大鼠轴型皮瓣及其放射性损伤的低能量冲击波治疗的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
皮瓣手术是整形外科或创伤外科常见修复方法,但由于受供血条件限制,其切取范围均有一定限制,超过这个范围,皮瓣的远端及边缘会因血运不足而发生坏死。鉴此,国内外很多学者探讨了各种改善超范围皮瓣成活的方法,如皮瓣延迟、注射VEGF或肾上腺素、扩张等方法,但存在周期长,费用高,患者有痛苦等缺点,疗效均不满意。将低能量冲击波治疗应用于皮瓣外科,可能为提高皮瓣血运,扩大应用范围,提供新的无创治疗手段。国外部分学者已通过动物实验初步证明低能量冲击波对动物的皮瓣活性有提高作用。但应用的能量及作用次数不甚相同。
     与以往不同冲击波能量的治疗是否同样对皮瓣具有提高活性作用,不同作用方式是否存在不同的效果,低能量冲击波是否对皮瓣的特殊损伤(如放射性损伤)亦有治疗作用,与细胞疗法的联合应用是否对皮瓣的放射性损伤有显著治疗作用,为探讨上述问题进行本论文研究,并为临床应用提供可靠的实验数据。
     本论文①拟通过大鼠背部的血管解剖学研究,为制备稳定的大鼠背部皮瓣模型提供可靠的解剖学数据,证明不同供血模式对皮瓣模型的影响;②拟通过大鼠背部轴型皮瓣模型,应用0.18mJ/mm~2单点冲击能量下,查看500次冲击治疗及250次分期(共500次)重复冲击治疗对模型皮瓣血运的影响;③拟通过放射照射后大鼠背部轴型皮瓣模型,应用单纯低能量冲击波治疗组、骨髓细胞混悬液注射组、对照组、骨髓细胞注射联合冲击波治疗组、PBS注射组等组间观察,探讨对皮瓣放射性损伤冲击波治疗可行性及合理的作用方式。
     通过大鼠轴型皮瓣及其放射性损伤的低能量冲击波治疗的系列研究可得出①只有具有良好的供血系统的轴型皮瓣,才能提供稳定的皮瓣模型;②0.18mJ/mm~2能量水平下应用冲击波治疗,对轴型皮瓣具有提高血运、促进成活的作用,但是小剂量多次冲击效果更加;③在本研究中单纯冲击波治疗及骨髓细胞注射治疗,对放射性损伤皮瓣模型,无明显促进作用;④骨髓细胞注射联合冲击波治疗可有效地控制皮瓣缺血状态的恶化。
     本研究的创新点:①首次对大鼠背部血管网进行系统解剖,为大鼠背部皮瓣模型制备提供解剖学数据,通过实验证明规范化模型建立的重要性;②首次证明0.18mJ/mm~2能量冲击波治疗具有提高皮瓣成活率作用,并且小剂量重复冲击治疗,优于单次大剂量冲击治疗,国内外未见发表;③首次进行放射性损伤皮瓣模型的低能量冲击波治疗研究,并证明细胞治疗联合冲击波治疗皮瓣的放射性损伤有效,单纯应用细胞疗法及冲击波治疗效果欠佳,国内外未见发表。
Skin flap as soft restored, color close to the affected area, suitable for repairing a variety of different soft tissue defects. However, flap also variation due to vascular flap was too large, vascular spasm, thrombosis, infection, ischemia reperfusion injury, resulting in inadequate distal blood perfusion and ischemic necrosis. The flap ischemia, often with physical warmth, vasodilator drugs, anticoagulant drugs to reduce ischemia-reperfusion injury drugs can increase the amount of flap tissue perfusion, but also can be applied to the growth of all involved in angiogenesis factors such as vascular endothelial growth factor (VEGF), transforming growth factor (TGF) preoperative or postoperative stimulation of angiogenesis, thus improving skin flap ischemia. At the same time flap delay, expansion, pre-ischemic treatment after surgical methods can reduce the risk of flap necrosis and flap harvested area expansion. But the surgical approach and second surgery, to increase economic and psychological burden of patients; cell factor as high cost, short half-life after entering the body, various types of recombinant cell growth factor long-term effects on the human body is also limited understanding of the reasons for lack of clinical promote the application. Drug Application by the large number of systemic side effects can not be ignored. So there has to be economical and effective, it means fewer side effects to the treatment of ischemic skin flap. Extracorporeal shock wave therapy (ESWT) has been 20 years, but in orthopedic surgery and trauma treatment is relatively new method, because of its good effect to promote angiogenesis, has been used nonunion, bone necrosis, bone tendon muscular system parts and other non-invasive treatment. Recent studies show that extracorporeal shock wave therapy to promote angiogenesis and increase perfusion of ischemic tissue, reduce inflammation, increase cell differentiation and promote wound repair. Some scholars reported that extracorporeal shock wave therapy can improve the flap survival rate. Extracorporeal shock wave therapy for avoiding surgery, safe, effective and reliable than open surgery prices more reasonable application of non-invasive treatment of ischemic flap changes to resolve possible, but the best energy extracorporeal shock wave treatment of choice, the right impact frequency, and the different treatment of ischemic tissue and biological changes, etc., need further study.
     In this paper, to be adopted①anatomical study of the blood vessels in rats back, in order to stabilize the back flap in rat model of preparation, to provide a reliable anatomical data to prove that the different blood supply skin flap preparation, the impact of the flap model;②to be adopted by the back flap in rat model, the application 0.18mj/mm2 single-point impact energy, the view 500 pulses and 250 pulses the impact of treatment of stage (a total of 500 pulses) the impact of treatment on the model of the impact of skin flap blood supply;③to be adopted by large rats after irradiation, radiation back flap model, applied a simple low-energy shock wave therapy group, bone marrow cell suspension injection group, simple flap model group, bone marrow cell injection of shock wave therapy group, PBS injection group, such as observed between the two groups to explore the shock wave therapy on radiation injury of skin flap viability and a reasonable mode of action.
     In this paper, back through the vascular network in rat①anatomical study found that there is four groups of rat back skin-vessel network structure, and four groups on both sides of the formation of vascular network in the back of a wide range of vascular anastomosis, in which thoracic lateral cutaneous branch and the circumflex iliac artery deep artery perforating branches to form a vascular network stability, and can be used as rat back flap of the blood vessels. In rats of three different groups back 2.5cmX10cm blood pattern flap model comparisons without a network of arteries and the off-axis bit random flap artery network model of the survival rate of less than 50%, but the back and chest side-branch artery skin flap can reach the survival rate of more than 82.70%;②rat back flap of the shock wave therapy was found 0.18mJ/mm2 single point of shock wave therapy in 500 pulses and 250 pulses the impact of the number of stages shock therapy to improve flap survival area were the role of general observation of the treatment is better than the survival rate of 250 pulses 500 pulses the impact of phased treatment, translucent observation 250 pulses the impact of the treatment group capillary density was significantly better than 500 pulses the impact of the treatment group, and there statistical significance;③flap model for radiation injury in the shock wave therapy found that the survival rate of the general observations of bone marrow cells were injected flap combined effect of shock wave therapy group the highest, followed by a simple flap after radiation injury, bone marrow cells were injected group and a simple shock wave therapy Group flap necrosis evident. HE staining under light microscope observation found in bone marrow cells combined with shock wave therapy group of skin layers of tissue damage is relatively small structure to save the most complete, other groups necrosis apparent structural disorder. VEGF immunohistochemical staining positive specimens observed the highest rate of combined therapy group.
     Through the axial pattern skin flap in rats and their radiation damage to low-energy shock wave therapy can be drawn from a series of studies①only has a good blood supply system, axial flap, the flap can provide a stable model;②The experimental application of shock wave therapy , have a therapeutic effect of axial pattern skin flap, but the impact was more low-dose repeated;③In this study, a simple shock wave therapy and bone marrow cells injection in the treatment of radiation injury in flap model, non-catalytic role;④bone marrow cell injection combined with shock wave treatment can effectively control the state of deterioration of skin flap.
     The innovation of this study:①the first time on the dorsal vascular network of the system anatomy, for the preparation of rat dorsal skin flap model to provide anatomical data, the experiment proved the importance of standardized model;②the first demonstration of 0.18mJ/mm2 energy shock wave therapy has increased the role of flap survival, and repeated small doses of pulse therapy, is better than a single large dose of shock therapy, no published abroad;③first flap model for radiation injury in low-energy shock wave therapy, and that cell therapy combined with radiation injury flap shock wave therapy effective, simple application of cell therapy and shock wave therapy is ineffective, not been published at home and abroad.
引文
[1] MYUNGJUNE OH, HAK CHANG, KYUNG WON MINN,The Effects of Tadalafil on axial-Pattern Skin Flap Survival in Rats, Dermatol Surg 2008, 34:626–630.
    [2] Li Z, Xi X, Gu M, et al. A stimulatory role for cGMP-dependent protein kinase in platelet activation. Cell 2003,112:77–86.
    [3] Bischoff E. Potency, selectivity, and consequences of nonselectivity of PDE inhibition. Int J Impot Res 2004, 16(Suppl 1):S11–4.
    [4] Kloner RA. Cardiovascular effects of the 3 phosphodiesterase-5 inhibitors approved for the treatment of erectile dysfunction. Circulation 2004, 110:3149–55.
    [5] AVSHALOM SHALOM, TAL FRIEDMAN, MELVYN WESTREICH, Effect of Aspirin and Heparin on Random Skin Flap Survival in Rats,Dermatol Surg 2008, 34:785–790
    [6] Atilla Ersoy, Kutlu Sevin , Asuman Sevin,et.al. Effects of clopidogrel on survival of rat skin flaps, Journal of Plastic, Reconstructive & Aesthetic Surgery 2007, 60:861-863.
    [7] Georg M. Huemer, Gottfried Wechselberger, Angela Otto-Schoeller, etal. Improved Dorsal Random-Pattern Skin Flap Survival in Rats with a Topically Applied Combination of Nonivamide and Nicoboxil, PLASTIC AND RECONSTRUCTIVE SURGERY, 2003, 111(3):1207-1211.
    [8] Oscar K. Hsu, Essam Gabr, Earl Steward, B.S, et al. Pharmacologic enhancement of Rat Skin Flap Survival with Topical Oleic Acid, PLASTIC AND RECONST- RUCTIVE SURGERY, 2004, 113(7):2048-2054.
    [9] Goodnough LT, Rudnick S, Price TH, et al. Increased preoperative collection of autologous blood with recombinant human erythropoietin therapy. N Engl J Med 1989, 321:1163–1168.
    [10] Aydin Saray, MD, Rifat Ozakpinar, MD, Can Koc, MD, Savas Serel, MD, Zeynep Sen, MD, Zeki Can, MD. Effect of Chronic and Short-Term Erythropoietin Treatment on Random Flap Survival in Rats: An Experimental Study, Laryngoscope 2003(113):85-89.
    [11]李明,贾堂宏,龚维明,杜红霞,刘淑恒,郭舒亚,张庆国,陶世强.重组人促红细胞生成素联合高压氧对移植大鼠背部逆行超长缺血皮瓣存活率的影响[J].中国组织工程研究与临床康复, 2009, 13(15):2845-2848.
    [12] Holzbach T, Taskov C, Henke J, et al. Evaluation of perfusion in skin flaps by laser-induced indocyanine green fluorescence. Handchir Mikrochir Plast Chir 2005, 37:396-402.
    [13] Daniel RK, Kerrigan CL. Principles and physiology of skin flap surgery. In: McCarthy JG, editor. Plastic surgery. Philadelphia: WB Saunders, 1990:275-328.
    [14] Huang W, Foster JA, Rogachefsky AS. Pharmacology of botulinum toxin. J Am Acad Dermatol 2000, 43:249-59.
    [15] Taek Kyun Kim a, Eun Jung Oh b, Jae Young Chung, et al. The effects of botulinum toxin A on the survival of a random cutaneous flap. Journal of Plastic, Reconstructive & Aesthetic Surgery (2009)62:906-913.
    [16]苗卫华,梁杰,罗少军,等.皮瓣组织修复中血管内皮生长因子的应用.中国临床康复, 2004, 8(5):932-933.
    [17]柳晖,李新强,陈武鹏,等. VEGF转染VEC促进移植皮瓣血管化的实验研究.现代医院, 2009, 9(1):17-19.
    [18] Rehman, J., Traktuev, D., Li, J., et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109: 1292, 2004.
    [19] Zuk, P. A., Zhu, M., Ashjian, P., et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13: 4279, 2002.
    [20] Ogawa, R. The importance of adipose-derived stem cells and vascularized tissue regeneration in the field of tissue transplantation. Curr. Stem Cell Res. Ther. 1: 13, 2006.
    [21] Rehman, J., Traktuev, D., Li, J., et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells.Circulation 109: 52, 2004.
    [22] Asahara, T., Masuda, H., Takahashi, T., et al. Bone marrow origin of endothelial progenitor cells responsible for postnatal vasculogenesis in physiological andpathological neovascularization. Circ. Res. 85: 221, 1999.
    [23] Zuk, P. A., Zhu, M., Mizuno, H., et al. Multilineage cells from human adipose tissue: Implications for cell-based therapies. Tissue Eng. 7: 211, 2001.
    [24] Mizuno, H., Zuk, P. A., Zhu, M., Lorenz, H. P., Benhaim, P.,and Hedrick, M. H. Myogenic differentiation by human processed lipoaspirate cells. Plast. Reconstr. Surg. 109: 199, 2002.
    [25] Zuk, P. A., Zhu, M., Ashjian, P., et al. Human adipose tissue is a source of multipotent stem cells. Mol. Biol. Cell. 13: 4279,2002.
    [26] De Ugarte, D. A., Alfonso, Z., Zuk, P. A., et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol. Lett. 31: 267, 2003.
    [27] De Ugarte, D. A., Morizono, K., Elbarbary, A., et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 174: 101, 2003.
    [28] Planat-Benard, V., Silvestre, J. S., Cousin, B., et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 109: 656, 2004.
    [29] Rehman, J., Traktuev, D., Li, J., et al. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 109: 1292, 2004.
    [30] Tepper, O. M., Galiano, R. D., Kalka, C., and Gurtner, G. C. Endothelial progenitor cells: The promise of vascular stem cells for plastic surgery. Plast. Reconstr. Surg. 111: 846, 2003.
    [31] Feng Lu, Hiroshi Mizuno, Cagri A. Uysal,etImproved Viability of Random Pattern Skin Flaps through the Use of Adipose-Derived Stem Cells,Plastic and Reconstructive Surgery, 2008, 121(1):50-58.
    [32]王辉,王岭,李开宗,等.外周血内皮祖细胞改善肢体缺血的研究.第四军医大学学报, 2006, 27(14):1276-1278.
    [33] Shigeru Ichioka, Satoshi Kudo, Masahiro Shibata,et al,Bone Marrow Cell Implantation Improves Flap Viability After Ischemia-Reperfusion Injury, Ann Plast Surg 2004, 52: 414–418.
    [34] Shigeru Ichioka, Sachio Kouraba, Naomoi Sekiya, et al. Bone marrow-impregnated collagen matrix for wound healing: experimental evaluation in a microcirculatory model of angiogenesis, and clinical experience, British Journal of Plastic Surgery 2005, 58:1124–1130.
    [35] Niina Y, Ikeda K, Iwa M, Sakita M. Effects of electroacupuncture and transcutaneous electrical nerve stimulation on survival of musculocutaneous flap in rats. Am J Chin Med 1997, 25:273–80.
    [36] Kjartansson J, Lundeberg T, Samuelson UE, Dalsgaard J.Transcutaneous electrical nerve stimulation (TENS) increases survival of ischemic musculocutaneous flaps. Acta Physiol Scand 1988, 134:95–9.
    [37] Reinish JF, Myers MB. Survival of experimental flaps pretreated with low-intensity direct current electrical delay. Surg Forum 1974, 25: 522–3.
    [38] Kjartansson J, Lundeberg T, Samuelson UE, Dalsgaard J, Hede'n P. Calcitonin gene-related peptide (CGRP) and transcutaneous electrical nerve stimulation (TENS) increase cutaneous blood flow in a musculocutaneous flap in the rat. Acta Physiol Scand 1988, 134: 89–94.
    [39] Im JM, Lee WPA, Hoopes JE. Effect of electrical stimulation on survival of skin flaps in pigs. Phys Ther 1990, 70: 37–40.
    [40] Kalra A, Urban MO, Sluka KA. Blockade of opioid receptors in rostral ventral medulla prevents antihyperalgesia produced by transcutaneous electrical nerve stimulation (TENS). J Pharmacol Exp Ther 2001, 298: 257–63.
    [41] Cosmo P, Svensson H, Bornmyr S, et al. Effects of transcutaneous nerve stimulation on the microcirculation in chronic leg ulcers [J]. Scand J Plast Reconstr Surg Hand Surg, 2000, 34(1):61-64.
    [42] Richard Eloin Liebano, Luiz Eduardo Felipe Abla, 1, Lydia Masako Ferreira, et al. Effect of low-frequency transcutaneous electrical nervestimulation (TENS) on the viability of ischemic skin flaps in the rat: An amplitude study, Wound Rep Reg (2008) 16:65–69.
    [43] Taskan I, Ozyazgan I, Tercan M, Kardas HY, Balkanli S, Saraymen R, et al. Acomparative study of the effect of ultrasound and electrostimulation on wound healing in rats. Plast Reconstr Surg 1997, 100(4):966–72.
    [44] Byl NN, McKenzie A, Wong T, West J, Hunt TK. Incisional wound healing: a controlled study of low and high dose ultrasound. J Orthop Sports Phys Ther 1993, 18(5):619–28.
    [45] Gostishchev VK, Baichorov EKh, Berchenko GN. Effect of low-frequency ultrasound on the course of the wound process. Vestn Khir Im I I Grek 1984, 133(10):110–3.
    [46] Shamberger RC, Talbot TL, Tipton HW, Thibault LE, Brennan MF. The effect of ultrasonics and thermal treatment on wounds. Plast Reconstr Surg 1981, 68(6):860–70.
    [47] Ilteris Murat Emsen. The effect of ultrasound on flap survival:An experimental study in rats.burns 2007(3 3):369–371.
    [48] Wang CJ. An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med J 2003, 26:220–32.
    [49] Chen YJ, Wang CJ, Yang KD, Kuo YR, Huang HC, Huang YT, Sun YC, Wang FS. Extracorporeal shock waves promote healing of collagenase-induced Achilles tendinitis and increase TGF-beta1 and IGF-I expression. J Orthop Res 2004, 22: 854–61.
    [50] Chen YJ, Wurtz T, Wang CJ, Kuo YR, Yang KD, Huang HC, Wang FS. Recruitment of mesenchymal stem cells and expression of TGF-beta 1 and VEGF in the early stage of shock wave-promoted bone regeneration of segmental defect in rats. J Orthop Res 2004, 22: 526–34.
    [51] Wang CJ, Huang HY, Pai CH. Shock wave-enhanced neovascularization at the tendon-bone junction: an experiment in dogs. J Foot Ankle Surg 2002, 41: 16–22.
    [52] Wang FS, Yang KD, Chen RF, Wang CJ, Sheen-Chen SM. Extracorporeal shock wave promotes growth and differentiation of bone-marrow stromal cells towards osteoprogenitors associated with induction of TGF-beta1. J Bone Joint SurgBr 2002, 84: 457–61.
    [53] Wang FS, Yang KD, Wang CJ, Huang HC, Chio CC, Hsu TY, Ou CY. Shockwave stimulates oxygen radical-mediated osteogenesis of the mesenchymal cells from human umbilical cord blood. J Bone Miner Res 2004, 19: 973–82.
    [54] Ikeda K, Tomita K, Takayama K. Application of extracorporeal shock wave on bone: preliminary report. J Trauma 1999, 47: 946–50.
    [55] Meirer R, Kamelger FS, Huemer GM, Wanner S, Piza- Katzer H. Extracorporal shock wave may enhance skin flap survival in an animal model. Br J Plast Surg 2005, 58: 53–7.
    [56] Kuo YR, Wu WS, Hsieh YL, Wang FS, Wang CT, Chiang YC, Wang CJ. Extraco- rporeal shock wave enhanced extended skin flap tissue survival via increase of topical blood perfusion and associated with suppression of tissue pro-inflammation.J Surg Res 2007, 143: 385–92.
    [57] Wang FS, Yang KD, Kuo YR, Wang CJ, Sheen-Chen SM, Huang HC, Chen YJ. Temporal and spatial expression of bone morphogenetic proteins in extracorporeal shock wave-promoted healing of segmental defect. Bone 2003, 32:387–96.
    [58] Granz P, Kohler D. What makes shock waves efficient in lithotripsy. J Stone Dis. 1992, 4:123-128
    [59] Schultheiss R. Basic Physical Principles of Shock Waves HMT High Medical Technologies, Kreuzlingen, Switzerland 1998.pp:10-23.
    [60] Wang CJ. An overview of shock wave therapy in musculoskeletal disorders. Chang Gung Med J 2003, 26:220–32.
    [61] Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS, Yang LC. Shock wave therapy induces neovascularization at thetendon–bone junction. A study in rabbits. J Orthop Res 2003, 21:984–9.
    [62] Park JK, Cui Y, Kim HJ, Oh HK, Koh GY, Cho KW. Activation ofnitric oxide-cyclic guanosine monophosphate signaling in kidney by extracorporeal shock wave therapy. J Urol 2003, 170:2459–62.
    [63] Park JK, Cui Y, Kim MK, Kim YG, Kim SH, Kim SZ, Cho KW. Effects of extracorporeal shock wave lithotripsy on plasma levels of nitric oxide and cyclic nucleotides in human subjects. J Urol2002, 168:38–42.
    [64] Wang CJ, Wang FS, Yang KD, Weng LH, Hsu CC, Huang CS,Yang LC. Shock wave therapy induces neovascularization at the tendon-bone junction: A study in rabbits. JOrthop Res 2003, 21(6):984–9.
    [65] Davis TA, Stojadinovic A, Amare K, Anam M, Naik s,Peoples GE, Tadaki D, Elster EA. Extracorporeal shock wave therapy suppresses the acute early proinflammatory immune response to a severe cutaneous burn injury. Int Wound J 2009, 6:11–21.
    [66] Rompe LD, Hope C, Kullmer K, Heine J, Burger R. Analgesic effect of extracorporeal shock-wave therapy on chronic tennis elbow. J Bone Joint Surg Br 1996, 78:233–7.
    [67] Schaden W, Thiele R, Ko¨lpl C, et al. Shock wave therapy for acute and chronic soft tissue wounds. A phase II trial. J Surg Res 2007, 137(2):246.
    [68] DeSanctis MT, Belcaro G, Nicolaides AN, Cesarone MR, Incandela L, Marlinghaus E, et al. Effects of shock waves on the microcirculation in critical limb ischemia (CLI) (8-week study). Angiology 2000, 51(8):S69–78.
    [69] Fukumoto Y, Ito A, Uwatoku T, Matoba T, Kishi T, Tanaka H, Takeshita A, et al. Extracorporeal cardiac shock wave therapy ameliorates myocardial ischemia in patients with severe coronary artery disease: Therapy and Prevention. Coron Artery Dis 2006, 17(1):63–70.
    [70] Sparsa A, Lesaux N, Kessler E, Bennetblanc JM, Nlaise S, Lebrun-Ly V, Colombeau P, Vidal E, Bedane C. Treatment of cutaneous calcinosis in CREST syndrome by extracorporeal shock wave lithotripsy. J Am Acad Dermatol 2005, 53: S262–5.
    [71] Gerdesmeyer L, von Eiff C, Horn C, Henne M, Roessner M, Diehl P, Gollwitzer H. Antibacterial effects of extracorporeal shock waves. Ultrasound Med Biol 2005,理31:115–9.
    [72] Meirer R, Huemer GM, Oehlbauer M, Wanner S, Piza-Katzer H, Kamelger FS. Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats. J Plast Reconstr Aesthet Surg 2007, 60:266–71.
    [73] GEORG M. HUEMER, ROMED MEIRER, RAFFI GURUNLUOGLU,et.al. Comparison of the effectiveness of gene therapy with transforming growth factor-b or extracorporal shock wave therapy to reduce ischemic necrosis in an epigastric skin flap model in rats, (WOUND REP REG 2005, 13(3):262–268
    [74] Yur-Ren Kuo, Chun-Ting Wang, Feng-Sheng Wang,et al. Extracorporeal shock wave treatment modulates skin fibroblast recruitment and leukocyte infiltration for enhancing extended skin-flap survival, Wound Rep Reg (2009) 17 :80–87.
    [75] Yur-Ren Kuo, Chun-Ting Wang, Feng-Sheng Wang,et al.Extracorporeal Shock Wave Enhanced Extended Skin Flap Tissue Survival via Increase of Topical Blood Perfusion and Associated with Suppression of Tissue Pro-Inflammation, Journal of Surgical Research (2007)143, 385–392
    [76] R. Meirer, F.S. Kamelger, G.M. Huemer,et al. Extracorporal shock wave may enhance skin flap survival in an animal model, The British Association of Plastic Surgeons (2005) 58, 53–57.
    [77] R. Meirer, G.M. Huemer, M. Oehlbauer,et al, Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats, Journal of Plastic, Reconstructive & Aesthetic Surgery (2007) 60, 266-271
    [78] McFarlane RM, DeYoung G, Henry RA: The design of a pedicle flap in the rat to study necrosis and its prevention. Plast Reconstr Surg 1965, 35: 177-182.
    [79] Yang D, Morris SF: An extended dorsal island skin flap with multiple vascular territories in the rat: A new skin flap model. J Surg Res 1999, 87: 164-170.
    [80] Syed SA, Restifo RJ: An economical axial-pattern flap necrosis model. Plast Reconstr Surg 1997, 99: 263-264.
    [81] Syed SA, Tasaki Y, Fujii T, Hirano A, Kobayashi K: A new experimental model: The vascular pedicle cutaneous flap over the dorsal aspect (flank and hip) of the rat. Br J Plast Surg 1992, 45: 23-25.
    [82] Kayikcioglu A, Akyurek M, Safak T: The importance of vascular territories in designing new experimental skin flaps. Plast Reconstr Surg 1998, 101: 1155-1157.
    [83] Hosnuter M, Kargi E, Peksoy I, Babuccu O, Payasli C: An ameliorated skin flap model in rats for experimental research. J Plast Reconstr Aesthet Surg 2006, 59: 299-303.
    [84] Morris SF, Taylor GI: Predicting the survival of experimental skin flaps with a knowledge of the vascular architecture. Plast Reconstr Surg 1993, 92: 1352-1361.
    [85] Shigeru Ichioka, Satoshi Kudo, Masahiro Shibata, et.al. Bone Marrow Cell Implantation Improves Flap Viability After Ischemia-Reperfusion Injury, Ann Plast Surg 2004,52(4): 414–418.
    [86] Hirotoshi Ohara, Kazuo Kishi and Tatsuo Nakajima,Rat Dorsal Paired Island Skin Flaps: A Precise Model for Flap Survival Evaluation,Keio J Med 2008, 57 (4): 211-216.
    [87] Mu¨bin Hosnuter, Eksal Kargi, I?rfan Peksoy,et.al, An ameliorated skin flap model in rats for experimental research, Journal of Plastic, Reconstructive & Aesthetic Surgery (2006) 59, 299–303.
    [88] Z. Kryger, F. Zhang*, T. Dogan, C. Cheng,et.al. The effects of VEGF on survival of a random flap in the rat: examination of various routes of administration, British Journal of Plastic Surgery (2000), 53, 234–239.
    [89] Rainer Mittermayr, Tatjana Morton, Martina Hofmann, MD,et.al. Sustained (rh)VEGF165 release froma sprayed fibrin biomatrix induces angiogenesis, up-regulation of endogenous VEGF-R2, and reduces ischemic flap necrosis, Wound Rep Reg (2008) 16 542–550.
    [90] Alessandro Scalise, Maria Giovanna Tucci, Guendalina Lucarini,et.al. Local rh-VEGF administration enhances skin flap survival more than other types ofrh-VEGF administration: a clinical, morphological and immunohistochemical study, Experimental Dermatology 2004, 13: 682–690.
    [91] F. Zhang, T. Oswald, S. Lin, et.al. Vascular endothelial growth factor (VEGF) expression and the effect of exogenous VEGF on survival of a random flap in the rat, The British Association of Plastic Surgeons (2003) 56, 653–659.
    [92] Wolfgang Michlits, Rainer Mittermayr, Romana Scha,et.al. Fibrin-embedded administration of VEGF plasmid enhances skin flap survival, Wound Rep Reg (2007) 15 360–367.
    [93] J.M. Lasso, M. Del Ri, M. Garci,et.al.Improving flap survival by transplantation of a VEGF-secreting endothelised scaffold during distal pedicle flap creation,Journal of Plastic, Reconstructive & Aesthetic Surgery (2007) 60, 279-286.
    [94] Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000, 6:389–95.
    [95] Zamboni WA, Roth AC, Russell RC, et al. Morphologic analysis of the microcirculation during reperfusion of ischemic skeletal muscle and the effect of hyperbaric oxygen. Plast Reconstr Surg 1993,91:1110–23.
    [96] Centinkale O, Bilgic L, Bolayirli M, et al. Involvement of neutrophils in ischemia– reperfusion injury of inguinal island flap in rats. Plast Reconstr Surg 1998,102:153–60.
    [97] Kerrigan CL, Stotland MA. Ischemia–reperfusion injury: a review. Microsurgery 1993, 14:165–75.
    [98] Zimmerman GA, Prescott SM, McIntyre TM. Endothelial cell interaction with granulocytes: tethering and signaling molecules. Immunol Today 1992, 13:93–100.
    [99] Vedder NB, Bucky LP, Richey NL, et al. Improved survival rates of random pattern flaps in rabbits with a monoclonal antibody that blocks leukocyte adherence. Plast Reconstr Surg 1994, 93:1035–40.
    [100] R. Meirer, G.M. Huemer, M. Oehlbauer,et al, Comparison of the effectiveness of gene therapy with vascular endothelial growth factor or shock wave therapy to reduce ischaemic necrosis in an epigastric skin flap model in rats, Journal of Plastic, Reconstructive & Aesthetic Surgery (2007) 60, 266-271.
    [101]曹卫红,杨志祥,谷庆阳,等.急性放射性皮肤溃疡中凋亡细胞及相关基因变化的意义[J].中华放射医学与防护杂志, 2003, 3(23): 184-186.
    [102]丁宏举,曹卫红,谷庆阳等,急性放射性皮肤溃疡形成早期表皮生长因子的表达及意义,感染、炎症、修复. 2007, 8(3): 155-157.
    [103]曹卫红,柴家科,杨志祥等,急性放射性皮肤溃疡中血小板源性生长因子及其受体的表达,中华烧伤杂志, 2005, 21(5):359-362.
    [104]谷庆阳,曹卫红,杨志祥,等.急性放射性皮肤溃疡发生发展过程中多种生长因子及其受体表达水平和对溃疡愈合影响的研究.军事医学科学院院刊, 2001, 25: 251-254.
    [105]曹卫红,杨志祥,谷庆阳,等.急性放射性皮肤溃疡愈合过程中TGF?及其受体表达的研究.中华放射医学与防护杂志, 2003, 23: 44 - 45.
    [106]钱志艺,陆兴安,沈国良,等.急性?-射线皮肤损伤后大鼠局部组织自由基的变化.海南医学, 2008, 19 (11):107-108.
    [107]谷庆阳,崔彩彬,高亚兵,等.外源性rhEGF对放射复合创伤伤口愈合的促进作用.解放军医学杂志, 2000, 25(2):103-105.
    [108]史春梦,程天民,屈纪富,等.神经生长因子同时促进放创复合伤小鼠创面愈合和造血恢复的实验研究.中华放射医学与防护杂志, 2002, 22(3):160-162.
    [109]谷庆阳,崔彩彬,高亚兵.外源性bFGF对放射复合创伤伤口愈合的促进作用.解放军医学杂志, 1998, 23(2):111-113.
    [110] Badiavas EV, Falanga V. Treatment of chronic wounds with bone marrow-derived cells. Arch Dermatol 2003, 139(4):510–6.
    [111] Ikenaga S, Hamano K, Nishida M, et al. Autologous bone marrow implantation induced angiogenesis and improved deteriorated exercise capacity in a rat ischemic hindlimb model. J Surg Res. 2001, 96:277–283.
    [112] Shi Q, Rafii S, Wu MH, et al. Evidence for circulating bone marrowderived endothelial cells. Blood. 1998, 92:362–367.
    [113] Tomita S, Li RK, Weisel RD, et al. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 1999, 100: II247–II256.
    [114] Tateishi-Yuyama E, Matsubara H, Murohara T, et al. Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomised controlled trial. Lancet. 2002, 360:427–435.
    [115] Asahara T, Murohara T, Sullivan A, et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science. 1997, 275:964–967.
    [116] Masuda H, Kalka C, Asahara T. Endothelial progenitor cells for regeneration.Hum Cell. 2000, 13:153–160.
    [117] Kawamoto A, Gwon HC, Iwaguro H, et al. Therapeutic potential of exvivo expanded endothelial progenitor cells for myocardial ischemia.Circulation. 2001, 103:634–637.
    [118] Kalka C, Masuda H, Takahashi T, et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization.Proc Natl Acad Sci USA. 2000, 97:3422–3427.
    [119] Takahashi T, Kalka C, Masuda H, et al. Ischemia- and cytokine-induced mobilizationof bone marrow-derived endothelial progenitor cells for neovascularization. Nat Med. 1999, 5:434–438.
    [120] Tepper OM, Galiano RD, Kalka C, et al. Endothelial progenitor cells:the promise of vascular stem cells for plastic surgery. Plast Reconstr Surg. 2003, 111:846–854.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700