泡沫沥青及泡沫沥青冷再生混合料技术性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对沥青路面废旧材料进行再生利用,可以有效提高资源利用率,保护生态环境,符合国家提出的发展循环经济、实现可持续发展的战略方针。因此,对沥青路面再生技术进行研究具有重要的意义。
     泡沫沥青是近年来兴起的一种冷再生稳定剂,用其稳定的再生混合料在材料性能、经济性以及环保性等方面具有独特的优势和发展前景。但到目前为止有关泡沫沥青冷再生混合料的材料特性、破坏机理等的研究十分有限,泡沫沥青再生混合料的设计也主要依赖于经验,这些均限制了泡沫沥青冷再生技术的推广应用。
     本文从泡沫沥青与泡沫沥青冷再生混合料的材料组成出发,旨在通过大量室内试验,对泡沫沥青冷再生混合料的物理力学性能以及使用性能进行系统深入的研究,以实现泡沫沥青冷再生混合料的优化设计,从而改善其各项性能,进而推动泡沫沥青冷再生技术的研究与应用。
     沥青发泡特性是影响泡沫沥青冷再生混合料性能的关键因素。本文选用不同等级的沥青进行发泡特性试验分析,研究沥青发泡特性的评价指标与方法、发泡剂对沥青发泡特性的影响以及沥青基本性质与其发泡特性之间的相关性。结果表明:发泡指数FI在一定范围内增大反映出沥青发泡特性的改善,但并非FI越大泡沫沥青的发泡特性就越好,FI不能代替膨胀率和半衰期两个基本指标单独用于泡沫沥青的设计与评价,而应将其作为一种辅助或补充指标,与膨胀率和半衰期相结合共同对泡沫沥青进行合理设计与评价;发泡剂可显著延长泡沫沥青的半衰期,但其对膨胀率影响较小;沥青的动力粘度指标与其发泡特性之间具有较好的相关性,PI、沥青的三大指标、密度、老化后的性质以及沥青等级等与其发泡特性之间相关性较小。
     通过筛分试验研究了不同条件下泡沫沥青冷拌混合料中沥青的分散性状,分析表明:设计中如不能合理控制泡沫沥青发泡特性、矿料温度、矿料级配组成以及混合料拌和水量等因素,将会造成沥青分散不均匀甚至结团现象,影响泡沫沥青冷拌混合料的相关性能;泡沫沥青均匀分散的混合料中,沥青主要裹覆<1.18mm的细集料,尤其是<0.3mm的细集料部分,形成泡沫沥青砂浆并将大粒径集料以点焊的形式粘结成整体。
     通过变化不同的沥青发泡特性以及矿料温度,研究其对泡沫沥青再生混合料力学性能的影响,结果表明:两因素对泡沫沥青再生混合料的ITS与UCS均具有显著影响,且沥青发泡特性的评价指标膨胀率与半衰期相比,膨胀率对再生混合料力学强度特性的影响更为显著,据此提出在沥青发泡特性的优化设计中,应偏向于按膨胀率较大相应选择最佳沥青发泡条件。
     水是泡沫沥青冷再生混合料关键的设计指标之一。本文设计了泡沫沥青稳定新料与旧料形成的不同类型混合料,研究泡沫沥青冷拌混合料的拌和用水量问题。分析表明:混合料的最佳拌和用水量随其组成中填料含量的增多而一定程度增大,根据研究结果推荐了不同类型及组成的泡沫沥青冷拌混合料适宜拌和用水量范围及最佳拌和用水量。
     矿料级配组成是影响泡沫沥青冷再生混合料性能的另一关键因素。本文设计了具有不同细料组成及不同粗料组成的泡沫沥青冷拌混合料,通过对其抗拉、抗压与抗剪等力学性能的研究发现:泡沫沥青混合料的最佳沥青用量与混合料中的填料含量密切相关,与热拌沥青混合料相比,泡沫沥青混合料具有相对较大的粉胶比;提高细料部分的密实程度可显著改善泡沫沥青冷拌混合料的各项力学性能;粗料部分组成的变化对最佳泡沫沥青用量基本无影响,对混合料的力学性能影响则较小;针对不同级配的研究结果,相应修正了Wirtgen推荐的泡沫沥青稳定材料级配范围;此外,通过研究关键筛孔的级配变异敏感性,推荐了泡沫沥青冷拌混合料施工中关键筛孔的允许波动范围。
     泡沫沥青再生层的强度、刚度等力学性能受多种因素影响。本文从内外因两方面对泡沫沥青再生混合料的力学性能进行了试验分析,结果表明:沥青旧料掺量、泡沫沥青与水泥用量以及温度、养生、压实方法等对泡沫沥青再生混合料的抗拉、抗压、抗剪强度以及抗压回弹模量具有显著影响;泡沫沥青再生混合料力学性能的温度敏感性低于热拌沥青混合料。
     永久变形性能是泡沫沥青再生结构层使用中的重要性能之一。本文采用动态压缩蠕变试验分析了不同材料组成对泡沫再生混合料永久性能的影响,结果表明:一定程度增大水泥用量、矿料组成中的细料含量以及减小泡沫沥青用量,可提高泡沫沥青再生混合料的抗变形能力;在合理设计混合料级配组成的条件下,路面各结构层均可再生利用形成变形能力满足要求的再生混合料;泡沫沥青再生混合料的抗永久变形性能优于热拌沥青混合料;此外,泡沫沥青再生混合料蠕变试验的加载段可采用Burgers模型进行理想的拟合,从而获得泡沫沥青再生混合料的相关粘弹性参数。
     抗疲劳性能是泡沫沥青再生混合料铺筑路面基层或底基层时必须优化设计的关键性能。本文采用间接拉伸劈裂疲劳试验分析了不同材料组成对泡沫沥青再生混合料疲劳性能的影响,分析表明:水泥在小掺量条件下增多时有助于提高再生混合料的抗疲劳性能;最佳泡沫沥青用量下再生混合料可具有良好的抗疲劳性能以及强度与变形能力;改善沥青的发泡特性可相应提高再生混合料的抗疲劳性能;二灰砂砾基层材料形成的泡沫沥青再生混合料抗疲劳性能较差,将其与面层沥青旧料混合再生后形成的混合料性能有效改善;泡沫沥青再生混合料的抗疲劳性能介于半刚性基层材料与热拌沥青混合料之间。
     最后本文对泡沫沥青冷再生路面的施工工艺进行了研究,提出了泡沫沥青冷再生工程的施工质量检查方法与标准,并通过工程实例的验证得出,经合理设计与施工的泡沫沥青再生层具有良好的结构承载力,可作为高等级公路的基层或底基层。
Recycling of asphalt pavements can effectively enhance the use of resources, protect ecological environment and accords with the national strategy of developing cycling economy and realizing sustainable development. Therefore, research on the technology of asphalt pavement recycling is of great significance.
     Foamed asphalt is a kind of cold recycling stabilizing agent, which gains more and more acceptance in recent years. Recycled mixes stabilized with foamed asphalt possess advantages in terms of performance, economy and environment protection. However, studies about the behaviors and distress mechanisms of foamed asphalt cold recycled mix have still been limited at present, and mix design also mainly depends on experience, which hold back the popularity of foamed asphalt cold recycling technology.
     From foamed asphalt and foamed asphalt cold mix composition point of view, this paper, through a lot of laboratory experiments and relative analysis, aims to systematically study the mechanical properties and pavement performances of foamed asphalt cold mix, so as to optimize its design, improve its various performances and promote relative research and practice for the technology.
     Foamability of asphalt is a key factor influencing properties of foamed asphalt cold recycled mix. The paper selected asphalts with different penetration grades to carry out foaming experiments, so as to determine the evaluation indexes and method for asphalt foamablity, and the relationship between basic characteristics of asphalt and its foamablity. It was confirmed that increase of foam index (FI) within a certain range reflects the improvement of foaming properties. However, it does not necessarily mean that the bigger the value of FI, the better the foam characteristics is. Not be used as a substitute for expansion ratio and half-life, FI should be considered as a complementary index for the design and evaluation of foamed asphalt together with expansion ratio and half-life. Foamant additive can significantly extend half-life of foamed asphalt, but has little bearing on expansion ratio. Dynamic viscosity of asphalt was found to have a comparatively good correlation with its foaming characteristics. Whereas other basic properties, such as PI, penetration, softening point, elongation, specific gravity, characters after aging, penetration grade and etc, show a little correlation with foaming properties.
     The dispersion of foamed asphalt within cold mix was studied by sieve analysis. The results showed that if some factors, such as asphalt foamability, temperature and gradings of mineral aggregates, mixing moisture content and etc, cannot be reasonably controlled in mix design, asphalt may fail to disperse evenly or conglomerate in mix, leading to an adverse effect on mix properties. Among the mix where asphalt disperses evenly, asphalt mainly coats fine aggregates passing through 1.18mm sieve, especially those passing through 0.3mm sieve and form foamed asphalt motar, which adhere to larger aggregates and bond them together in a manner of "point".
     Mixing moisture content is one of the pivotal parameters in foamed asphalt mix design. The paper designed different kinds of foamed asphalt mixes with original aggregates and recycled asphalt pavements as well to study the proper moisture contents in mixing of foamed asphalt mixes. The analysis showed that mixing moisture content increases with the increase of filler content within a certain degree. Reasonable ranges of mixing moisture content and optimum moisture contents for foamed asphalt mixes with various kinds and gradings were proposed accordingly.
     Grading of mineral aggregate is another key factor which affects foamed asphalt cold recycled mix performance. The paper designed foamed asphalt mixes with different fine and coarse fraction gradings and studied their tensile, compression, shear strength separately. It is indicated that optimum foamed asphalt content is closely related to filler content and foamed asphalt mix has a higher filler to asphalt ratio than HMA. Enhancement of fine fraction density can remarkably improve the mechanical properties of foamed asphalt mix. However, change of coarse fraction grading has little bearing on optimum asphalt content and mechanical properties of mix. The grading envelope recommended by Wirtgen was modified accoding to the results concluded in the paper. Besides, the variation sensitivity of key sieves were investigated and the allowable variation ranges in construction were suggested accordingly.
     Strength and rigidity properties of foamed asphalt recycled mix are influenced by many factors. The paper carried out relative studies from internal and external aspects. It was shown that foaming characteristics, mineral aggregate temperature, amounts of recycled mix, foamed asphalt and cement, curing and compaction method, determing temperature and etc, all have significant influence on strength characters and compression resilient modulus of foamed asphalt recycled mix. In addition, temperature sensitivity of mechanical properties for foamed asphalt recycled mix is less than HMA.
     Permanent deformation is one of the important performance of foamed asphalt recycled pavements. The paper adopted dynamic compression creep test to analyze the effect of mix composition on its permanent deformation response. It was found that increasing amounts of cement and fine fraction or decreasing foamed asphalt content at a certain degree, can improve the deformation resistance of foamed asphalt recycled mix. By reasonably designing mix grading, materials of every layer in pavement structures can be recycled with foamed asphalt with satisfied deformation resistance. Foamed asphalt recycled mix has superior deformation resistance over HMA. Loading stage of creep testing for foamed asphalt recycled mix was also found to be well simulated by Burgers model, with the visco-elastic parameters for recycled mix can be acquired.
     Fatigue resistance is a paramount performance needed to be optimized for foamed asphalt recycled mixes, which are used for base or subbase layers in pavements. The paper chose indirect tensile fatigue test to study the influence of different material compositions on fatigue characteristics of recycled mixes. It was indicated that increase of cement at a small amount is beneficial to the improvement of fatigue resistance for recycled mixes. Optimum foamed asphalt content can make the recycled mixes have relatively good fatigue resistance, strength and flexibility. Enhancement of foaming properties can also improve fatigue characteristics of recycled mixes. Gravel treated with lime and fly ash forms recycled mix with inferior fatigue reponse, but mixing with RAP can effectively ameliorate its performance. Fatigue resistance for foamed asphalt recycled mixes fall between semi-rigid material and HMA.
     At last, the paper studied the construction technics of foamed asphalt recycled pavements. The corresponding inspection methods and standards for construction quality are suggested. An actual project demonstrated that reasonably designed foamed asphalt recycling layers have favorable structural capability and can be used for base or subbase layers of high class pavements.
引文
[1]Asphalt Recycling and Reclaiming Association.Basic Asphalt Recycling Manual[M].
    [2]美国沥青路面再生指南.北京::人民交通出版社,2006。
    [3]An Overview of Recycling and Reclamation Methods for Asphalt Pavement Rehabilitation.Asphalt Recycling and Reclaiming Association,Annapolis,MD,1992.
    [4]McKeen,R.G.,D.I.Hanson,and J.H.Stokes.New Mexico's Experience with Cold In Situ Recycling.Proceedings of the Transportation Research Board's 67th Annual Meeting,1997.
    [5]Charles T.Jahren,Dong Chen.Long-term Performance of Cold In-Place Recycled Asphalt Roads.Proceedings of the 2005 Mid-Continent Transportation Research Symposium,Ames,Iowa,August 2005.
    [6]Edward J.Keamey.P.E.,John E.Huffman,P.E.The Full Depth Reclamation Process.Prepared for Presentation at the 78 th Annual Meeting of the Transportation Research Board January 10-14,1999Washington,DC.
    [7]Csanyi L.H.Foamed Asphalt in Bituminous Paving Mixes.Highway Research Board Bulletin Volume 10 No.160,Pp 108-122,1956.
    [8]Lee D.Y.Treating Marginal Aggregates and Soils with Foamed Asphalt.Association of Asphalt Paving Technologists Volume 50,Pp211-250,1981.
    [9]George Vorobieff,Nigel Preston.Bitumen Stabilisation-An Australian Perspective.NZIHT Stabilisation of Road Pavements Seminar,Auckland,NZ,June 2004.
    [10]Breunen M.,Tia M.,Altschaefl A.and Wood L.E.Laboratory Investigation of the Use of Foamed Bitumen for Recycled Bitumous Pavements.Transportation Research Record 911.Pp80-87,1983.
    [11]Ruckel P.J.,Acott S.M.and Bowering R.H.Foamed-Asphalt Paving Mixtures:Preparation of Design Mixes and Treatment of Test Specimens.Transportation Research Record 911.Pp88-95,1983.
    [12]Bowering,R.H.& Martin,C.L.Performance of Newly Constructed Full Depth Foamed Bitumen Pavements.In:Proceedings of the 8th Australian Road Research Board Conference,Held in Perth,Australia,1976.
    [13]Acott S.M.and Myburgh P.A.Design and Performance Study of Sand Bases Treated with Foamed Asphalt.Transportation Research Record 898.Pp290-296,1982.
    [14]CSIR Transportek.Foamed Asphalt,Mix Design.Website http://foamasph.csir.co.za:81/chap4,htm.
    [15]Maccarrone,S.,Holleran,G.& Ky,A.Cold Asphalt Systems as an Alternative to Hot Mix.In:9th AAPA International Asphalt Conference.1994.
    [16]Jenkins K.J.Mix Design Considerations for Cold and Half-Warm Bitumious Mixes with Emphasis on Foamed Bitumen.PHD Dissertation,University of Stellenbosch,Stellenbosch,2000.
    [17]Mofreh F.Saleh.Effect of Rhelolgy on the Bitumen Foamability and Mechanical Properties of Foam Bitumen Stabilised Mixes.International Journal of Pavement Engineering,Vol.8,No.2,Pp99-110,June 2007.
    [18]Akeroyd F.M.L.and Hicks B.J.Foamed Bitumen Road Recycling.Highways,January,London.Pp42-45..
    [19]Munthen,K.M.1999."Foamed Asphalt Mixes - Mix Design Procedure." Contract Report CR-98/077.South Africa:CSIR Transportek.
    [20]Sakr,H.A.& Manke,P.G.Innovations in Oklahoma Foamix Design Procedures.In:Asphalt Materials,Mixes,Construction and Quality.Washingtong,DC:Transportation Research Board.(Transportation Research Record;1034),pp 26-34,1985.
    [21] Bissada, A.F. Structural Response of Foamed-Asphalt-Ssand Mixtures in Hot Environments.In:Asphalt Materials and Mixtures. Washington, DC: Transportation Research Board, 115, pp134-149,1987.
    [22] Semmelink, C.J. The Effect of Material Properties on the Compactibility of Some Untreated Road Building Materials. PHD thesis, University of Pretoria, Pretoria, 1991.
    [23] Lancaster J., McArthur L and Warwich R. VICROADS Experience with Foamed Bitumen Stabilisation. Proceedings 17th ARRB Conference Part 3. Australia. Ppl93-211,1994.
    [24] Shackel B., Makiuchi K. and Derbyshire J.R. The Response of Foamed Bitumen Stabilised Soil to Repeated Triaxial Loading. 7th ARRB Conference. Volume 7 Part7. Australia. Pp74-89,1974.
    [25] ]Akeroyd, F.M.L. & Hicks, B.J. Foamed Bitumen Road Recycling. Highways, Volume 56,Number 1933, pp 42-45,1988.
    [26] Bowering R.H. Upgrading Marginal Road Building Materials with Foamed Asphalt. Highway Engineering in Australia. Mobil Oil of Australia, Melbourne South, 1970.
    [27] Wirtgen. Wirtgen Cold Recycling Manual[M]. Windhagen, Germany.2004.
    [28] Humberto Castedo Franco L. and Wood L.E. Stabilization With Foamed Asphalt Aggregates Commonly used in Low-Volume Roads. Transportation Research Record 898. Pp297-302,1982.
    [29] SABITA. GEMS-The Design and Use of Granular Emulsion Mixes, Manual 14, Cape Town,1993.
    [30] Eggers C, Holzhausen M. and Bartels J. Bitumin(?)se ichten aus M(?)llverbrennungssasche und Schaumbitumen under und Schaumbitumen under Bsonderer Ber(?)cksichtigung von unterschiedlichen Tensiden. Diplomarbeit, Fachbereich Bauingenieurswesen, Fachhochschule Hamburg. Germany, 1990.
    [31] Roberts F.L., Engelbrecht J.C. and Kennedy T.W. Evaluation of Recycled Mixtures Using Foamed Bitumen. Transportation Research Record 968. Pp78-85,1984.
    [32] Lewis AJ.N.L, Barron M.G. and Rutland GP. Foamed Bitumen-Recent Experience in South Africa.International Road Federation(IRF) Regional Conference, Volumell. Johannesburg, South Africa.Pp1-12,1995.
    [33] A. Nataatmadja Some Characteristics of Foamed Bitumen Mixes. Paper No.01-2790. Transportation Research Board 80th Annual Meeting January 7-11, Washington,D.C, 2001.
    [34] Lee, H. and Kim Y. Development of a Mix Design Process for Cold In-Place Rehabilitation Using Foamed Asphalt. Iowa Department of Transportation, Iowa Highway Research Board, Final Report,2003.
    [35] Lee, H. and Kim Y. Validation of the Mix Design Process for Cold In-Place Rehabilitation Using Foamed Asphalt. Iowa Department of Transportation, Iowa Highway Research Board, Final Report TR-474,2007.
    [36] Tia M. and Wood L.E. Use of Asphalt Emulsion and Foamed Asphalt in Cold-Recycled Asphalt Paving Mixtures. Transportation Research Recod 898. Pp315-322,1982.
    [37] Asphalt Institute. Mix Design Methods for Asphalt Concrete and Other Hot Mix Types. Manual Series No.2(MS-2), Sixth Edition. Lexington, USA. Pp81-82,1993.
    [38] Van Wijk A. and Wood L.E. Use of Foamed Asphalt in Recycling of an Asphalt Pavement.Transportation Research Recod 911. Pp96-103,1983.
    [39] Little D.N.,Button J.W. and Epps J.A. Structural Properties of Laboratory Mixtures Containing Foamed Asphalt and Marginal Aggregates. Transportation Research Recod 911. Pp104-113,1983.
    [40] Jenkins K.J., S. Robroch, M.G Henderson, J.Wilkinson and A.A.A. Molenaar Advanced Testing for Cold Reccling Treatment Selection on N7 Near Cape Town. Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa,2004.
    [41]Clarke A.R.Foamed Asphalt of Crushed Rock Pavements.Report 76.3.Mobil Oil of Australia,Melbourne South,1976.
    [42]Long,F.M.and Theyse,H.L.Mechanistic Empirical Structural Design Modes for Foamed and Emulsified Bitumen Treated Materials.Conference on Asphalt Pavement for Southern Africa(CAPSA),2004.
    [43]Loizos,A.,Collings,D.C.and Jenkins,K.J.Rehabilitation of a major Greek Highway by Recycling/stabilizing with Foamed Bitumen.Conference on Asphalt Pavements for Southern Africa(CAPSA),2004.
    [44]He Gui-Ping.Study the Use of Reclaimed Asphalt Pavement(RAP) with Foamed Bitumen in Hong Kong.PHD Dissertation,April 2006.
    [45]Jenkins,K.J.,Long,F.M.and Ebels,L.J.Foamed Bitumen Mixes = Shear Performance?International Journal of Pavement Engineering,Vol.8,No.2,Pp85-98,June 2007.
    [46]Marquis,B.,Bradbury,R.L.,Colson,S.et al Design,Construction and Early Performance of Foamed Asphalt Full Depth Reclaimed(FDR) Pavement in Maine.TRB 2003 Annual Meeting(CD-Rom),Transportation Research Board,Washington,D.C.
    [47]P Paige-Green,DFC Ventura.Durability of Foamed Bitumen Treated Basalt Base Course.Draft CR-2004/8,February 2004.
    [48]Schramm L.L.Foams:Fundamentals and Applications in the Pertroleum Industry.Advances in Chemistry Series 242,American Chemical Society.Washington DC,1994.
    [49]李葵英。界面与胶体的物理化学[M],哈尔滨:哈尔滨工业大学出版社,1998。
    [50]Asphalt Academy,Interim Technical Guidelines(TG2):The design and use of foamed bitumen treated materials.Pretoria,South Africa,2002.
    [51]Mofreh ESaleh.New Zealand Experience with Foam Bitumen Stabilization.TRB 2004 Annual Meeting CD-ROM,October 2003.
    [52]拾方治,赫振华,吕伟民等.沥青发泡原理及发泡特性的试验研究.建筑材料学报,Vol.7,No.2,2004.
    [53]McGermis,R.B.;Anderson,R.M.;Kennedy,T.W.;Solaimanian,M."Background of SUPERPAVE Asphalt Mixture Design and Analysis".U.S Department of Transportation,Federal Highway Administration,Report No.FHWA-SA-95-003,1995.
    [54]Khalid Salim Alshamsi.Development of a Mix Design Methodology for Asphalt mixtures with Analytically Formulated Aggregate Structures.PHD Dissertation,Louisiana State University and Agricultural and Mechanical College,2006.
    [55]Ruth B.E.,Roque R.,Nukunya B.Aggregate Gradation Characterization Factors and Their Relationships to Fracture Energy and Failure Strain of Asphalt Mixtures.Journal of the Association of Asphalt Paving Technologists,Vol.71,2002.
    [56]National Stone Association,"The Aggregate Handbook",3rd Edition,Washington DC,1996.
    [57]林绣贤.柔性路面结构设计方法[M]。北京:人民交通出版社,1988.
    [58]Fuller W.B and Thompson S.E."The Laws of Proportioning Concrete".American Society of Civil Engineers,Vol.59,1907.
    [59]Nijboer L.W.Plasticity as a Factor in the Design of Dense Bituminous Road Carpets.Amsterdam Laboratory of the N.V.,1943.
    [60]Good J.F.and Lufsy L.A.Voids,Permeability,Film Thickness vs Asphalt Hardening.Proceeding of the Association of Asphalt Pavement Technologists,Vol.34,1965.
    [61]严家伋.道路建筑材料[M].率京:人民交通出版社,2004.
    [62]Lees G.The Rational Design ofAggregate Gradings for Dense Asphaltic Composition.Proceedings of Asphalt Paving Technologies.Kansas City,USA 39:60-90,1970.
    [63]Kapolyi L.Soil-mixture with a minimum of voids produced from local materials.Proceedings of the Fourth Conference on Soil Mechanics.Budapest,Pp:155-164,1971.
    [64]Furnas CC.Relations Btween Secific Vlume,Vids and Sze Cmposition in Sstems of Boken Slids of Mxed Szes.Bureau of Mines,Rport of Iestigations..Pp:1-10,1928.
    [65]Yahia A.Abdel-Jawad,Waddah Salman Abdullah.Design of Maximum Density Aggregate Grading.Construction and Building Materials.16:495-508,2002.
    [66]Cooper K.E;Brown S.F."Development of A Practical Method for the Design of Hot Mix Asphalt".The Annual Meeting of the Transportation Research Board,Washington,D.C.,January 1991.
    [67]Freddy J.S(?)chez-Leal.Gradation Chart for Asphalt Mixes:Development.Journal of Materials in Civil Engineering,Vol.19,No.2,2007.
    [68]Byron E.Ruth,Reynaldo Roque,Bensa Nukunya.Aggregate Gradation Characterization Factors and Their Relationships to Fracture Energy and Failure Strain of Asphalt Mixtures.AAPT,2002
    [69]沈金安.沥青及沥青混合料路用性能[M].北京:人民交通出版社,2001.
    [70]TRANSPORTATION RESEARCH E-CIRCULAR.Bailey Method for Gradation Selection in Hot-Mix Asphalt Mixture Design,Number E-C044,ISSN 0097-8515,October 2002.
    [71]Becca Lane,P.,Tom Kazmierowski,P.Expanded Asphalt Stabilization on the Trans-Canada Highway.TRB 2003 Annual Meeting CD-ROM.
    [72]Becca Lane,Tom Kazmierowski.Implementation of Cold In-Place Recycling with Expanded Asphalt Technology in Canada.Transportation Research Record 1905,2005.
    [73]苏金明,傅荣华,周建斌,张莲花编著.统计软件SPSS for Windows实用指南[M].北京:电子工业出版社,2001.
    [74]M.Houston and F.Long.Correlations Between Different ITS and UCS Test Protocols for Foamed Bitumen Treated Materials.Proceedings of the 8th Conference on Asphalt Pavements for Southern Africa.12-16,September 2004.
    [75]武和平.高等级公路路面结构设计方法[M].北京:人民交通出版社,1999.
    [76]交通部 公路沥青路面设计规范(JTG D50-2006)[S].北京:人民交通出版社,2006.
    [77]姚爱玲,张西玲,王选仓.测试方法对沥青混合料抗压回弹模量的影响.长安大学学报(自然科学版),25(6)-21-24,2005.
    [78]J.S Lai."Evaluation of Rutting Characteristics of Asphalt Mixes Using Loaded Wheel Tester."Georgia Department of Transportation Project No.8609,December 1986.
    [79]C.R.Williams and B.D.Prowell.Comparison of Laboratory Wheel-Tracking Test Results to WesTrack Performance.Transportation Research Record No.1681,Transportation Research Board.National Research Council,1999.
    [80]Prithvi S.Kankhal and L.Allen Cooley,Jr.Evaluation of Permanent Deformation of Asphallt Mixtures Using Loaded Wheel Tester.NCAT Report No.2002.
    [81]U.S.Department of Transportation,Federal Highway Administration,Hamburg Wheel Tracking Device,FHWA,Turner-Fairbank Highway Research Center,TFHRC Publication,2002.
    [82]Texas Department of Transportation,Pavement Construction Specifications,Draft 10/03/03,2003.
    [83]Cooley L.A.,Kandhal S.P.,Fee F.and Epps A.,Loaded Wheel Testers in the United States:State of the Practice,National Center for Asphalt Technology,NCAT Report 2000-4,Transportation Research E-Circular No.E-C016,Auburn,Alabama,2000.
    [84]Van de Loo,P.J..Creep testing,a simple tool to judge asphalt mix stability.Proceedings,The Association of Asphalt Paving Technologists,Vol.43,253-284,1974.
    [85]Barksdale,R.D.and J.H.Miller Ⅱ.Development of equipment and techniques for evaluating fatigue and rutting characteristics of asphalt concrete mixes.School of Civil Engineering,Georgia Institute of Technology,SCEGIT-77-149,1977.
    [86]Monismith,C.L.and A.A.Tayebali.Permanent deformation(rutting) considerations in asphalt concrete pavement sections.Proceedings,The Association of Asphalt Paving Technologists,Williamsburg,VA,Vol.57,414-463,1988.
    [87]National Cooperative Highway Research Program,"Refining the Calibration and Validation of Hot Mix Asphalt Performance Models:An Experimental Plan and Data base",Research Results Digest,Number 284,2003.
    [88]Schmidt,R.J..A practical Mthod for Masuring the Rsilient Mdulus of Aphalt Teated Mxes.Highway Research Record 400,Highway Research Board,22-32,1972.
    [89]Khosla,N.P.and M.S.Omer.Characterization of asphaltic mixtures for prediction of pavement performance.Transportation Research Record 1034,Transportation Research Board,47-55,1985.
    [90]李怀月.沥青稳定基层混合料抗变形能力试验研究.中南公路工程,31(5):40-43,2006.
    [91]杨群.沥青稳定基层混合料设计试验研究.东南大学博士论文,2002,3.
    [92]黄仰贤.路面分析与设计[M].北京:人民交通出版社.1998,215-248.
    [93]徐世法.表征沥青及沥青混合料高低温蠕变性能的流变学模型.力学与实践,1992(1):37-40.
    [94]邓健龙,吕松涛,田小革.沥青混合料粘弹性参数及其应用.郑州大学学报,25(4):8-11,2004,
    [95]P.S.Pell and I.F.Taylor,"Asphalt Road Materials in Fatigue",AAPT,Vol 38,1969.
    [96]S.C.S.Rao Tangella,J.Craus,J.A.Deacon,C.L.Monismith,"Summary Report on Fatigue Response of Asphalt Mixtures -Prepared for Strategic Highway Research Programm Project A-003-A",Institute of Transportation Studies,University of California,Berkeley,California,1990.2.
    [97]交通部公路科学研究所译,《壳牌路面设计手册》,1993.
    [98]交通部重庆公路科学研究所译,“沥青混合料的疲劳响应”,美国公路战略研究计划(SHRP)专题情报资料,1995.
    [99]"Fatigue Response of Asphalt-Aggregate Mixes,SHRP-A-404",Institute of Transportation Studies,University of California,Berkeley,California,1994.6
    [100]哈尔滨建筑工程学院道交系.“沥青路面疲劳规律的研究”,1993.
    [101]许志鸿,李淑明,高英,丰晓.沥青混合料疲劳性能研究.交通运输工程学报,1(1):20-24,2001.
    [102]交通部公路科学研究所.“八五”国家科技攻关项目:高等级公路半刚性基层沥青路面材料参数的研究(课题分报告),1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700