黄土高填方路堤沉降变形规律与计算方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受自然条件和地理特点的制约,西部山区高等级公路建设中出现了大量的黄土高路堤。由此而引发的高路堤沉降变形问题始终备受学术界及工程技术人员的重视。本文在总结国内外研究现状的基础上,围绕黄土高路堤的沉降变形规律、沉降影响因素和沉降计算等问题,以三处典型黄土高路堤原位试验为依托,结合室内试验、离心模型试验及有限元仿真分析等手段开展了以下研究工作:
     1.路堤压实黄土蠕变特性研究。通过一维固结试验,研究压实黄土在各种情况下的次固结特性,探讨了固结状态、加载时间、加载比对压实黄土次固结系数的影响,揭示了次固结系数与压缩指数间的关系。试验结果表明,随着固结压力的变化,压实黄土的次固结系数表现出与当前应力状态有关的变化规律。当处于正常固结状态时,次固结系数近似为一常数,且次固结系数与压缩指数具有很好的相关性;而当超载预压处理后,次固结系数随超载比和超载作用时间不同而变化。其次,进行了不同压实度、不同含水量情况下一维蠕变试验,研究了高路堤填土在高应力下的流变特性,在Kelvin模型基础上得出了变形随时间和应力变化的计算模型。
     2.以三处黄土高路堤为载体,开展了黄土高路堤沉降原位试验研究。试验中通过布置沉降杯和压力盒等测试元件,对路堤施工及工后各过程中路堤横断面、填挖交界处,以及路堤填土层间土压力与位移的变化规律进行了现场实测和分析。并在此基础上对黄土高路堤的沉降组成进行了研究。
     3.借助离心试验手段,通过不同路堤断面形式,不同地形条件下的10组离心模型试验,着重对黄土高路堤沉降变过程、空间效应对沉降变形规律的影响及黄土高路堤的湿化特性进行了研究。分析了加载期与稳定期沉降变化规律及其构成变化,并与原位试验进行对比。
     4.基于MARC有限元软件,从填土高度、边坡形式、路堤与地基模量、模量比及填土泊松比等方面对路堤沉降的影响展开深入的探讨,并分析了各因素对高路堤沉降构成的影响。同时对空间效应的影响及路堤的湿化性状进行了数值仿真分析。结果表明,路堤沉降的组成除地基沉降外,主要是路堤自身的压缩变形量,而由填土高度、土体泊松比及路堤边坡形式等因素引起的侧向变形对路堤沉降也有较大的影响。空间效应对路堤沉降及土体应力分布产生一定影响,湿化将引起路堤局部应力水平的提高,从而产生边坡失稳。
     5.黄土高路堤自身压缩沉降计算及工后蠕变计算的研究。首先在一维分层总和法中引入压缩模量随填土应力变化时的修正表达式,使路堤沉降计算时能够考虑到不同土层压缩模量因填土荷载增加的变化的情况:其次针对高路堤填土变形的特性,提出了侧向变形影响的修正系数K表达式,使得高路堤沉降与路堤高度、边坡形式及填土特性建立了联系;最后结合室内试验成果给出了计算黄土高路堤工后蠕变沉降的实用计算方法。并将模型计算结果其与现场实测、模型试验及有限元计算结果进行了对比,验证了计算方法的可靠性。
     论文研究明确了黄土高路堤的沉降构成,分析描述了黄土高路堤的沉降变形及其发展变化特征,基本解决了黄土高路堤的沉降计算问题,对今后的设计和施工具有重要的指导作用。
For restrained by its' natural conditions and geographical characteristics, there are a lot of high loess- filled embankments welling up during the highway construction in west area. The issue on settlement -deformation of high loess-filled embankment aroused from above status has been paid more attention to by academic community and engineering technicians. In this dissertation, based on the present research situation and combining the field tests, experiment indoors, centrifuge model test and numerical simulation, the following research work focused on settlement and deformation laws, the influencing factors and its calculating method has been carried out.
     1. Research on creep characteristics of compacted loess. Firstly, based on a series of 1 -D consolidation test, the characteristics of secondary consolidation on compacted loess were studied and the influence of consolidation pressure, consolidation time, compression index and overload ratio on the coefficient of secondary consolidation were analyzed .The test results indicated that with the change of consolidation pressure, the coefficient of secondary consolidation shows a sound regularity with the variation of stress conditions. In normal consolidation state the coefficient remains approximately a constant value. But when surcharge preloaded, the coefficient will change with the overload ratio and its duration time. Also, under normal consolidation state, there is a significant correlativity between the coefficient of secondary consolidation and compression index and which has little influenced by overload ratio and its duration time. Secondly, the rheological characteristic of compacted loess under high stress has been studied after a series of 1 -D creep test with different degree compaction and water content. As a result, an empirical model of deformation varying with stress and time has been put forward.
     2. Relying on three typical high loess- filled embankment and through arranging testing component, the varying laws of settlement and earth pressure at transaction, the boundary between filling and digging and among the layers of filling have been measured and analyzed during the stage of construction and after that .At the same time, based on which, the composition of settlement for high loess- filled embankment has been studied.
     3. In virtue of centrifuge model test, through 10groups test simulating different section form and orographic condition, the laws of settlement -deformation and the wetting characteristic have been researched. Also, the composition of settlement during the stage of loading and holding is analyzed. Compared with the results of field tests and numerical simulation, the research achievement is enriched further more.
     4. Based on the large common finite element MARC programmer, the influence of settlement on high loess- filled embankment has been discussed in depth from the aspects of the filling height, the form of slope, deformation modulus of embankment and groundsill, modulus ratio and Poisson's ratio. In the meantime, the influence on the composition of settlement suffering from above factors is analyzed. Also, the numerical simulation of the steric effect and the wetting properties on embankment has been worked, the results shows that apart from the foundation settlement, the amount of compressive deformation of embankment itself is a main component of settlement, meantime, which is influenceed by the lateral deformation caused by the height of filling, the Poisson's ration and the form of slope .The steric effect has a great influence on distribution of settlement and stress of soil mass. Wetting will cause localized stress level enhance, consequently which can induce the slope collapse.
     5. Research on calculating method of creep settlement after construction and compression settlement for loess-high fill embankment itself. Firstly, a revised expression about the modulus of compressibility varying with stress is introduced to layer-wise summation method, which can consider the variation of modulus of compressibility with the increasing filling load on settlement calculation. Secondly, the expression about coefficient of correction K of lateral deformation is brought forward in view of the deformation characteristics of loess-high fill embankment, which can establish tiles between the settlement and the height, the form of slope and filling property. At last, combining the experiment indoors, an applied method of calculating creep settlement after construction for high-stacked embankment has been put forward. Through comparing the results using above method with model experiment and FEM calculation, the reliability of the method is verified.
     The research from the dissertation crystallized the composition of high loess-filled embankment, analysed and described the settlement -defoemation laws and its characteristics of variation and basicly solved the problem of settlement calculation of high loess-filled embankment, which can offer references to the design and construction for the future.
引文
[1]公路设计手册.路基(第二版)[M].北京:人民交通出版社,1996
    [2]刘祖典.黄土力学与工程[M].西安:陕西科学技术出版社,1997,4
    [3]交通部公路司.公路工程质量通病防治指南[M].北京:人民交通出版社,2002,1
    [4]辛平.黄土高填方路堤稳定性研究[D].西安:长安大学,2000(5)
    [5]郑治,曾忠.西部地区高填方路堤沉降病害调查与分析[J].公路交通科技,2005,
    [6]李启,张蓬勃.西宝高速公路路基病害处治分析[J].山西交通科技.2005(3):9-11
    [7]王晓谋,袁怀宇.高等级公路软土路基路堤设计与施工技术.北京:人民交通出版社,2001
    [8]刘开元,王祥.路堤荷载下次固结沉降分析[J].岩土工程技术,2002(4):191-194
    [9]孙长生.黄土地区跨越深沟建筑物问题探讨[J].公路,1983(12):10-15
    [10]陕西省交通设计院.黄土调查研究汇集[G].人民交通出版社,1960
    [11]贾士愕.黄土路堤的下沉规律与处理措施[G].兰州:铁道科学研究院西北研究所,1978
    [12]楚华栋.黄土路堤的压实与下沉[G].兰州:铁道科学研究院西北研究所,1987.
    [13]龙锦永.杜康沟高路堤设计施工及沉降观测工作简介[J].路基工程,1986(1):104-106
    [14]柴锦春.黄土高路堤的沉降计算[J]。路基工程,1988,20(5):19-24
    [15]左佐生.填土的压缩(沉降)量[J].路基工程,1988,21(6):19-19
    [16]李善皋.黄土路堤竣工后下沉量的估算[J].路基工程,1989,26(5):91-93
    [17]成都科技大学,甘肃省交通厅公路局,甘肃省交通科研所.黄土地区公路特殊结构研究成果报告[R].交通部“八五”行业联合攻关项目,1993,10
    [18]戴经良,王晓谋等.陕西高等级公路路堤沉降规律与防治的研究成果报告[R].西安公路交通大学,陕西省高等级公路管理局.1997,12
    [19]郝传毅,饶鸿雁,杨世基.路堤自身压缩的非线性有限元分析[J].中国公路学报,1991,4(1):9-14
    [20]魏汝龙.从实测沉降过程推算固结系数[J].岩土工程学报,1993,15(2):12-18
    [21]谢新宇.饱和土体一维大变形固结理论研究[J].西安公路交通大学学报,1996,16(4):14-18
    [22]郑治.路堤自身压缩的分层总和法[J].华东公路,1996(5):51-54
    [23]杨重存.黄土高路堤及高路堑的稳定与变形性态分析与研究[J].东北公路,1998,21(2):9-13
    [24]吴燕开,陈红伟,张志征.饱和黄土的性质与非饱和黄土流变模型[J].岩土力学,2004,25(7):1143-1146
    [25]刘保健.公路路基沉降过程试验与理论分析[D].西安:西安理工大学,2004,12
    [26]伍石生.高等级公路非饱和土路堤沉降规律的研究[D].西安:长安大学,1996,4
    [27]钟厚冰.压实黄土变形特征及路堤沉降计算[D].西安:长安大学,1999,6
    [28]高维隆.公路黄土坝式路堤研究[D].西安:长安大学,2000,1
    [29]孟宪誛.高填土路基沉降试验研究[J].城市道桥与防洪,2001(1):102-105
    [30]刘涌江,邓卫东,杨青等.高速公路路堤稳定性与沉降变形规律研究[J].公路交通技术,2005(5):16-20
    [31]刘怡林,甘肃省黄土地区高路堤、深路堑边坡稳定性研究[D].西安:长安大学,2001.5
    [32]徐世强.公路黄土坝式路堤设计研究[D].西安:长安大学,2002,5
    [33]郑治.高填路堤沉降变形规律研究及压实技术课题成果简介[J].公路交通技术,2005(5):12-15
    [34]姜旺恒.黄土路基填料强度及变形性质研究[D].西安:长安大学,2004,5
    [35]陈开圣.公路工程压实黄土的强度与变形及其微观结构研究[D].长安大学,2006,4
    [36]景宏君,张斌.黄土路基强度规律[J].交通运输工程学报.2004,4(2):14-18
    [37]刘建民.从压实土体的强度特征看黄土的现场压实控制[J].工业建筑.1994,24(10):26-30
    [38]杨有海.重塑黄土的强度特征及其影响因素的研究[J].兰州铁道学院学报.2003,22(3):38-41
    [39]李晓军,张登良.CT技术在土体结构性分析中的应用初探[J].岩土力学,1999,20(2):63-66
    [40]李传勋.压实黄土荷载、变形与时间关系及应用问题的研究[D].西安:长安大学,2003,4
    [41]马莉英,肖树芳,王清.黄土的流变特性模拟与研究[J].实验力学,2004,19(2): 178-182
    [42]王有余.不同应力水平下黄土的蠕变试验研究[J].公路与汽运,2005(2):73-75
    [43]程海涛.非饱和重塑黄土变性特性试验研究[D].西安:长安大学,2005,5
    [44]胡瑞林,王思敬.模拟强夯下黄土的固结变形特征及其微观分析[J].岩土力学.1999,4:12-18
    [45]胡瑞林,李焯芬.动荷载作用下黄土的强度特征及结构变化机理研究[J].岩土工程学报.2000,3:174-181
    [46]张栋梁.压实黄土动力特性试验研究[D].西安:长安大学,2004,5
    [47]张晓荣.压实黄土动力特性及动力下的松弛特性试验研究[D].西安:长安大学,2004,5
    [48]周勤,赵发章,张洪亮.压实度和含水量对于压实黄土力学特性的影响[J].公路,2006(1):67-70
    [49]贾茂林.对压实黄土湿陷问题的试验研究[J].山西建筑2001,1:4-7
    [50]伍石生,武建民.压实黄土湿陷变形问题的研究[J].西安公路交通大学学报,1997,17(3):1-3
    [51]伍石生,戴经梁,彭波.压实黄土的微结构及其渗水的研究[J].西安公路交通大学学报,1998,18(4):17-20
    [52]张贵发,邱惠玲.龄期对压实黄土湿陷性影响的试验[J].水资源与水工程学报,1990,4:66-68
    [53]任钰芳.农田灌溉对黄土路基稳定性的影响研究[D].西安:长安大学,2001,2
    [54]沈波,郑南翔,田伟平.路基压实黄土坡面降雨冲蚀试验研究[J].重庆交通学院学报,2003,22(4):64-67
    [55]胡再强 黄土结构性模型及黄土渠道的浸水变形试验与数值分析[D].西安:西安理工大学,2000,11
    [56]秦仁杰.黄土室内模拟沉降规律分析[J].公路交通科技,2004,4
    [57]岳祖润,刘典岱,王锡朝.路堤沉降的离心模型试验[J].铁道学报,1996,18(1):96-100
    [58]章为民,徐光明.土石坝填筑过程的离心模拟方法[J].水利学报,1997(2):9-13
    [59]熊冰,胡小明.黄土路基湿化特性的离心模型研究[J].四川联合大学学报(工程科学学版),1999,3(1):1-4
    [60]胡小明,余学明.高填方黄土路堤的最优填筑密度分区研究[J].四川联合大学学报(工程科学学版),2002,34(1):40-43
    [61]刘宏,张倬元,韩文喜.用离心模型试验研究高填方地基沉降[J].西南交通大学学报,2003,38(3):323-326
    [62]范亮,浸水高填方路堤变形性状模型试验研究[J].重庆交通学院学报,2004,23(6):78-82
    [63]景宏君.振动压实与黄土高路堤沉降变形[D].西安:长安大学,2004,3
    [64]朱鸿鹄,陈晓平.软土蠕变-固结的耦合效应研究评述[J].暨南大学学报(自然科学版),2004,25(3):315-320
    [65]陈宗基.固结及时间的单维问题[J].土木工程学报,1958,5(1):1-10
    [66]G.X.Zeng,Q.Y.Pan,S.M.Liu.On the secondary deformation of soft clay[R].Beijing:Proe.Int.Conf.On Engineering Problem of Regional Soils,509-512
    [67]De.Jong,G.D.J and Veruijit.Primariary and secondary consolidation of a spherical clay sample[R].Proc.1961,5~(th) ICSMFE
    [68]于新豹,刘松玉,缪林昌.软土次固结特性试验研究[J].岩土工程技术,2003(1)
    [69]Bjerrum L.Embankments on soft ground[A].Proc Special Conference on Performance of Earth and Earth Supported Structures[C].ASCE,1972,1-54
    [70]张惠明,徐玉胜,曾巧玲.深圳软土变形与工后沉降[J].岩土工程学报,2002,24(4):510-514
    [71]张军辉,缪林昌,黄晓明.连云港软黏土次压缩变形研究[J].水利学报,2005,36(1):116-119
    [72]师旭超,汪稔,张在喜.广西海相淤泥的次压缩特性研究[J].岩土力学,2003,24(5):863-865
    [73]雷华阳,肖树芳.天津软土的次固结变形特性研究[J].工程地质学报,2002,10(4):385-389.
    [74]朱鸿鹄,陈晓平,张芳枝等.南沙软土固结变形特性试验研究[J].工程勘察,2005(1):1-3
    [75]高彦斌,朱合华,叶观宝等.饱和软粘土一维此压缩系数Ca值的试验研究[J].岩土工程学报,2004,26(4):459-463
    [76]张齐兴,曹方成.土体超固结比对次固结沉降影响的试验研究[J].江苏农业研 究,2000,21(4):66-68
    [77]陈晓平,朱鸿鹄,张芳枝等.软土变形实效特性的试验研究[J].岩石力学与工程学报,2005,24(2)
    [78]寥红建,苏立军,白子博明等.次固结沉降对压缩时间曲线的影响研究[J].岩土力学,2002,23(5):536-540
    [79]马训.固结系数与固结压力关系的统计分析与研究[J].港口工程,1993(1):46-53
    [80]Mesri G,Godlewski P M.Time and stress compressibility interrelationship[J].Journal of Geotechnical Engineering,American Society of Civil Engineering,1979,103(5):417-430
    [81]Crawford C B.Interpretation of the consolidation test[J].Proc.ASCE,1964,90(SM5):87
    [82]刘守华,韩文喜,李景林等.用离心模型研究超高填方地基变形特性[J].工程勘察,2005(2):7-11
    [83]濮家骝.土工离心模型试验及其应用的发展趋势[J].岩土工程学报,1996,18(5):92-94
    [84]黄志全,王思敬.离心模型试验技术在我国的应用概况[J].岩石力学与工程学报,1998,17(2):199-203
    [85]包承纲,饶锡保.土工离心模型的试验原理[J].长江科学院院,1998,15(2):1-7
    [86]南京水利科学研究院土工研究所.土工试验手册[M].北京:人民交通出版社,2003,4
    [87]李德寅,王邦楣,林亚超.结构模型试验[M].北京:科学出版社,1996
    [88]陈火红.Marc有限元实例分析教程[M].北京:机械工业出版社,2002,9
    [89]冯瑞玲.柔性基础复合地基形状研究[D].西安:长安大学,2003,6
    [90]屠毓敏,郑坚.考虑土体侧胀性的路堤沉降分析[J].中国公路学报,2002,15(1):26-28
    [91]殷宗泽.土的侧胀性及其对土石坝应力变形的影响[J].水利学报,2000(7):49-55
    [92]焦彦利.黄土增湿的工程性状仿真分析[D].西安:长安大学,2004,5
    [93]张士宇,王瑞钢.降雨对高填路堤的入渗深度的确定及有限元稳定分析[J].路基工程,2004(5):17-20
    [94]折学森.软土地基沉降计算[M].北京:人民交通出版社,1998
    [95]钱家欢,殷宗泽.土工原理于计算(第二版)[M].北京:中国水利水电出版社,1996
    [96]韩选江.土力学和地基工程[M].上海:上海交通大学出版社,1990
    [97]黄文熙.土的工程性质[M].北京:中国水利水电出版社,1984
    [98]Skempton A.W.and Bjerrum L.,A Contribution to the Settlement Analysis of Foundation on Clay[J].Geotechnique,1957,Vol.7,No.4
    [99]王志亮,李永池,殷宗泽.考虑土体侧胀性的路堤沉降计算探讨[J].岩石力学与工程学报,2005,24(10):1772-1777
    [100]麦远俭,刘成云.软基预压加固中的体积应变、侧向位移与沉降修J下[J].水运工程,2001(8):7-11
    [101]Lambe T.W.,Methods of estimating settlement[J].J.Soil Mech.Found.Divison,ASCE,1964,90(5):43-67
    [102]高大钊,袁聚云.土质与土力学[M].北京:人民交通出版社,2001
    [103]罗晓辉.粘性土地基沉降计算方法分析[J].武汉城市建设学院学报,1996,13(3):67-72
    [104]Biot M.A.,General theory of three-dimentional consolidation[J].J.of Applied Phys.,1991,Vol.12:2-18
    [105]Schiffman R.L.,Chen A.T.F.,An analysis of consolidation theories[J].J.of S.M.and F.Division,SCE,1969,Vol.95,No.SM1:50-70
    [106]Duncan J.M.,Limitations of Conventional Analysis of Consolidation Settlement[J].J.Geotech.Engrg.,ASCE,1993,119(9):1333-1359
    [107]殷建华,Jack I.Clark.土体与时间相关的一维应力-应变形状、弹塑性模型和固结分析[J].岩土力学,1994,15(3:65-80
    [108]Yin J-H,Graham J.Viscous-elastic-plastic Modeling of One-Dimensional Time-dependent Behavior of Clays[J].Can.Geotech.J.,1989,26(2):199-209
    [109]沈珠江.结构性粘土的弹塑性损伤模型[J].岩土工程学报,1993,15(3):21-28
    [110]施建勇,赵维炳,孙林.考虑损伤的软土地基变形分析[J].岩土工程学报,1998,20(2):2-5
    [111]曾国熙,龚晓南.软土地基固结有限元分析[J].浙江大学学报,1983,1:1-13
    [112]沈珠江.软土工程特性和软土地基设计[J].岩土工程学报,1998,2(1):100-111
    [113]任何峰,林成英.软基堤坝设计的侧向变形问题[J].浙江水利科技, 2001(2):10-13
    [114]李广信.高等土力学[M].北京:清华大学出版社,2004,7
    [115]董亮,史存林,蔡德钩等.地基沉降计算新方法的探索[J].工程地质学报,2005,13(2):227-230
    [116]王盛源.饱和粘土主固结与次固结变形分析[J].岩土工程学报,1992,14(5):70-75
    [117]孙更生,郑大同.软土地基与地下工程[M].北京:中国建筑工业出版社,1984
    [118]Akira Asaoka.Observational procedure of settlement prediction.Soils and Foundation[J],18(4):88-101
    [119]倪一鸿.公路荷载作用下软土地基次固结[J].公路,1999,(10):56-61
    [120]宰金珉,梅国雄.成长曲线在地基预测中的应用[J].南京建筑工程学院学报,2000(2):8-13
    [121]宋彦辉,夏德新.基础沉降预测的Verhdst模型[J].岩土力学,2003,24(1):123-126
    [122]张仪萍,龚晓南.沉降的灰色预测[J].工业建筑,1999,29(4):45-48
    [123]许永明,徐泽中.一种预测路基工后沉降量的方法[J].河海大学学报,2000,28(5):111-113
    [124]刘勇健.用神经网络预测高速公路的软土地基的最终沉降[J]公路交通科技,2000,17(6):15-18
    [125]Liu Yong-jian,Application of genetic algorithm to calculation of soft ground seelemem[J].Industrial construction,2001,31(5):39-41
    [126]李祝龙,章金钊.青藏公路冻土路基沉降的模糊综合评判[J].公路,2000(2):21-24
    [127]汪小丰.软土地基上填方路堤后期变形分析[D].安徽:合肥工业大学,2004,8
    [128]邓文龙,周正茂.土的压缩模量Es的一种取值方法[J].工业建筑,1996,26(10):34-37
    [129]马时冬.路堤下软粘土地基的侧向位移[J].华侨大学学报(自然科学版),1995,16(2):165-167
    [130]Tavenas F.Laeral displacement in clay foundations under embankment[J].Canadian Geotechnical Journal,1979(16):532-550
    [131]李飞,程鹏环,周乾.软土路基侧向变形影响因素分析与监测研究[J].工程勘察,2004(3):16-19
    [132]王志亮,高峰,殷宗泽.考虑侧向变形的路堤沉降一维法计算的修正系数研究[J].岩土力学,2005,26(5):763-768
    [133]Crawford C.B.Interpretation of consolidation tests[J].J.Soil Mech Found Div,ASCE,1964,90(5):87-102
    [134]Bjerrum L.Embankments on soft ground[J].Proceedings Spesial Conference on Performance of Earth and Earth-Supported Structure,ASCE,1972:1-54
    [135]YIN jian-hua,Graham J.Elastic Visco-plastic modeling of one-dimentional consolidation[J].Geotechnique,1996,46(3):515-527
    [136]Mesri,Godlewski.Time and stress-compressibility interlationship[J].Journal of the geotechnical engineering division,1977,103(5):417-430
    [137]白冰,周健.饱和粘土的塑性指数对其压缩变形的参数影响[J].水利学报2001(11):51-55
    [138]G..Mesri,T.D.Stark.Secondary Compression of Peat with or without Surcharging[J].Journal of Geotechnical and Geoenvironmental Engineering,1997(5):411-421
    [139]殷宗泽,张海波,朱俊高等.软土的次固结[J].岩土工程学报,2003,25(5):521-526

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700