基于超疏水和流变减阻理论的仿生心脏瓣膜的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
置换人工心脏瓣膜是治疗心脏瓣膜疾病的最有效的方法之一,也是临床治疗的最后一步。机械瓣虽然因其具有较长的使用寿命而成为目前临床上使用最为广泛的一种人工心脏瓣膜,但由于其不具有天然心脏瓣膜最优化的血流动力学性能,置入人体后即使患者终身服用抗凝药物,却仍会出现瓣膜血栓形成、血栓栓塞和抗凝相关出血等并发症。因此,解决机械瓣的血液相容性问题是目前机械瓣膜研究工作的中心内容,这项工作不仅具有重要的科学意义,而且具有重大的经济价值和社会意义。
     师法自然,本文首先研究了老鼠的主动脉瓣、二尖瓣以及白兔的三尖瓣表面的微细结构,发现动物心脏瓣膜表面均匀分布着微米级的“鹅卵石”和许多纳米纤毛。这种与荷叶表面相似的微纳复合阶层结构使得血液流经瓣膜表面时流动阻力减小,血小板在瓣膜表面的粘附也随之而减少,从而最终降低了血栓的形成。同时发现,生物界具有超疏水性能的昆虫翅膀表面的微结构形状和尺度也各不相同。
     受此启发,为制备具有超疏水性能的仿生人工心脏瓣膜表面,首先构建了二维平行光栅、三维周期方柱、方形凹坑以及乳突微结构,同时根据两种经典超疏水理论——Wenzel理论和Cassie理论,分析了超疏水发生的条件,并分别建立了四种微结构的表观接触角理论模型,初步探讨了表面微结构参数对其疏水性能的影响以及不同微结构形状下两种状态之间的转换。
     仿生超疏水心脏瓣膜表面微细结构的制备是其性能研究的前提和基础。本课题利用飞秒激光加工技术分别在K9玻璃、聚氨酯、热解炭等心脏瓣膜材料表面加工二维光栅和三维乳突微结构,并进行疏水性能的表征,探讨了加工用激光参数对表面微细结构及疏水性能的影响;同时用软刻蚀法在PDMS表面加工出周期方柱和方孔微结构,通过比较其超疏水性能发现参数相同、形状互补的方柱和方孔微结构的疏水性能也互补。
     滑移减阻是超疏水微结构人工心脏瓣膜表面的一个重要特性,也是其表面能减少血栓形成的主要因素。本课题利用流变仪研究了超疏水微结构固体表面的流变减阻特性,在验证超疏水表面存在滑移的基础上,推导了超疏水表面滑移长度与减阻率的计算公式。分别用新鲜血液、血浆和水在不同周期间距的乳突微结构聚氨酯表面研究了超疏水表面的流变减阻性能。结果表明,在一定范围内,乳突微结构周期间距越大,其表面减阻性能越好,但当周期间距增大到一定的程度时,减阻效果反而降低了,这是因为液滴在表面的超疏水状态发生了转变的缘故。
     血液相容性的好坏是衡量人工心脏瓣膜质量高低的关键因素,通过在PDMS、聚氨酯、热解炭三种材料表面构建形状不同、参数不同的微细结构,并通过血小板粘附实验、动态凝血实验以及溶血实验来研究表面微细结构对血液相容性的影响。结果表明,微结构周期间距同样对血液相容性有很大的影响,在一定范围内,周期间距越大,血液相容性越好,但超过这个范围时,材料表面的血液相容性反而会随着周期间距的增大而降低。
The replacement of artificial heart valve is one of the most effective way,also is a last way to save live of the patient whose heart valve is badly pathologically changed.Although the mechanical valve becomes the most widely used clinically as an artificial heart valve because of its longer life,it has poor hemo-compatibility.In order to decrease the risk of thrombosis complication,the patient who is implanted the mechanical valve should be treated with anticoagulant every day.Even if they are treated with sufficient anticoagulant,thromboembolism and anticoagulation-related complications such as bleeding are still founded.Accordingly,the solution improving the hemocompatibility of the mechanical valve is currently the center of research.It not only has important scientific significance,but also has the great economic value and social significance.
     In this paper,the aortic and mitral valve of the mouse and the tricuspid vavle of the rabbit are studied using scanning electron microscopy(SEM).On the animal's heart valve surface,there are some regular micro cobblestones-likes with the nano tenuous villus.This hierarchical structure on the surface of the heart valve,which is similar to that of lotus leaf surface,may be very useful to modify the wettability of heart valve surface,decrease the flow resistance of the blood and reduce the amount of adsorbed platelet on the surface,thus decrease the form of thrombus on the heart valve surface.In addition,the size and shape of microstruture of insect wings surface are different from each of other.
     The super-hydrophobic property of the solid surface depends not only on the surface chemical composition,but also by the surface micro-strcture.According to the classical wettebility theories——Wenzel theory and Cassie theory,the theoretical model of apparent contact angle of the droplet on the parallel two-dimensional gratings,three-dimensional periodic square pillar,square pit,as well as micro-structure of mastoid are set up.The effect of the parameters of surface micro-structure on the wetting propertie and the transition between two super-hydrophobic states on different micro-structure is discussed initially s.
     Different micro-structures on the surface of K9 glass,polyurethane(PU), Pyrolytic Carbon(PyC) are fabricated by femo-second technology and the apparent contact angle of droplet on those surfaces are measured.The effect of the laser parameters on the microstructure and superhydrophobility is also discussed.The regular array square columns and square holes micro-structure on the PDMS surface are manufactured using soft lithography.The hydrophobic properties of the microstructure of square columns and square hole in the same size and complementary shape are also complementary to each other.
     The rheological drag reduction of super-hydrophobic micro-structure solid surface is studied using rheometer.First of all,the formulae for calculating the slip length and the drag reduction rate of the superhydrophobic surface are derived and the existence of slip on the superhydrophobic surface is verified.The properties of drag reduction of the super-hydrophobic surface are studied by testing the torques with fresh blood,plasma and water respectively on the PU surface with mastoid micro-structure at different periodic space.The results showed that at a certain range, the greater the periodic space of the mastoid micro-structure,the better the drag reduction of the surface.But when the periodic space increased to a certain extent,the effect of drag reduction will reduce with the increase of the periodic space.This is because that the superhydrophobic status of droplets on the surface change.
     The micro-structures with the different shape and size are fabricated on the surfaces of PDMS、PU、PyC.The effect of fine structure on the hemo-compatibility is studied through the platelet adhesion experiment,dynamic coagulation and hemolysis test experiment.The results show that the periodic space of the micro-structure has significant effection on blood compatibility.At a certain range,the greater the periodic space,the better the blood compatibility,but more than this range,the blood compatibility of the material surface will be worse with the increase of the periodic space.
引文
[1]耿小勇,肖文良.医患对话慢性心脏瓣膜病[M].北京:科学普及出版社,2003:2.
    [2]肖学钧,张镜芳,刘箐等.用自体心包行二尖瓣成形术[J].中国胸心血管外科临床杂志,2000,7(3):196-197.
    [3]Rahimtoola S H.The year in valvular heart disease[J].J Am Coil Cardiol.2005,45(1):111-122.
    [4]Rajamannan N M.Is it time for medical therapy for aortic valve disease[J].Expert Rev Cardiovase Ther.2004,2(6):845-854.
    [5]Lausberg H,Schafers H J.Recent progress in heart valve surgery:innovation or evolution [J].Minerva Cardioangiol.2004,52(4):243-254.
    [6]Yacoub M H,Takkenberg J M.Will heart valve tissue engineering change the world[J].Nature Clinical Practice Cardiovascular Medicine.2005,2(2):60-61.
    [7]Walkes J C,Reardon M J.Status of mitral valve surgery[J].Curr Opin Cardiol.2004,19(2):117-122.
    [8]黄成礼.未来可能影响老年人口卫生费用的因素[J].卫生经济研究,2004,5(4):36-45.
    [9][9]Chauvaud S.Surgery of congenital mitral valve disease[J].J Cardiovasc Surg(Torino).2004,45(5):465-476.
    [10]CarpentierA,Lemaigre G,Robert L,et al.Biological factors affecting long-term results of valvular heterografts[J].Thorac cardiovasc Surg,1969,58:467-471.
    [11]Andersen H R,Knudsen L L,Hasenkam J M.Transluminal implantation of artificial heart valves.Description of new expandable aortic valve and initial results with implantation by catheter technique in close chest pigs[J]..Eur Heart J,1992,13:704-708.
    [12]Cribier A,Eltchaninoff H,Bash A,et al.Percutaneous tran-scatheter implantation of an aortic valve prosthesis for calcific aortic stenosis:first human case description[J].Circulation,2002,106(24):3006-3008.
    [13]Cribier A,Eltchaninoff H,Tron C,et al.Early experience with percutaneous transcatheter implantation of heart valve prosthesis for the treatmerit of end-stage inoperable patients with calcific aortic stenosis[J].J Am Coil Cardiol,2004,43(4):698-703.
    [14]Lutter G,Kuidinsld D,Berg G,et al.Percutaneous aortic valve replacement:an experimental study[J].J Thorac Cardiovasc Surg,2002,123:768-776.
    [15]Siniawski H,Lehmkuhl H,Weng Y G,et al.Stentless aortic valves as an alternative to homograft s for valve replacement in active infective endocarditis complicated by ring abscess[J].Ann Thorac Surg,2003,75(3):803-808.
    [16]Gelsomino S,Frassani R,Dacol P,et al.The CryoLife O'Brien stentless porcine aortic bioprosthesis:5-year follow-up[J].Ann Thorac Surg,2001,71:86-91.
    [17]Murray G Homologous aortic valve segment transplants a surgical treatment for aortic and mitral insufficiency[J].Angiology,1956,7:466-471.
    [18]Ross D N.Homograft replacement of the aortic valve[J].Lancet,1962,2:447-449.
    [19]Kirklin J K,Smith D,Novick W,et al.Long-term function of eryopreserved aortic homografts.A ten-year study[J].Thorac Cardio vase Surg,1993,106:154-166.
    [20]Jin X Y,Zhang Z M,Gibson D G,et al.Effect s of valve substitute on changes in left vent ricular function and hypertrophy after aortic valve replacement[J].Ann Thorac Surg,1996,62:683-690.
    [21]Yacoub M,Rasmi N R,Sundt T M,et al.Fourteen-year experience with homovital homograft s for aortic valve replacement.Thorac Cardiovasc Surg[J].1995,110:186-194.
    [22]Binet J P,Carpentier A,Langlois J.Clinical use of heterografts for replacement of the aortic valve[J].J Thorac Cardiovasc Surg,1968,55(2):238-242.
    [23]Neuenschwander S,Hoerslrup S P.Heart valve tissue engineering[J].Transp lantlmmunol,2004,12:359-365.
    [24]Starr A,Edwards M L.Mitral replacement clinical experience with a ball valve prosthesis [J].Ann Stag,1961,154:726-740.
    [25]Harken D E,Soroff H S,Taylor W J,et al.Partial and complete prostheses in aortic insufficiency[J].J Thorac Cardiovasc Surg,1960,40:744-762.
    [26]张宝仁,朱家麟.人造心脏瓣膜与瓣膜置换术(第二版)[M].北京:人民卫生出版社,1999:32-102.
    [27]oseph S A,James E,Shahbudin H R.Valvular Heart Disease[M].北京:科学出版社,2003:22-40.
    [28]曹林生,王朝晖,王祥.心脏瓣膜病学[M].北京:科学技术文献出版社,2002:16-28.
    [29]Verdel G,Heethaar R M,Jambroes G,et al.Assessment of the opening angle of implanted Bj(o|¨)rk-Shiley prosthetic vavles[J].Circulation,1983,68(2):355-359.
    [30]Renzulli A,Ismeno G,Bellitti R,et al.Long-term results of heart vavle replacement with bileaflet prostheses[J].J Cardiovase Surg,1997,38(3):241-247.
    [31]Wu Z J,Hwang N H.Ventricular pressure slope and bileaflet mechanical heart vavle closure [J].ASAIO J,1995,41(3):M763-M767.
    [32]Anderson J R,Chiu D T,Jackman R J,et al.Fabrication of Topologically Complex Three-Dimension Microfluidic Systems in PDMS by Rapid Prototyping[J].Anal Chem,2000,72:3158-3164.
    [33]Takayama S,McDonald J C,Ostuni E,et al.Patterning cells and their environments using multiple laminar fluid flows in capillary networks[J].Proc Natl Acad Sci USA,1999,96:5545-5548.
    [34]www.dowcorning.com
    [35][35]Belanger M C,Marois Y,Roy R.Seleetion of a polyurethane membrane for the manufacture of ventricles for a totally implantable artificial heart:blood compatibility and biocompatibility studies[J].Artif Organs,2000,24(11):879-888.
    [36]黄楠,杨萍,冷永祥等.热解碳人工心脏瓣膜材料表面改性研究进展[J].生物医学工程学杂志,1999,16(2):127-131.
    [37]Barton K,Campbell A,Chinn J A et al.Bioeompatibility of Diamond and DLC Films[J].Biomedical Engineering Society(BMES) Bulletin,2001,25(1):3-7.
    [38]李昌荣,王向晖,郑志宏等.热解碳的氮离子注入处理及其血液相容性评价[J].功能材料与器件学,2002,8(1):63-68.
    [39]Ali N.,Kousar Y.,Gracio J.et al.Human Mierovascular Endothelial Cell Seeding on Cr-DLC Thin Films for Heart Valve Application[J].Thin Solid Films,2006,515:59-65.
    [40]黄楠,杨萍,曾晓兰等.离子束合成Ti-O薄膜对热解碳生物材料表面改性的研究[J].中国生物医学工程学报,1997,16(3):199-205.
    [41]Leng Y X,Chen J Y,Yang P,et al.The microstructure and mechanical properties of TiN and TiO_2/TiN duplex films synthesized by plasma immersion ion implantation and deposition on artificial heart valve[J].Surface & Coatings Technology,2006,201:1012-1016.
    [42]陈俊英,杨萍,冷永祥等.用Ta~(5+)掺杂TiO_2生物薄膜材料的合成与性能研究[J].中国生物 医学工程学报,2002,21(5):412-416.
    [43]Bolz A,Schaldach M.Artificial heart valve:Improved blood compatibility by PECVD SiC:H coating[J].Artificial Organs,1990,144:260-269.
    [44]Krzysztof J,Anna K.The new generation Ti6Al4V artificial heart valve with nanocrystalline diamond coating on the ring and with Derlin disc after long-term mechanical fatigue examination[J].Diamond & Related Materials,2007,16:1004-1009.
    [45]Ikada Y.Blood-compatible polymers[J].Adv.Polymer Science,1984,57:103-140.
    [46]Jansen B,Ellinghorst G Radiation-induced modification of polyurethane -elastomers with hydroxyethyl methacrylate[J].Journal of Polymer Science:Polymer Symposia,1979,66:465-473.
    [47]Lee P C,Huang L L,Chen L W,et al.Effect of forms of collagen linked to polyurethane on endothelial cell growth[J].J Biomed Mater Res,1996;32(4):645-653.
    [48]Clapper D L,Hagen K M,Hupfer N M,et al.In vitro and in vivo evaluations of 4mm vascular grafts with covalently coupled ECM proteins[C].In:Implant Retrieval Symposium of the Society for Biomaterials.St.Charles,Illinois,USA,1992:17-20.
    [49]Goodman S L,Sims P A,Albreeht R M.Three dimensional extracellular matrix textured biomateriais[J].Biomaterials,1996:17(21):2087-2095.
    [50]Iwasaki Y,lshihara K,Nakabayashi N,et al.Platelet adhesion on the gradient surfaces grafted with phosphlipid polynler[J].J Biomater Sci Polymer Edn,1998,9(8):801-816.
    [51]Li Y J,Nakaya T,Zhang Z,et al.Blood compatible phospholipid-containing polyurethanes:synthesis,characterization and blood compatibility evaluation[J].J Biomater APPL,1997,10(12):167-191.
    [52]Neinhuis C,Barthlott W.Characterization and distribution of water-repellent,self-cleaning plant surfaces[J].Annals of Botany,1997,79:667-677.
    [53]Feng L,Li S H,Li Y S,et al.Super-hydrophobic surface:from'natural to artificial[J].Adv Mater,2002,14(24):1857-1860.
    [54]Guo Z G,Liu W M.Biomimic from the superhydrophobic plant leaves in nature:Binary structure and unitary structure[J].Plant Science,2007,172:1103-1112.
    [55]Sun T L,Feng L,Gao X F,et al.Bioinspired surfaces with special wettability[J].Ace Chem Res 2005,38:644-652.
    [56]张占立,杨继昌,丁建宁等.竹叶青蛇腹鳞的超微结构及减阻机理[J].江苏大学学报,2006,27(6):471-474.
    [57]Autumn K,Liang Y A,Hsieh S T et al.Adhesive force of a single gecko foot- hair[J].Nature,2000,405(6):681-685.
    [58]Hansen W R,Autumn K,Evidence for self-cleaning in gecko setae[J].PNAS,2005,102(2):385-389.
    [59]Wu L Y,Han Z W,Qiu Z M,et al.The microstructures of butterfly wing scales in northeast of China[J].Journal of Bionic Engineering,2007,4:47-52.
    [60]陈洪燕,江雷.受生物启发特殊浸润表面的设计和制备[J].生命科学,2008,20(3):323-330.
    [61]姚昱星,姚希,李作林等.蚊子体表面的微纳米结构与浸润性[J].高等学校化学学报,2008,29(9):1826-1828.
    [62]Adamson A W,Gast A P.Physical Chemistry of Surface.6th Ed[M].Johrl Wiley & Sons,Inc.,New York,1997.
    [63]Mandelbrot B B.The Fraetal Geometry of Nature[M].San Francisco:W H Freeman,1982.
    [64]Andreas F.Th(u|¨)nemann,Complexes of polyethylemeimine with perfluorinated carboxylic acids:wettability of lamellar structured mesophases[J].Langmuir,2000,16(2):824-828.
    [65]Shull K R,Karis T E.Dewetting dynamics for large equilibrium contact angles[J].Langmuir,1994,10:334-339.
    [66]张立德,牟季美著.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [67]Grevoisier G,Fabre P,Corpart J,et al.Switchable Tackiness and Wettability of a Liquid Crystalline Polymer[J].Science 1999,285:1246-1249.
    [68]Tretirnikov O N,Ikada Y.Hydrogen bonding and wettability of surface-grafted organophosphate polymer[J].Macromolecules 1997,30:1086-1090.
    [69]Rieutord F,Salmeron M.Wetting Properties at the Submicrometer Scale:A Scanning Polarization Force Microscopy Study[J].J.Phys.Chem.B.1998,102:3941-3944.
    [70]Neinhuis C,Barthlott W.Characterization and Distribution of Water-repellent,Self-cleaning Plant Surfaces[J].Annals of Botany 1997,79:667-677.
    [71]Barthlott W,Neinhuis C.Purity of the sacred lotus,or escape from contamination in biological surfaces[J].Planta,1997,202:1-8.
    [72]郑黎俊,乌学东,楼增等.表面微细结构制备超疏水表面[J].科学通报,2004,49(17):1691-1699.
    [73]Rossier J S,Bercier P,Schwarz A,et al.Topography,crystallinity and wettablity of photoablated PET surface[J].Langmuir,1999,15(15):5173-5178.
    [74]Fukushima H,Seki S,Nishikawa T.Microstructure,wettability,and thermal stability of smeifluorinated self-assembled monolayers(SAMs) on gold[J].The Journal of Physical Chemistry B,2000,104(31):7417-7423.
    [75]Junhua W,Mate C M.Contact angle measurements of lubricated silicon wafers and hydrogenated carbon overcoats[]].Langmuir,1998,14(17):4929-4934.
    [76]Hui M H,Martin J B.Effects of wettability on three-phase flow in porous media[J].The Journal of Physical Chemistry B,2000,104(16):3833-3845.
    [77]Blossey R.Sell-cleaning surfaces-virtual realities[J].Nature Materials,2003,2:301-306.
    [78]Taylor G,Michael D H.On making holes in a sheet of fluid[J].Fluid Mech,1973,58:625-639.
    [79]Young T.Experiments and calculations relative to physical optics[C].The 1803 Bakerian lecture[A].Phil.Trans.Roy.Soc.Lond,1804,94:1-16.
    [80]Adamson A W,Gast A.P.Physical chemistry of surfaces(6th ed)[M].New York:John Wiley & Sons,1997.
    [81]Mchale G,Newton M I.Frenkel's method and the dynamic wetting of heterogeneous planar surfaces[J].Langmuir,2004,20:10146-10149.
    [82]R.Blossey.Sell-cleaning suffaee-virtual realities[J].Nature Materials,2003,2:301-306.
    [83]Nishino T,Meguro K,Nakamae M,et al.The lowest surface frec energy based on -CF3alignment[J].Langmuir,1999,15:4321-4323.
    [84]Wenzel R N.Resistance of solid surfaces to wetting by water[J].Ind.Eng.Chem,1936,28(8):988-994.
    [85]Wenzel R N.Surface roughness and contact angle(letter)[J].Phys.Colloid Chem,1949,53:1466-1467.
    [86]Cassie A B D,Baxter S.Wettability of porous surface[J].Trans Faraday Soc,1944,40:546-551.
    [87]Cassie A B D.Contact angles[J].Discuss.Faraday Soc.1948,3:11-16.
    [88]He B,Neelesh A,Lee J.Mutiple equilibrium droplet shapes and design criterion for rough hydrophobic surface[J].Langrnuir,2003,19:4999-5003.
    [89]Lafuma A,Quere D.Superhydrophobic states[J].Nature Materials,2003,2:457-460.
    [90]Bieo J,Thiele U,Quere D.Wetting of textured surface[J].Colloids Surf.A,2002,206:41-46.
    [91]Patankar N A.On the modeling of hydrophobic contact angles on rough surfaces.Langmuir,2003,19:1249-1253.
    [92]Neelesh A.Transition between superhydrophobic states on rough surface[J].Langrnuir,2004,20:7097-7102.
    [93]Chen W,Fadeev A Y,Hsieh M C,et al.Ultrahydrophobic and Ultralyophobic Surfaces:Some Comments and Examples[J].Langrnuir,1999,15(10):3395-3399.
    [94]Kijlstra J,Reihs K,Klamt A.Roughness and topology of ultra-hydrophobic surfaces[J].Colloids Surf.A.,2002,206:521-529.
    [95]Wolfram E,Faust R.Wetting,Spreading,and Adhesion.Padday[M].London:Academic Press,1978,213-222.
    [96]Gogte S,Vorobieff P,Tmesdell R,et al.Effective slip on textured superhydrophobic surfaces[J].Physics of Fluids,2005,17:051701-1-3.
    [97]Kim K,Kim C J.Nanostructured surfaces for dramatic reduction of flow resistance in droplet-based microfluidics[J].Proceedings of the IEEE Conference on MEMS,Las Vegas,NV,2002:479-482.
    [98][120]Anantharaju N,Panchagnula M,Kimsey W,et al.Surface topography induced ultrahydrophobic behavior:effect of three-phase contact line topology[J].Proceeding of ASME Internaional Mechanical Engineering Congress and Exhibition,2006.
    [99]Krupenkin T N,Taylor J A,Schneider T M,et al.From rolling ball to complete wetting:the dynamic tuning of liquids on nanostructured surface[J].Langrnuir,2004,20:3824-3827.
    [100]Li W,Amirfazli A.A thermodynamic approach for determining the contact angle hysteresis for superhydrophobic surfaces[J].J.Colloid Surface Sci.,2005,292:195-201.
    [101]Marmur A.Wetting on hydrophobic rough syrfaces:to be heterogeneous or not to be?[J].Langmuir,2003,19:8343-8348.
    [102]Marmur A.The lotus effect:superhydrophobicity and metastability[J].Langmuir,2004,20: 3517-3519.
    [103]Onda T,Shibuichi S,Satoh N,et al.Super-water-repellent fractal surfaces[J].Langrnuir,1996,12:2125-2127.
    [104]Guo C,Feng L,Zhai J,et al.Large-area fabrication of nanostructure-induced hydrophobic surface from a hydrophilic polymer[J].ChemPhysChem,2004,5:750-753.
    [105]Feng L,Li S H,Li H J,et al.Super-hydrophobic surface of aligned polyacrylonitrile nanofibers[J].Angew.Chem.Int.Ed.,2002,41:1221-1223.
    [106]Feng L,Song Y L,Zhai J,et al.Creation of a super-hydrophobic surface from an amphiphilic polymer[J].Angew.Chem.Int.Ed.,2003,42:800-802.
    [107]Jin M H,Feng X J,Sun T L,et al.Superhydrophibic aligned polystyrene nanotube films with high adhesive force[J].Adv.Mater,2005,17:1977-1981.
    [108]Sun M H,Luo C X,Xu L P,Artifical lotus leaf by nanocasting[J].Langrnuir,2005,21:8979-8981.
    [109]李书宏,冯琳,江雷.柱状结构阵列碳纳米管膜的超疏水性研究[J].高等学校化学学报,2003,24(2):340-342.
    [110]Ma M,Hill R M,Lowery J L,.et al.Electrospun poly(styrene-bloek-dimethyl siloxane) block copolymer fibers exhibiting superhydrophobicity[J].Langmuir,2005,21(12):5549-5554.
    [111]Nakajima A,Abe K,Hashimoto K,et al.Preparation of hard super-hydrophobic films with visible light transmission[J].Thin Solid Films,2000,376(122):140 -143.
    [112]Xie Q,Xu J,Feng L,et al.Facile creation of a super-amphiphobic coating surface with bionic microstructure[J].Adv.Mater.,2004,16:302-305.
    [113]Erbil H Y,Demirel A L,Avci Y,et al.Transformation of a simple plastic into a superhydrophobic surface[J].Science,2003,299:1377-1380.
    [114]Lu X,Zhang C,Han Y.Low-density polyethylene superhydrophobic surface by control of its crystallization behavior[J].Macromol Rapid Commun,2004,25:1606-1610.
    [115]Lu X,Zhang J,Zhang C,et al.Low-density polyethylene(LDPE) surface with a wettability gradient by tuning its microstruetures[J].Macromol Rapid Commun,2005,26:637-642.
    [116]Tavana H,Amirfazli A,Neumann A W.Fabrication of superhydrophobic surfaces of n-hexatriacontane[J].Langmuir,2006,22:5556-5559.
    [117]Tsoi S F,Fok E,Sit J C,et al.Surface functionalization of porous nanostructured metal oxid thin films fabricated by glancing angle deposition[J].Chem.Mater.,2006,18:5260-5266.
    [118]Chen A,Peng X,Koczkur K,et al.Super-hydrophobic tin oxide nanoflowcrs[J].Chem Commun(Camb),2004,17:1964-1965.
    [119]Duparre A,Flemming M,Steinert J,et al.Optical coatings with enhanced roughness for ultrahydrophobic,low-scatter applications[J].Appl.Opt.,2002,41:3294-3298.
    [120]Hozumi A,Takai O.Preparation of ultra water-repellent films by microwave plasma-enhanced CVD[J].Thin Solid Films,1997,303:222-225.
    [121]Wu Y,Sugimura H,Inoue Y,et al.Thin films with nanotextures for transparent and ultra water-repellent coatings produced from trimethylmehtoxysilane by microwave plasma CVD [J].Chem.Vapor Depos.2002,8(2):47-50.
    [122]Wu Y,Sugimura H,Inoue Y,et al.Preparation of hard and ultra water-repellent silicon oxide films by microwave plasma-enhanced CVD at low subsrate temperatures[J].Thin Solid Films,2003,435:161-164.
    [123]Li H J,Jiang L,Zhu D B,Et al.Super-"amphiphobic" aligend carbon nanotube films[J].Angew.Chem.Int.Ed.,2001,40:1743-1746.
    [124]李欢军,江雷,朱道本等.超疏水多孔阵列碳纳米管薄膜[J].高等学校化学学报,2001,22:759-761.
    [125]Yu X,Wang Z,Jiang Y,et al.Reversible pH-responsive surface:from superhydrobicity to superhydrophilicity.Adv.Mater.,2005,17:1289-1293.
    [126]Zhang X,Shi F,Yu X,Liu H,et al.Polyelectrolyte multilayer as matrix for electrochemical deposition of gold clusters:towards super-hydrophobie surface[J].J.Am.Chem.Soc.,2004,126:3064-3065.
    [127]Tadanaga K,Kitamuro K,Morinaga J,et al.Formation process of super-water-repellent Al_2O_3 coating films with high transparency by the Sol-Gel method[J].Chem.Lett.,2000,29(8):864-865.
    [128]Tadanaga K,Morinaga J,Minami T,et al.Superhydrophobic micropatteming on flowerlike alumina coating film by the sol-gel method[J].Chem.Mater.,2000,12:590-592.
    [129]Rao A V,Kulkarnl M M,Bhagat S D.Transport of liquids using superhydrophobic aerogels [J].Journal of Colloid and Interface Science,2005,285(1):413-418.
    [130]Sun T L,Wang G J,Feng L,et al.Reversible switching between superhydrophilicity and superhydrophobicity[J].Angew.Chem.Int.Ed.,2004,43:357-360.
    [131]Song X,Zhal J,Wang Y,et al.Fabrication of superhydrophobic surfaces by self-assembly and their water-adhesion properties[J].J.Phys.Chem.B.,2005,109(9):4048-4052.
    [132](O|¨)ner D,McCarthy T J.Ultrahydrophobic Surfaces.effects of topography length scales on wettability[J].Langmuir,2000,16:7777-7782.
    [133]Youngblood J P,McCarthy T J,Ultrahydrophobic polymer surface prepared by simultaneous ablation of polypropylene and sputtering of poly(tetrafluoroethylene) using radio frequency plasma[J].Macromolecules,1999,32:6800-6806.
    [134]Matsumoto Y,Ishida M.The property of plasma-polymerized fluorocarbon film in relation to CH_4/C_4F_5 ratio and substrate temperature[J].Sensors and Actuator,2000,83:179-185.
    [135]Krupenkin T N,Taylor J A,Schneider T M,et al.From rolling ball to complete wetting:the dynamic tuning of liquids on nanostructured surfaces[J].Langmuir,2004,20:3824-3827.
    [136]Torkkeli A,Saarilahti J,Haara A,et al.Electrostatic transportation of water droplets on superhydrophobic surfaces[J].IEEE.Trans.Ind.App.,1998,34:732-737.
    [137]Xia Y,Whitesides G M.Soft lithography[J].Angew.Chem.Int.Ed.Engl.,1998,37:550-575.
    [138]Xia Y,Whitesides G M.Soft Lithography[J].Annu.Rev.Mater.Sci.,1998,28:153-184.
    [139]Bico J,Thiele U,Quere D.Pearl drop[J].Europhys.Lett,1999,47(2):220-226.
    [140]Petronis S,Berntsson K,Gold J,et al.Design and microstructuring of PDMS surfaces for improved marine biofouling resistance[J].J.Biomater.Sci.Polymer Edn,2000,11(10):1051-1072.
    [141]Zhao Y,Zhang X.Cellular mechanics study in cardiac myocytes using PDMS pillars array [J].Sensors and Actuators A,2006,125:398-404.
    [142]Adamsa C,Mathiesona K,Gunning D.Development of flexible arrays for in vivo neuronal recording and stimulation[J].Nuclear Instruments and Methods in Physics Research A,2005,546:154-159.
    [143]Leclerc E,Corlu A,Gdscorn L,et al.Guidance of liver and kidney organotypic cultures inside rectangular silicone microchannels[J].Biomatedals,2006,27:4109-4119.
    [144]Hwang J C.Femtosecond laser-induced damage for micromachining of transparent materials[D].Sensor Thesis,Harvard University,2002
    [145]Schaffer C B.Interaction of femtosecond laser pulse with transparent materials[D].Ph.D.Thesis,Harvard University,Cambridge,Massachusetts,2001
    [146]Perry M D,Stuart B C,Banks P S,et al.Ultrashort-pulse laser machining of dielectric materials[J].J.Appl.Phys,1999,85:6803-6810.
    [147]Gamaly E G,Rode A V,Luther-Davies B,Ultrafast ablation with high-pulse-rate lasers.Part Ⅰ:Theoretical considerations[J].J.Appl.Phys.,1999,85:4213-4321.
    [148]Rode A V,Luther-Davies B,Gamaly E G Ultrafast ablation with high-pulse-rate lasers.Part Ⅱ:Experiments on laser deposition of amorphous carbon films[J].J.Appl.Phys.,1999,85:4222-4230.
    [149]Jeschke H O,Garcia M E,and Bennemann K H.Physical Review Letters,2001,87:015003.
    [150]Ou J,Pert B.et al.Liminar drag reduction in microchannels using ultrahydrophobic surface[J].Physics of Fluids,2004,16(12):4635-4643.
    [151]Onda T,Shibuichi S,Satoh N,et al.Super-water-repellent fractal surfaces[J].Langmuir, 1996,12(9):2125-2127.
    [152]Shibuichi S,Onda T,Satoh N,et al.Super water-repellent surfaces resulting from fractal structure[J].J.Phys.Chem.,1996,100(50):19512-19517.
    [153]Whitesides G M,Love J C.The art of building small[J].Scientific American,2001,285:32-41.
    [154]Jackman R J,Whitesides G M.Electrochemistry and soft lithography:a route to 3-D microstructures[J].Chemtech,1999,29:18-30.
    [155]Zhao X M,Xia Y N,Whitesides G M.Soft lithographic methods for nanofabrication[J].J.Mater.Chem.,1997,7:1069-1074.
    [156]Richardson S.On the no-slip boundary condition[J].J.Fluid Mech.,1973,59:707-719.
    [157]Cieplak M,Koplik J,Banavar J R.Boundary conditions at a fluid-solid interface[J].Phys.Rev.Lett.,2001,86:803-806.
    [158]Thompson P A,Troian S M.A general boundary condition for liquid flow at solid surfaces[J].Nature(London).1997,389:360-362.
    [159]Tretheway D C,Meinhart C D.Apparent fluid slip at hydrophobic microchannel walls[J].Phys.Fluids.2002,14:L9,DOI:10.1063/1.1432696
    [160]Tretheway D C and Meinhart C D.A generating mechanism for apparent fluid slip in hydrophobic microchannels[J].Phys.Fluids.2004,16:1509-1515.
    [161]Gennes P G.On Fluid/Wall Slippage[J].Langmuir,2002,18:3413-3414.
    [162]Lauga E,Stone H A.Effective slip in pressure-driven Stokes flow[J].J.Fluid Mech.,2003,489:55-77.
    [163]Choi C H,Kim C J.Measurement of liquid slip on nanoturf surfaces[J].Proceedings of ASME 2005:Integrated Nanosystems Design,Synthesis & Applications,2005,September:14-16.
    [164]Choi C H,Kim C J.Large slip of aqueous liquid flow over a nanoengineered superhydrophobic surface[J].Phys.Rev.Lett.,2006,96:066001.
    [165]Ou J and Rothstein J P.Direct velocity measurements of the flow past drag-reducing ultrahydrophobic surfaces[J].Phys.Fluids,2005,17:103606.
    [166]Ou J,Perot B,and Rothstein J P.Laminar drag reduction in microchannels using ultrahydrophobic surfaces[J].Phys.Fluids,2004,16:4635-4643.
    [167]Watanabe K,Yanuar U,Udagawa H.Drag reduction of newtonian fluid in a circular pipe with a highly water-repellent wall[J].J.Fluid Mech.,1999,381:225-238.
    [168]Watanabe K.Takayama T,Ogata S,et al.Flow between two coaxial rotating cylinders with a highly water-repellent wall[J].AIChE Journal.2003,49:1956-1963.
    [169](O|¨)ner D,Mccarthy T J.Ultrahydrophobic surface effects of topography length scales on wettability[J].Langmuir,2000,16:7777 -7782.
    [170]Hendy S C,Jasperse M,and Burnell J.Effect of patterned slip on micro- and nanofluidic flows[J].Phys Rev E 2005,72,016303.
    [171]Hsu S,Thakar R,Liepmaun D.Effects of shear stress on endothelial cell haptotaxis on micropatterned surfaces[J].Biochemical and Biophysical Research Communications,2005,337:401-409.
    [172][美]K.C.迪伊,D.A.普莱奥,R.比齐奥斯 编著 黄楠 译.组织-生物材料相互作用导论[M].北京:化学工业出版社,2005,93-99.
    [173]Fujimoto K.,Tadokoro H,Ueda Y,et al.Polyurethane surface modification by graft polymerization of acrylamide for reduced protein adsorption and platelet adhesion[J].Biomatefials,1993;14(6):442-448.
    [174]Sapatnelcar S,Kieswetter K M,Merritt K,et al.Blood-biomaterial interactions in a flow system in the presence of bacteria:effect of protein adsorption[J].J Biomed Mater Res.1995,29(2):247-256.
    [175]Kim S W,Jaeobs H.Design of nonthrombogenic Polymer surfaces for blood-contacting medical devices[J].Blood Purif,1996,14(5):357-372.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700