冯志刚,朱俊高,冯豪杰.常规次固结沉降计算方法的改进研究[J].岩土力学,2010,31(5):1475-1480.
    [55]BJERRUM L. Engineering geology of Norwegian normally consolidated marine clays as related to the settlements of buildings [J]. Geotechnique,1967,17(2):83-118.
    [56]LADD C C, FOOTT R, ISHIHARA K, et al. Stress-deformation and strength characteristics[C]. Proc 9th Int Conf Soil Mech Found Engng, Tokyo,1977:421-494.
    [57]LEROUEIL S, KABBAJ M, TAVENAS F, BOUCHARD R.. Stress-strain-strain rate relation for the compressibility of sensitive natural clays[J]. Geotechnique,1985, 35(2):159-180.
    [58]GIBSON R E, SCHIFFMAN R L, CARGILL K W. The theory of one-dimensional consolidation of saturated clays II:finite nonlinear consolidation of thick homogeneous layers[J]. Can Geotech J,1981,18-21,280-293.
    [59]沈珠江.软土工程特性及软土地基设计[J].岩土工程学报,1998,20(1):100-111.
    [60]陈晓平,白世伟.软土蠕变—固结特性及计算模型研究[J].岩石力学与工程学报,2003,22(5):728-734.
    [61]陈晓平,朱鸿鹊,张芳枝,张波.软土变形时效特性的试验研究[J].岩石力学与工程学报,2005,24(12):2142-2148.
    [62]刘世明,曾国熙.软粘土的次固结变形特性[J].浙江大学学报(自然科学版),1990,6(24):840-848.
    [63]王盛源.饱和黏性土主固结与次固结变形分析[J].岩土工程学报,1992,14(5):70-75.
    [64]张诚厚.高速公路软基处理[M].北京:中国建筑工业出版社,1997.
    [65]倪一鸿.公路荷载作用下软土地基次固结[J].公路,1999,No.10:56-61
    [66]张迎春,刘吉福,魏金霞.砂土地基主、次固结度黏弹性分析[J].水运工程,2003,(8):20-24.
    [67]曹国强,张仪萍,张土乔等.地基沉降速率与沉降的关系研究及其应用[J].岩土力学,2003,24(3):467-470.
    [68]张军辉,缪林昌,黄晓明.连云港软粘土次固结变形研究[J].水利学报,2005,1:1-5.
    [69]王志亮,吴克海,李永池等.一个预测路堤沉降的新经验公式模型[J].岩石力学与工程学报,2005,24(12):2013-2017.
    [70]刘增贤.公路软基次固结及其工程意义探讨[J].公路,2006,(2):73-76.
    [71]侯晓亮,赵晓豹,李晓昭.南京河西地区软土次固结特性试验研究[J].地下空间与工程学报,2009,5(5):888-892.
    [72]刘成宇.土力学(第二版)[M].北京:中国铁道出版社,2005.
    [73]中华人民共和国水利电力部.土工试验方法标准(GBJ123-88).
    [74]中华人民共和国建设部.岩土工程勘察规范(GB50021-94)).北京:中国建筑工业出版社,1995.
    [75]中华人民共和国铁道部.铁路桥涵设计规范(TBJ2-96)).北京:中国铁道出版 社,1997.
    [76]国家质量技术监督局,中华人民共和国建设部.土工试验方法标准(GBT50123-1999).
    [77]孙更生等.软土地基与地下工程.北京:中国建筑工业出版社,1989,1-26.
    [78]高大钊等.上海软土工程性质的概率统计特征.第四届土力学及基础工程学术会议论文集.北京:中国建筑工业出版社,1986,176-182.
    [79]王煌霞等.连云港海相沉积软土的工程特性.岩土工程界,2002,5(7):39-40.
    [80]金建荣.华南地区软土的特性及施工中的处理方法.甘肃科技,2001,2:58-59.
    [81]白冰等.湖北宜黄公路仙江段工程地质特征及软基处理体会.湖北地矿,1999,13(1):34-40.
    [82]刘慧明.闽东南沿海地区软土物理力学性质研究[D].福州:福州大学,2005.
    [83]付长波.东营软土工程特性及其对粉喷桩复合地基可靠度影响研究[D].东营:中国石油大学(华东),2009.
    [84]祝卫东.温州软土与台州软土工程特性及其比较分析[D].杭州:浙江大学,2003.
    [85]孙晓娟.滇池泥炭土工程地质特性试验研究[D].昆明:昆明理工大学,2006.
    [86]Cagrande A, Fadum R E. Notes on Soil Testing for Engineering. Purpose, Harvard soil Mechanics series[J]. Cambrid-ge Massachusetts,1940, (8):36-39.
    [87]Buisman,A S K. Results of Long Duration Settlement Tests[J]. ICSMFE,1936, 1:103-104.
    [88]师旭超,汪稔,张在喜.广西海相淤泥的次固结特性研究[J].岩土力学,2003,24(5):863-865.
    [89]刘红军,张立敏.齐齐哈尔湿地软土压缩固结特性的试验[J].东北林业大学学报,2009,37(2):59-62.
    [90]张超杰.结构性软土一维弹粘塑性固结性状研究[D].杭州:浙江大学,2003,85-86.
    [91]但汉波.天然软粘土的流变特性[D].杭州:浙江大学,2009,42-46.
    [92]雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报,2002,10(4):385-389.
    [93]滕军林,熊传详.基于土结构性的流变试验研究[J].长沙大学学报,2007,21(5):50-53.
    [94]Walker L.Undrained creep in a sensitive clay[J].Geotechnique,1969,19(4): 515-529.
    [95]Singh,A.and Mitchell, J.K..General stress-strain-time function for soils. Proc.ASCE. JSMFD, vol.94, No SM1,1968.
    [96]魏丽敏,何群,王永和.软土参数反分析方法及其在沉降预测中的应用[J].中国铁道科学,2007,28(4):1-6.
    [97]杨斐.高速公路海相软土地基工后沉降预测及预压效果研究[D].南京:东南大学,2005.
    [98]赵永辉.润扬长江大桥北锚碇土体流变特性的试验研究[J].地下空间,2003,23(4):417-420.
    [99]周秋娟,陈晓平,赖震环等.软土非线性流变特性的试验研究及成果分析[J].暨南大学学报,2006,27(1):75-80.
    [100]周德培.流变力学原理及其在岩土工程中的应用[M].成都:西南交通大学出版社,1995.
    [101]Gioda G. A numerical procedure for defining the values of soil parameter affecting consolidation[A]. Proc.of the 7th European Conf. On Soil Mechanics and Foundation Engineering. Design Parameter in Geotechnical Engineering[C]. London: British Geotechnical Society,1979,1:169-172.
    [102]杨林德.岩土工程问题的反演理论与工程实践[M].北京:科学出版社,1996.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700