单晶MgO微观力学行为和磨粒加工表面层损伤
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
单晶MgO在耐温性、透光率、热导率、电绝缘性、化学稳定性和机械强度等方面性能优异,被广泛用作高温超导等薄膜生长的基片材料,同时也是一种重要的光学材料。基片是薄膜材料生长的载体,其超精密加工表面质量直接影响薄膜性能。目前,由于对单晶MgO的微观力学特性和加工损伤机制以及MgO基片的精密加工技术缺乏系统研究,影响了单晶MgO的应用。本文深入研究了单晶MgO的纳米力学性能、微观变形和加工损伤特征以及MgO基片的磨粒加工工艺,对于推动单晶MgO在光电领域的应用具有重要的理论意义和实用价值。
     主要研究内容和结论如下:
     通过纳米压痕、微压痕和微划痕试验,研究了单晶MgO不同晶面的的纳米力学性能以及微观变形和损伤特征。根据加载条件的不同,单晶MgO会发生如下变形:(1)弹性变形, (2)弹塑性变形, (3)蠕变变形, (4)微裂纹和微破碎。弹性变形时的纳米压痕力-位移曲线符合赫兹弹性接触理论,其变形在卸载后可完全恢复;塑性变形时MgO在{110}易滑移晶面系内位错形核和滑移的结果。材料由弹性变形转变为弹塑性变形时,纳米压痕力-位移曲线上出现pop-in现象,并对应有特征明显的声发射(Acoustic emission, AE)信号,pop-in弹性释放能和AE信号能量成线形比例关系。计算得到单晶MgO(001)和(110)晶面纳米压痕导致位错形核的平均临界剪应力分别为14.85 GPa和12.61 Gpa,这与理论剪切应力13.82 GPa接近。增加纳米压痕保载时间导致蠕变变形,该蠕变变形存在瞬态蠕变和稳态蠕变两个阶段。稳态蠕变时单晶MgO (001)、(110)和(111)晶面的蠕变应力指数分别为36.5,53.7和22.4。当单晶MgO (001)晶面微压痕和微划痕试验的载荷足够大时,表面和亚表面会形成微裂纹,包括放射状裂纹、亚表面水平裂纹和中位裂纹。通过对压痕和划痕的截面进行观察和分析发现,根据裂纹成因不同,亚表面微裂纹主要有两种:一种是两相邻互成120°角的{110}45°滑移面内的位错滑移相交积塞,导致沿MgO (110)晶面开裂,形成与表面垂直的{110}90°裂纹,以及与表面成45°的倾斜裂纹;另一种是应力集中导致沿MgO(100)解理面解理,形成垂直于表面的中位裂纹(又称{100}90°裂纹)和平行于表面的水平裂纹。
     通过对锯切、研磨和磨削三种磨粒加工方法加工的单晶MgO基片表面和截面的显微观察,结合MgO微观力学行为的分析结果,研究了单晶MgO基片的表面和亚表面损伤。不同方法加工的单晶MgO基片截面均存在两个位错滑移系统,即位错在{110}90°滑移面内滑移形成的垂直滑移系统和位错在{110}45°晶面内滑移形成的倾斜滑移系统,滑移系统与压痕划痕截面观察到的位错滑移线一致。在粗加工单晶MgO基片的亚表面存在横向、垂直和倾斜三种基本形状的微裂纹,分别对应于微压痕和微划痕中的的水平裂纹,放射状裂纹和倾斜裂纹。钩形、“人”字形、“之”字形、伞形等形状的微裂纹是由这三种基本形状的微裂纹构成的。
     通过观察和分析单晶MgO基片磨粒加工后的表面和亚表面损伤,建立了单晶MgO亚表面损伤模型,揭示了磨粒加工单晶MgO的材料去除机理。粗加工单晶Mg0基片时,表面和亚表面产生微裂纹并扩展相交,材料以微破碎形式去除,表面形成微台阶结构并残留微裂纹,亚表面产生由表面破碎层、位错滑移层和弹性畸变层组成的损伤层。精加工单晶MgO基片时,表面产生塑性变形并形成高应变区,材料以疲劳破坏形式去除,表面没有微裂纹和微破碎出现,亚表面层损伤仅包括位错滑移和弹性畸变。
     进行了单晶MgO基片研磨工艺试验,研究了不同加工条件下的材料去除率、表面粗糙度和亚表面损伤,确定了包括粗研磨、半精研磨和精研磨工序的研磨工艺路线和合理的工艺参数。进一步探讨了金刚石砂轮超精密磨削单晶MgO基片的加工工艺,和研磨加工相比,在表面质量和亚表面损伤相当的情况下,超精密磨削可达到很高的加工效率,在单晶MgO基片加工中具有很好的应用前景。
Single crystal MgO has good thermal stability, light transmittance, electrical insulativity, chemical stability and mechanical properties. It is mainly used as substrate for high temperature superconductor (HTS) thin films and also a kind of important optical material. The surface quality of the ultra-precision machined substrates greatly affects the performance of the thin films grown on it. However, the micromechanical characteristics, the damage mechanism and the precision processing technology of MgO substrates have not been systematically studied, the applications of single crystal MgO have been limited. In this dissertation, the nano-mechanical behhavior, microscopic deformation and surface layer damage mechanism of single crystal MgO were studied, and abrasive processing technology were investigated. It has great theoretical significance and applied value to promot the application of single crystal MgO in the optoelectrionics field.
     The main research contents and conclusions are as follows:
     The nano-mechanical properties, microscopic deformation and surface layer damage characteristic were investigated by nanoindentation, micro-indentation and micro-scratch on different crystallographic planes of single crystal MgO. Under different loading conditions, single crystal MgO present different deformation, including elastic deformation, plastoelastic deformation, creep deformation, micro cracks and micro fractures. The load-displacement curve of elastic deformation fits well with the curve of Herz elastic contact, the elastic deformation can recovery after unloading. The plastic deformation is the result of the dislocations nucleation and glidding in the {110} easy slip planes of MgO. There is pop-in phenomenon on load-displacement curve of nanoindentation at the transition point from elastic to plastoelastic deformation, which is associated with the acoustic emission (AE) signal with distinct waveform, and the elastic released energy of pop-in is in proportion to AE energy. The average critical shear stress of dislocation nucleation of nanoindentation on MgO (001) and MgO (110) planes were calculated to be 14.85 GPa and 12.61 GPa, which are very close to the theory critical shear stress of 13.82 GPa. Increasing the holding time in nanoindentation induces creep deformation, including transient stage creep and steady stage creep. The creep stress exponents of MgO (001), (110) and (111) planes in steady state creep were calculated to be 36.5,53.7 and 22.4, respectively. When increasing the load of micro-indentation and micro-scratch to a certain extent, micro cracks including radial cracks, lateral cracks and median cracks generate in surface and subsurface of MgO. Through the cross-section observation of the micro-indentation and micro-scratch on MgO, two types of subsurface cracks were confirmed according to the different forming mechanism. One is the cracks in (110) planes, including the {110}90°cracks and inclined cracks, intersecting the top (001) surface at 90°and 45°, respectively, which result from the intersection and blocking of dislocations gliding in two easy slip planes intersecting each other at 120°; the other is the median cracks (vertical to the top (001) surface) or lateral cracks (parriable to the top (001) surface), which result from the cleavage in the (100) easy cleavage planes.
     Based on the analysis of micromechanical behavior, the surface and subsurface damage of MgO substrates were studied through the observation of the surface and cross-section of sawed, lapped and ground MgO substrates. The vertical apnd inclined dislocation glidding systems were observed in the cross-section of MgO substrates machined by different abrasive processing methods. The vertical slip lines come from the dislocations glidding in the {110}90°easy slip planes, and the inclined slip lines result from the dislocation glidding in the {110}45°slip planes. Three basic shape cracks including lateral cracks, vertical cracks and inclined cracks were found in the cross-section of the rough machined MgO substrates. Other cracks with complicated shapes, such as the "hook" crack, the "zigzag" crack, the "chevron" crack and the "umbrella" crack, consist of the above mentioned three basic cracks.
     Based on the observation and analysis of the surface and subsurface damages of MgO substrates, the material removal mechanism of rough and fine processing MgO substrates was analyzed and the model of subsurface damage induced in MgO substrates after rough and fine processing were proposed. In rough processing MgO substrate, the material is removed in fracture mode by the extension and intersection of large numbers of median cracks, radial cracks and lateral cracks, the formed surface have micro-steps structures, and the subsurface damage layer consists of the fracture layer, the dislocation glidding layer and the elastic deformation layer.In fine processing MgO substrate, the material is removed in fatigure failure mode by the high strain result from the continuous plastic deformation and the subsurface damage layer is composed of the dislocation glidding layer and the elastic deformation layer.
     The systematic precision lapping experiments of MgO substrates wconducted, the influences of processing parameters on the surface roughness, material removal rate and surface damage were studied, the processing route composed of rough lapping, semi-fine lapping and fine lapping and resonable processing paramaters were obtained. Furthermore, the ultra-precision grinding technology of MgO substrates with diamond wheel was investigated. Compared with the lapping technology, the grinding has much higher machining efficiency under the condition of obtaining comparative surface quality and subsurface damage, and shows bright application prospect.
引文
[1]潘金生,仝建民.材料科学基础.北京:清华大学出版社,1998.
    [2]胡庆福.镁化合物生产与应用.北京:化学工业出版社,2004.
    [3]Khan M Y, Brown L M, Chaudhri M M. Effect of crystal orientation on the indentation cracking and hardness of MgO single crystals. Journal of Physics D:Applied Physics,1992,25(1A):A257-A265.
    [4]Boyarskaya Y S, Zhitaru R P, Grabko D Z et al. Prolonged plastic deformation related to the microindentation of MgO single crystals. Journal of Materials Science,1998,33(2):281-285.
    [5]Richter A, Wolf B, Nowicki M et al. Multi-cycling nanoindentation in MgO single crystals before and after ion irradiation. Journal of Physics D:Applied Physics,2006,39(15):3342-3349.
    [6]Okada T, Hattori S, Shimizu M. A fundamental study of cavitation erosion using a magnesium oxide single crystal (intensity and distribution of bubble collapse impact loads). Wear,1995,186-187(Part 2):437-443.
    [7]Avci I, Algul B P, Akram R et al. Signal performance of DC-SQUIDs with respect to YBCO thin film deposition rate. Sensors and Actuators A:Physical,2009,153(1):84-88.
    [8]Barnes P N, Sumption M D, Rhoads G L. Review of high power density superconducting generators: Present state and prospects for incorporating YBCO windings. Cryogenics,2005,45(10-11): 670-686.
    [9]Jedamzik D, Menolascino R, Pizarroso M et al. Evaluation of HTS sub-systems for cellular basestations. IEEE Transactions on Applied Superconductivity,1999,9(2 Ⅲ):4022-4025.
    [10]Marechal C, Lacaze E, Seiler W et al. Growth mechanisms of laser deposited BiSrCaCuO films on MgO substrates. Physica C:Superconductivity,1998,294(1-2):23-32.
    [11]Du J, Gnanarajan S, Bendavid A. Influence of MgO surface conditions on the in-plane crystal orientation and critical current density of epitaxial YBCO films. Physica C:Superconductivity,2004, 400(3-4):143-152.
    [12]谢延明,陶伯万,熊杰等.MgO和STO基片上制备YBCO高温超导薄膜生长研究.微纳电子技术,2005,42(3):115-118.
    [13]符春林,杨传仁,陈宏伟.钛酸锶钡(BST)薄膜的组成、结构与性能研究进展.真空科学与技术学报,2003,23(04).
    [14]Delage T, Champeaux C, Catherinot A et al. High-K BST films deposited on MgO by PLD with and without buffer-layer. Thin Solid Films,2004,453-454:279-284.
    [15]Wakiya N, Azuma T, Shinozaki K et al. Low-temperature epitaxial growth of conductive LaNiO3 thin films by RF magnetron sputtering. Thin Solid Films,2002,410(1-2):114-120.
    [16]Kang Y M, Bae S C, Ku J K et al. Preparation of epitaxial PbTiO3 thin films by pulsed laser deposition. Thin Solid Films,1998,312(1-2):40-45.
    [17]Le Rhun G, Poullain G, Bouregba R et al. Fatigue properties of oriented PZT ferroelectric thin films. Journal of the European Ceramic Society,2005,25(12):2281-2284.
    [18]Duclere J R, Guilloux-Viry M, Perrin A et al. Composition control of SBN thin films deposited by PLD on various substrates. International Journal of Inorganic Materials,2001,3(8):1133-1135.
    [19]Schober T. Applications of oxidic high-temperature proton conductors. Solid State Ionics,2003, 162-163:277-281.
    [20]Beckers L, Sanchez F, Schubert J et al. Epitaxial growth of Y-doped SrZrO3 films on MgO by pulsed laser deposition. Journal of Applied Physics,1996,79(6):3337-3339.
    [21]Huck H, Ehrhart P, Schilling W. High temperature optical absorption spectroscopy at pure and Y-doped BaCeO3. Journal of the European Ceramic Society,1999,19(6-7):939-944.
    [22]Nozaki H, Onoda M, Kurashima K et al. Epitaxial growth of Ag2S film on cleaved surface of MgO(001). Journal of Solid State Chemistry,2001,157(1):86-93.
    [23]Yang J, Amatatsu Y, Hashimoto M et al. Initial growth structure of Ni0.30Fe0.70 films dc-biased plasma-sputter-deposited on MgO(001), MgO(110), MgO(111) and on MgO(001) covered with Fe or permalloy. Thin Solid Films,2000,371(1-2):47-52.
    [24]Qiu H, Hashimoto M. Initial growth characteristic of Ni-Cu films deposited on MgO(001) by DC-biased plasma sputtering. Vacuum,2000,59(2-3):411-416.
    [25]Shima T, Seki T, Takanashi K et al. Fabrication of L10 ordered FePt thin films with a canted easy magnetization axis on MgO (110) substrate. Journal of Magnetism and Magnetic Materials,2004, 272-276(SUPPL.1):e557-e559.
    [26]Selim M S. Preparation of oriented CoO(001) films on MgO(001) by sol-gel two-steps method. Journal of Crystal Growth,2004,265(1-2):115-120.
    [27]Lu P, He S, Li F X et al. Epitaxial growth of RuO2 thin films by metal-organic chemical vapor deposition. Thin Solid Films,1999,340(1-2):140-144.
    [28]Brazdeikis A, Karlsson U O, Flodstrom A S. Atomic force microscopy study of thin copper oxide films grown by molecular beam epitaxy on MgO(100). Thin Solid Films,1996,281-282(1-2):57-59.
    [29]Okubo S, Shibata N, Saito T et al. Formation of cubic-AIN layer on MgO(100) substrate. Journal of Crystal Growth,1998,189-190:452-456.
    [30]Bronzino J D. The Biomedical Engineering Handbook:Medical Devices and Systems. Boca Raton: CRC press,2006.
    [31]黄德群,单振国,干福熹.新型光学材料.北京:科学出版社,1991.
    [32]应根裕,胡文波,邱勇等.平板显示技术.北京:人民邮电出版社,2002.
    [33]Webster J G. Electrical measurement, signal processing, and displays. Boca Raton:CRC press,2004.
    [34]Mitchell E E, Gnanarajan S, Green K L et al. The effect of MgO substrate roughness on YBa2Cu307-δ thin film properties. Thin Solid Films,2003,437(1-2):101-107.
    [35]Chin C C, Morishita T, Sugimoto T. The influence of the surface roughness of the substrates on the surface morphology of YBa2Cu307-x thin films. Journal of Crystal Growth,1993,132(1-2):82-90.
    [36]Kim B I, Hong J W, Jeong G T et al. Effect of Mg(OH)2 onYBa2Cu3O7 thin film on MgO substrate studied by atomic force microscope. The Journal of Vacuum Science and Technology B,1994,12(3): 1631-1634.
    [37]Kim S, Baik S. Effects of surface structures of MgO(100) single crystal substrates on ferroelectric PbTiO3 thin films grown by radio frequency sputtering. Journal of Vacuum Science and Technology A:Vacuum, Surfaces and Films,1995,13(1):95-100.
    [38]Dammak N, Trigui F, Temga T et al. Study of charging phenomena in MgO single crystal:effect of polishing, annealing temperature and crystallographic orientation. Journal of the European Ceramic Society,2002,22(7):1149-1154.
    [39]Harada T, Ohkoshi H. Influence of MgO(100) substrate surfaces on epitaxial growth of Ti films. Journal of Crystal Growth,1997,173(1-2):109-116.
    [40]Abriou D, Jupille J. Self-inhibition of water dissociation on magnesium oxide surfaces. Surface Science,1999,430(1-3):L527-L532.
    [41]Engkvist O, Stone A J. Adsorption of water on the MgO(001) surface. Surface Science,1999,437(1): 239-248.
    [42]石德珂.材料科学基础.北京:机械工业出版社,1999.
    [43]张银霞.单晶硅片超精密磨削加工表面层损伤的研究:(博士学位论文).大连:大连理工大学,2006
    [44]张文勇,陈亚雄.磨削残余应力与磨削裂纹.郑州纺织工学院学报,1995,6(1):26-32.
    [45]Yonezu A, Xu B, Chen X. Indentation induced lateral crack in ceramics with surface hardening. Materials Science and Engineering A,2009,507(1-2):226-235.
    [46]Caceres D, Vergara I, Gonzalez R et al. Nanoindentation on MgO crystals implanted with lithium ions. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2002,191(1-4):154-157.
    [47]Feng G, Nix W D. Indentation size effect in MgO. Scripta Materialia,2004,51(6):599-603.
    [48]Boyarskaya Y S, Grabko D Z, Medinskaya M I et al. Anisotropy of microhardness on the (001) plane of ionic crystals such as NaCl. Journal of Materials Science,1990,25(10):4405-4409.
    [49]Tromas C, Girard J C, Audurier V et al. Study of the low stress plasticity in single-crystal MgO by nanoindentation and atomic force microscopy. Journal of Materials Science,1999,34(21): 5337-5342.
    [50]Tromas C, Colin J, Coupeau C et al. Pop-in phenomenon during nanoindentation in MgO. European Physical Journal-Applied Physics,1999,8(2):123-128.
    [51]Tromas C, Girard J C, Woirgard J. Study by atomic force microscopy of elementary deformation mechanisms involved in low load indentations in MgO crystals. Philosophical Magazine A:Physics of Condensed Matter, Structure, Defects and Mechanical Properties,2000,80(10):2325-2335.
    [52]Gaillard Y, Tromas C, Woirgard J. Study of the dislocation structure involved in a nanoindentation test by atomic force microscopy and controlled chemical etching. Acta Materialia,2003,51(4): 1059-1065.
    [53]Gaillard Y, Tromas C, Woirgard J. Quantitative analysis of dislocation pile-ups nucleated during nanoindentation in MgO. Acta Materialia,2006,54(5):1409-1417.
    [54]Fischer-Cripps A C. A simple phenomenological approach to nanoindentation creep. Materials Science and Engineering A,2004,385(1-2):74-82.
    [55]Ruano O A, Wolfenstine J, Wadsworth J et al. Harper-Dorn and Power-Law Creep in Single-Crystalline Magnesium Oxide. Journal of American Ceramic Society,1992,75(7): 1737-1741.
    [56]Mariani E, Mecklenburgh J, Wheeler J et al. Microstructure evolution and recrystallization during creep of MgO single crystals. Acta Materialia,2009,57:1886-1898.
    [57]陈吉,汪伟,卢磊等.纳米压痕法测量Cu的室温蠕变速率敏感指数.金属学报,2001,37(11):1179-1183.
    [58]张建民,徐可为.纳米压痕法测量Cu的室温蠕变速率敏感指数.物理学报,2004,53(8):2439-2443.
    [59]Mayo M J, Nix W D. A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metallurgica, 1988,36(8):2183-2192.
    [60]Mayo M J, Siegel R W, Narayanasamy A et al. Mechanical properties of nanophase TiO2 as determined by nanoindentation. Journal of Materials Research,1990,5(5):1073-1082.
    [61]Mayo M J, Siegel R W, Liao Y X et al. Nanoindentation of nanocrystalline ZnO. Journal of Materials Research,1992,7(4):973-979.
    [62]Raman V, Berriche R. Investigation of the creep processes in tin and aluminum using a depth-sensing indentation technique. Journal of Materials Research,1992,7(3):627-638.
    [63]Li H, Ngan A H W. Size effects of nanoindentation creep. Journal of Materials Research,2004,19(2): 513-522.
    [64]Sangwal K, Gorostiza P, Sanz F. In situ study of the recovery of nanoindentation deformation of the (100) face of MgO crystals by atomic force microscopy. Surface Science,1999,442(2):161-178.
    [65]Sangwal K, Gorostiza P, Sanz F. Atomic force microscopy study of nanoindentation creep on the (100) face of MgO single crystals. Surface Science,2000,446(3):314-322.
    [66]Ren X J, Hooper R M, Griffiths C et al. The effect of indenter heating on indentation creep testing of MgO. Journal of Materials Science Letters,2001,20(19):1819-1821.
    [67]Boyarskaya Y S, Grabko D Z, Kats M S. Regularities of MgO single-crystal failure in microindentation. Journal of Materials Science,1990,25(8):3611-3614.
    [68]Chaudhri M M, Enomoto Y. In situ observations of indentation damage in single crystals of MgO. Wear,1999,233-235:717-726.
    [69]Chaudhri M M, Sands H S. Photoluminescence from indented MgO crystals using a near ultraviolet/visible Raman microscope. Journal of Applied Physics,1997,82(2):785-791.
    [70]Kamimura T, Akamatsu S, Yamamoto M et al. Enhancement of surface-damage resistance by removing a subsurface damage in fused silica.35th Annual Boulder Damage Symposium Proceedings:Laser-Induced Damage in Optical Materials 2003, Boulder, CO, United states, Proceedings of SPIE-The International Society for Optical Engineering,2004,5273:244-249.
    [71]Chaudhri M M. Enhanced cathodoluminescence from nano-indentations in MgO. Philosophical Magazine Letters,1998,77:7-16.
    [72]Sugita T, Hasegawa T. Wear damage of MgO single crystals. Journal of Materials Science,1978,13: 1471-1479.
    [73]Enomoto Y. Deformation by scratches and frictional properties of MgO crystals. Wear,1983,89: 19-28.
    [74]Kim J-D, Lee E-S. Surface characteristics on the ductile mode grinding of MgO single crystal with optimum in-process electrolytic dressing system. International Journal of Machine Tools and Manufacture,1998,38(1-2):97-111.
    [75]Kim J-D, Lee E-S. A study on the mirror-like grinding of MgO single crystal with various diamond wheels. Journal of Materials Processing Technology,1997,72:1-10.
    [76]Huang H, Winchester K, Liu Y et al. Determination of mechanical properties of PECVD silicon nitride thin films for tunable MEMS Fabry-Perot optical filters. Journal of Micromechanics and Microengineering,2005,15(3):608-614.
    [77]Huang H, Winchester K J, Suvorova A et al. Effect of deposition conditions on mechanical properties of low-temperature PECVD silicon nitride films. Materials Science and Engineering A,2006, 435-436:453-459.
    [78]Huang H, Wu Y Q, Wang S L et al. Mechanical Properties of Single Crystal Tungsten Microwhiskers Characterized by Nanoindentation. Materials Science and Engineering A,2009, 523(1-2):193-198.
    [79]Oliver W C, Pharr G M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research,1992,7(6): 1564-1583.
    [80]Yeon-Gil J, Lawn B R, Martyniuk M et al. Evaluation of elastic modulus and hardness of thin films by nanoindentation. Journal of Materials Research,2004,19(10):3076-3080.
    [81]Powles R C, McKenzie D R, Meure S J et al. Nanoindentation response of PEEK modified by mesh-assisted plasma immersion ion implantation. Surface and Coatings Technology,2007,201(18): 7961-7969.
    [82]Wang K, Kang R K, Jin Z J et al. An experimental study of the polishing process for MgO single crystal substrate. Key Engineering Materials,2007,329:225-230.
    [83]Jang B-K. Influence of low indentation load on Young's modulus and hardness of 4 mol% Y2O3-ZrO2 by nanoindentation. Journal of Alloys and Compounds,2006,426(1-2):312-315.
    [84]Te-Hua F, Win-Jin C, Chao-Ming L. Nanoindentation and nanoscratch characteristics of Si and GaAs. Microelectronic Engineering,2005,77(3-4):389-398.
    [85]He L-H, Standard O C, Huang T T Y et al. Mechanical behaviour of porous hydroxyapatite. Acta Biomaterialia,2008,4(3):577-586.
    [86]Suzuki K, Benino Y, Fujiwara T et al. Densification energy during nanoindentation of silica glass. Journal of the American Ceramic Society,2002,85(12):3102-3104.
    [87]Twigg P C, Riley F L, Roberts S G. Nanoindentation investigation of micro-fracture wear mechanisms in polycrystalline alumina. Journal of Materials Science,2002,37(4):845-853.
    [88]Wang K, Chen M W, Pan D et al. Plastic deformation energy of bulk metallic glasses. Materials Science and Engineering B,2008,148(1-3):101-104.
    [89]Shibutani Y, Tsuru T, Koyama A. Nanoplastic deformation of nanoindentation:Crystallographic dependence of displacement bursts. Acta Materialia,2007,55(5):1813-1822.
    [90]Chang L, Zhang L, Mechanical behaviour characterisation of silicon and effect of loading rate on pop-in:A nanoindentation study under ultra-low loads. Materials Science and Engineering A,2009, 506(1-2):125-129.
    [91]Le Bourhis E, Patriarche G. Structure of nanoindentations in heavily n- and p-doped (001) GaAs. Acta Materialia,2008,56(7):1417-1426.
    [92]Navamathavan R, Park S-J, Hahn J-H et al. Nanoindentation 'pop-in' phenomenon in epitaxial ZnO thin films on sapphire substrates. Materials Characterization,2008,59(4):359-364.
    [93]Gouldstone A, Koh H J, Zeng K Y et al. Discrete and continuous deformation during nanoindentation of thin films. Acta Materialia,2000,48(9):2277-2295.
    [94]Schall P, Cohen I, Weitz D A et al. Visualizing dislocation nucleation by indenting colloidal crystals. Nature,2006,440(7082):319-323.
    [95]Bei H, George E P, Hay J L et al. Influence of indenter tip geometry on elastic deformation during nanoindentation. Physical Review Letters,2005,95(4):1-4.
    [96]Chen W, Li M, Zhang T et al. Influence of indenter tip roundness on hardness behavior in nanoindentation. Materials Science and Engineering A,2007,445-446:323-327.
    [97]Tymiak N I, Daugela A, Wyrobek T J et al. Acoustic emission monitoring of the earliest stages of contact-induced plasticity in sapphire. Acta Materialia,2004,52(3):553-563.
    [98]Tymiak N I, Daugela A, Wyrobrek T J et al. Highly localized acoustic emission monitoring of nanoscale indentation contacts. Journal of Materials Research,2003,18(4):784-796.
    [99]Bahr D F, Gerberich W W. Relationships between acoustic emission signals and physical phenomena during indentation. Journal of Materials Research,1998,13(4):1065-1074.
    [100]Tromas C, Gaillard Y, Woirgard J. Nucleation of dislocations during nanoindentation in MgO. Philosophical Magazine,2006,86(33-35):5595-5606.
    [101]Johnson K L. Contact mechanics. Cambridge:Cambridge University Press,1985.
    [102]Bei H, Lu Z P, George E P. Theoretical strength and the onset of plasticity in bulk metallic glasses investigated by nanoindentation with a spherical indenter. Physical Review Letters,2004,93:4.
    [103]Fischer-Cripps A C. Mechanical Engineering:Introduction to Contact mechanics, Second Edition. New York:Springer,2007.
    [104]Lawn B R, Wilshaw T R, Hartley N E W. A computer simulation study of Hertzian cone crack growth. International journal of Fracture,1974,10(1):1-16.
    [105]Yan J, Karlsson A M, Chen X. On internal cone cracks induced by conical indentation in brittle materials. Engineering Fracture Mechanics,2007,74(16):2535-2546.
    [106]Daugela A, Kutomi H, Wyrobek T J. Nanoindentation induced acoustic emission monitoring of native oxide fracture and phase transformations. Materials Research and Advanced Techniques,2001, 92(9):1052-1056.
    [107]Von Stebut J, Lapostolle F, Bucsa M et al. Acoustic emission monitoring of single cracking events and associated damage mechanism analysis in indentation and scratch testing. Surface and Coatings Technology,1999,116:160-171.
    [108]Tymiak N I, Daugela A, Wyrobek T J et al. Acoustic emission monitoring of nanoindentation-induced slip and twinning in sapphire, Boston, MA, United states, Materials Research Society Symposium-Proceedings,2002,750:149-154.
    [109]Leipner H S, Lorenz D, Zeckzer A et al. Nanoindentation pop-in effect in semiconductors. Physica B: Condensed Matter,2001,308-310:446-449.
    [110]J. P. Hirth, Lothe J. Theory of dislocations. New York:Wiley,1982.
    [111]Weber M J. The CRC Press laser and optical science and technology series:Handbook of optical materials. Boca Raton:CRC press,2003.
    [112]Bhakhri V, Klassen R J. The depth dependence of the indentation creep of polycrystalline gold at 300 K. Scripta Materialia,2006,55(4):395-398.
    [113]Goodall R, Clyne T W. A critical appraisal of the extraction of creep parameters from nanoindentation data obtained at room temperature. Acta Materialia,2006,54(20):5489-5499.
    [114]Chang S-Y, Lee Y-S, Chang T-K. Nanomechanical response and creep behavior of electroless deposited copper films under nanoindentation test. Materials Science and Engineering A,2006, 423(1-2):52-56.
    [115]Fischer-Cripps A C. Nanoindentation. New York:Springer-Verlag,2002.
    [116]Giannakopoulos A E, Suresh S. Determination of elastoplastic properties by instrumented sharp indentation. Scripta Materialia,1999,40(10):1191-1198.
    [117]Kassner M E, Perez-Prado M-T. Five-power-law creep in single phase metals and alloys. Progess in Materials Science,2000,45:1-102.
    [118]Liu Y, Lin I K, Zhang X. Mechanical properties of sputtered silicon oxynitride films by nanoindentation. Materials Science and Engineering A,2008,489(1-2):294-301.
    [119]Gao Y, Wen S, Pan F. Creep rate sensitivities of materials by a depth-sensing indentation technique. Journal of University of Science and Technology Beijing:Mineral Metallurgy Materials (Eng Ed), 2006,13(4):308-312.
    [120]Bhakhri V, Klassen R J. Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part Ⅱ:The deformation of Al-based participate reinforced composites at 473 K to 833 K. Journal of Materials Science,2006,41(8):2249-2258.
    [121]Bhakhri V, Klassen R J. Investigation of high-temperature plastic deformation using instrumented microindentation tests. Part I:the deformation of three aluminum alloys at 473 K to 833 K. Journal of Materials Science,2006,41(8):2259-2270.
    [122]Wang F, Huang P, Xu K. Strain rate sensitivity of nanoindentation creep in polycrystalline Al film on Silicon substrate. Surface and Coatings Technology,2007,201(9-11):5216-5218.
    [123]Feng G, Ngan A H W. Creep and strain burst in indium and aluminium during nanoindentation. Scripta Materialia,2001,45(8):971-976.
    [124]Khasgiwale N, Chan H M. High-temperature indentation studies on the{110} plane of single-crystal magnesium oxide. Journal of the American Ceramic Society,1992,75(6):1924-1928.
    [125]王岚,吕佳诚,周志洁等.用硼泥制备大尺寸氧化镁单晶及其性能研究.硅酸盐通报,2002,6:80-82.
    [126]Chaudhri M M. DISPLACEMENT OF MATERIAL AND THE FORMATION OF{110}90 CRACKS AROUND SPHERICAL INDENTATIONS IN MgO CRYSTALS. Philosophical Magazine A:Physics of Condensed Matter, Structure, Defects and Mechanical Properties 1986, 53(4):155-163.
    [127]Agarwal S, Rao P V. Experimental investigation of surface/subsurface damage formation and material removal mechanisms in SiC grinding. International Journal of Machine Tools and Manufacture,2008,48(6):698-710.
    [128]Fine K R, Garbe R, Gip T et al. Non-destructive, real time direct measurement of subsurface damage, Orlando, FL, United states, Proceedings of SPIE-The International Society for Optical Engineering, 2005,5799:105-110.
    [129]Li S, Wang Z, Wu Y. Relationship between subsurface damage and surface roughness of optical materials in grinding and lapping processes. Journal of Materials Processing Technology,2008, 205(1-3):34-41.
    [130]Li S-Y, Wang Z, Wu Y-L. Relationship between subsurface damage and surface roughness of ground optical materials. Journal of Central South University of Technology (English Edition),2007,14(4): 546-551.
    [131]Miller P E, Suratwala T I, Wong L L et al. The distribution of subsurface damage in fused silica, Boulder, CO, United states, Proceedings of SPIE-The International Society for Optical Engineering, 2005,5991:01-25.
    [132]Yang F. Effect of subsurface damage on indentation behavior of ground ULE glass. Journal of Non-Crystalline Solids,2005,351(52-54):3861-3865.
    [133]Zhang J M, Sun J G. Quantitative assessment of subsurface damage depth in silicon wafers based on optical transmission properties. International Journal of Manufacturing Technology and Management, 2005,7(5-6):540-553.
    [134]Zhang W, Zhu J. Determination of subsurface damage in Nd-doped phosphate glasses, Chengdu, China, Proceedings of SPIE-The International Society for Optical Engineering,2007,6723: 672311-672315.
    [135]Loubet J L, Georges J M, Marchesini O et al. VICKERS INDENTATION CURVES OF MAGNESIUM OXIDE (MgO). Journal of Tribology, Transactions of the ASME,1984,106:43-48.
    [136]Pei Z J, Billingsley S R, Miura S. Grinding induced subsurface cracks in silicon wafers. International Journal of Machine Tools and Manufacture,1999,39(7):1103-1116.
    [137]Khasgiwale N, Chan H M. Indentation induced crack nucleation and propagation in single crystal MgO. Acta Metallurgica et Materialia,1995,43(1):207-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700