不同质子泵抑制剂和CYP2C19失功能基因对冠心病患者的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双联抗血小板药物氯吡格雷联合阿司匹林已经成为ACS和PCI患者的标准治疗。但是这种治疗也增加了胃肠出血的风险。PPIs能有效的保护胃粘膜而经常与抗血小板药物同时应用。氯吡格雷和PPIs都经过CYP2C19酶代谢,因此两者会产生药物相互干涉。氯吡格雷联合应用PPIs对氯吡格雷抗血小板的影响仍在深入研究。
     CYP2C19*2和CYP2C19*3被称为CYP2C19酶的失功能基因,而携带CYP2C19失功能基因的患者消弱了氯吡格雷抗血小板作用。研究发现在亚洲CYP2C19失功能基因发生率要远远高于欧美国家,而我国冠心病患者联合应用氯吡格雷和PPIs对血小板聚集产生的影响尚未深入研究。本研究首先明确CYP2C19失功能基因在中国汉族人群的发生率;再次分析冠心病患者服用氯吡格雷时,联合应用不同PPIs对血小板抑制率的影响以及对携带CYP2C19失功能基因的冠心病患者血小板聚集率的影响;进一步分析PCI患者服用氯吡格雷同时联合应用不同PPIs对PCI术后早期心肌损伤的影响以及对携带CYP2C19失功能基因的PCI患者PCI术后早期心肌损伤的影响;为冠心病患者应用氯吡格雷时选择何种PPI s提供依据。实验内容主要包括以下三部分。
     第一部分CYP2C19失功能基因在中国汉族人群的分布
     目的:观察CYP2C19失功能基因在中国汉族人群的发生率,为进一步探讨氯吡格雷和PPIs在冠心病患者联合应用提供依据。
     方法:入选到河北医科大学二院体检中心的体检者共1108例。每一位体检者首先采集2ml静脉血以提取DNA;其次应用TaqMan荧光探针标记的real-time PCR方法对提取的DNA进行基因分型。
     结果:CYP2C19*1/*1、*1/*2、*2/*2、*1/*3、*2/*3、*3/*3的发生率分别是39.53%、35.83%、8.48%、8.84%、6.32%和1%。
     结论:在中国汉族人群CYP2C19*2和*3失功能基因携带者的比例接近60%。
     第二部分不同PPIs和CYP2C19失功能基因对氯吡格雷抗血小板作用的影响
     目的:观察不同的PPIs对冠心病患者氯吡格雷抗血小板作用的影响,以及携带失功能基因的冠心病患者应用氯吡格雷联合不同PPIs对氯毗格雷抗血小板的影响,为应用抗血小板药物的冠心病患者预防和治疗上消化道出血提供最佳的PPIs。
     方法:入选164例到河北医科大学二院心血管内科住院的冠心病患者,根据应用不同的PPIs分为四组,奥美拉唑组(35例)、埃索美拉唑组(50例)、泮托拉唑组(41例和未用PPIs组(38例)。所有患者于入院时给予肠溶阿司匹林100mg每日1次,氯毗格雷首先300mg顿服,随后75mg每日1次口服。进入不同PPIs组的患者分别服用:奥美拉唑20mg,每日1次;埃索美拉唑40mg,每日1次;泮托拉唑40mg,每日1次。PPIs与氯吡格雷同时服用。所有患者在服氯毗格雷前采血以检测血小板聚集率和提取DNA;在服氯吡格雷3天后再次采集静脉血以检测血小板聚集率血小板聚集率的检测应用电阻法(10ul ADP作为诱导剂),氯吡格雷对血小板的抑制率=(服氯吡格雷前的血小板聚集率-服氯吡格雷后的血小板聚集率)/服氯吡格雷前的血小板聚集率×100%。应用TaqMan荧光探针标记的real-time PCR方法对提取的DNA进行基因分型。结果:1.氯吡格雷对血小板的抑制率在奥美拉唑组、埃索美拉唑组、泮托拉唑组和未服用PPIs组分别是40.93%、41.24%、46.67%和47.59%,血小板抑制率有下降的趋势,但是没有统计学差异(P>0.05)。根据基因分型将所有患者再进一步分为野生型组(CYP2C19*1/*1)和失功能基因型组(CYP2C19*1/*2、2C19*1/*3、2C19*2/*2、2C19*2/*3和2C19*3/*3),野生型组和失功能基因型组氯吡格雷对血小板的抑制率在两组之间有统计学差异(41.21%vs39.33%,P<0.05)。
     2.奥美拉唑组、埃索美拉唑组、泮托拉唑组和未服用PPIs组再根据野生型和失功能基因型又分为8组。在这8组间氯吡格雷对血小板的抑制率相比也没有统计学差异(P>0.05)。在不同PPIs组内野生型和失功能基因型两组间再分别比较氯毗格雷对血小板抑的制率,也没有统计学差异(P>0.05)。
     结论:对于冠心病患者,CYP2C19失功能基因携带者降低了氯吡格雷对血小板的抑制率。联合应用PPIs并不影响冠心病患者氯毗格雷对血小板的抑制作用,同时也不影响携带CYP2C19失功能基因的冠心病患者对血小板的抑制率。
     第三部分不同质子泵抑制剂和CYP2C19失功能基因对择期PCI患者术后心肌的影响
     目的:观察服用不同PPIS的PCI患者术后早期cTnI的变化,以及氯毗格雷联合不同PPIs对携带失功能基因的PCI患者术后早期cTnI的变化,分析不同的PPIs对PCI患者术后早期心肌损伤的影响,为PCI患者在预防和治疗上消化道出血以及减少心肌损伤方面提供最佳的PPIs。
     方法:陆续在河北医科大学二院心血管内科住院并接受PCI治疗的患者149例。根据应用不同的PPIs分为四组,奥美拉唑组(32例)、埃索美拉唑组(42例)、泮托拉唑组(32例)和未用PPIs组(43例)。所有患者于入院时应用肠溶阿司匹林100mg每日1次,氯毗格雷首先300mg顿服,随后75mg每日1次口服。进入不同PPIs组的患者分别服用:奥美拉唑20mg,每日1次;埃索美拉唑40mg,每日1次;泮托拉唑40mg,每日1次。PPIs与氯毗格雷同时服用。PCI术后第二天采静脉血检测cTnI和提取DNA。cTnI>Ing/ml为肌钙蛋白阳性。应用TaqMan荧光探针标记的real-time PCR方法对提取的DNA进行基因分型。
     结果:PCI术后cTnI阳性率在奥美拉唑组、埃索美拉唑组、泮托拉唑组和未服用PPIs组没有统计学差异(P>0.05)。根据基因分型将所有患者再进一步分为野生型和携带失功能基因型,两组间cTnI阳性率分别是12.07%和12.09%,没有统计学差异(P>0.05)。不同的PPIs组再根据基因分型分为8组,这8组间cTnI阳性率没有统计学差异(P>0.05)。不同PPIs组内野生型和失功能基因型两组间再分别比较cTnI阳性率,还是没有统计学差异(P>0.05)
     结论:服用氯吡格雷的PCI患者,与不同PPIs联合应用不会对PCI术后早期心肌损伤产生影响,也不会对携带失功能基因的PCI患者术后早期心肌损伤产生影响。对于服用氯吡格雷的冠心病患者如果联合应用PPIs,奥美拉唑、埃索美拉唑和泮托拉唑都可以选用,但最好选择泮托拉唑。
Clopidogrel co-administered with aspirin have become a corner-stone in treatment of ACS and PCI patients. Given the increased bleeding risk associated with antiplatelet therapy, PPIs are prescribed oiten.Clopidogrel and PPIs have a pharmacodynamie interaction because they are both metabolited by CYP2C19.
     CYP2C19*2and*3belong to loss of function CYP2C19alleles which decrease the inhibition of clopidogrel on platelet aggregation. The prevalence of the loss of function CYP2C19alleles in Asia was higher than that in Europe and America. There has been rare research for clopidogrel co-administered with PPIs on platelet aggregation in Chinese. So the first step of this research was to study the loss of function CYP2C19alleles in Chinese Han population. Then, the effects of clopidogrel on platelet aggregation was analysised in the CHD patients who were treated clopidogrel co-administered with PPIs and those patients who carried of loss of function CYP2C19alleles. Finally, the effects on early myocardial injury were determined in the elective PCI patients who received clopidogrel co-administered with different PPIs and those patients who carried of loss of function CYP2C19alleles. Three parts are showed as below.
     Part1The prevalence of the loss of function CYP2C19alleles in Chinese Han population.
     Objective:To investigate the prevalence of the loss of function CYP2C19alleles in Chinese Han population.
     Methods:1108consecutive volunteers were enrolled in this study, CYP2C19*2and*3genotype were performed by real-time PCR-TaqMan assay.
     Results:The prevalence of CYP2C19*1/*1、*1/*2、*2/*2、*1/*3、*2/*3、 *3/*3were39.53%、35.83%、8.48%、8.84%、6.32%and1%,respectively.
     Conclusions:The prevalence of loss of function CYP2C19alleles were about60%in Chinese Han population.
     Part2Effects of different PPIs on the antiplatelet activity of clopidogrel in CHD patients
     Objective:To examine the effects of different PPIs on the antiplatelet activity of clopidogrel in CHD patients with or without loss of function CYP2C19alleles.
     Methods:A total of164CHD patients admitted to the hospital were divided into four groups by administion of different PPIs:Group Omeprazole (35patients, omeprazole20mg daily、Group Esomeprazole(50patients, esomeprazole40mg daily)、Group Pantoprazole (41patients, pantoprazole40mg daily) and Group without PPIs (38patients). All patients were administered with aspirin (100mg daily) and clopidogrel (300loading dose,75mg daily thereafter). Blood samples for examining platelet aggregation and genotype were obtained from all patients before administion of clopidogrel and three days after. ADP (10u1)-induced platelet aggregation was assessed by multiple electrode aggregometry. The inhibition rate of clopidogrel on platelet aggregation=platelet aggregation before clopidogrel admonition—platelet aggregation after clopidogrel admonition/platelet aggregation before clopidogrel administion×100%. CYP2C19*2and*3genotype were performed by real-time PCR-TaqMan assay.
     Results:The inhibition rate of clopidogrel on platelet aggregation in the Group Omeprazole, Group Esomeprazole, Group Pantoprazole and Group without PPIs were40.93%,41.24%,46.67%and47.59%respectively. The inhibition rate of clopidogrel on platelet aggregation had a descending trend in the Group Omeprazole, Group Esomeprazole, Group Pantoprazole and Group without PPIs, but there were no significant difference among the four groups (P>0.05). The inhibition rate of clopidogrel on platelet aggregation had significant difference in non-carriers group and carriers of loss of function CYP2C19alleles group in all patients (41.21%vs39.33%, P<0.05). The patients of four groups were divided into non-carriers groups and carriers of loss of function CYP2C19alleles groups furthermore. The inhibition rate of clopidogrel on platelet aggregation had no significant difference among these eight groups (P>0.05), and had no significant difference in non-carriers group and carriers of loss of function CYP2C19alleles group in different PPIs groups (P>0.05)
     Conclusions:The inhibition rate of clopidogrel on platelet aggregation was reduced in the CHD patients who carried of loss of function CYP2C19alleles. The inhibition rate of clopidogrel on platelet aggregation wasn't affected by co-admonition with different PPIs in CHD patients, and wasn't affected by co-admonition with different PPIs in CHD patients who carriered of loss of function CYP2C19alleles.
     Part3Influence of different PPIs combined with clopidogrel on early myocardial injury in elective PCI patients
     Objective:To evaluate the influence of different PPIs combined with clopidogrel on early myocardial injury in elective PCI patients with or without loss of function CYP2C19alleles.
     Methods:A total of149patients with PCI were divided into four groups administered with different PPIs:Group Omeprazole (32patients, omeprazole20mg daily)、Group Esomeprazole (42patients, esomeprazole40mg daily)、 Group Pantoprazole (32patients, pantoprazole40mg daily) and Group without PPIs (43patients). All patients were administered with aspirin (100mg daily) and clopidogrel (300loading dose,75mg daily thereafter). Blood samples for examining cTnI and genotype were obtained from all patients on the next day after PCI。Positive cTnI was defined as cTnI>Ing/ml. CYP2C19*2and*3genotyping were performed by real-time PCR-TaqMan assay.
     Results:The positive rate of cTnI in Group Omeprazole, Group Esomeprazole, Group Pantoprazole and Group without PPIs were12.5%,11.9%,15.6%and9.3%respectively, and showed no significant difference in the four groups (P>0.05). The positive rate of cTnI in non-carriers groups and earriers of loss of function CYP2C19alleles groups in all patients were 12.07%and12.09%and showed no significant difference in the two groups (P>0.05). The patients of the four groups were divided into non-carriers groups and carriers of loss of function CYP2C19alleles groups furthermore. The positive rate of cTnl had no significant difference in these eight groups (P>0.05), and had no significant difference in non-carriers groups and carriers of loss of function CYP2C19alleles groups in different PPIs groups (P>0.05)
     Conclusions:There were no effects on early myocardial injury in the elective PCI patients co-administered with different PPIs and in the elective PCI patients who carried of loss of function CYP2C19alleles co-administered with different PPIs. Omeprazole. Esomeprazole or Pantoprazole can be selected in CHD patients co-administered with clopidogrel, but Pantoprazole may be the optimum.
引文
1 KSB, Smith SC Jr, Hirshfeld JW Jr, et al.2007 focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention:a report of the American College of Cardiology/American Heart Association Task Force on Practice guidelines. J Am Coll Cardiol. 2008.51(2):172-209
    2 Chan FK, Ching JY, Hung LC, et al. Clopidogrel versus aspirin and esomeprazole to prevent recurrent ulcer bleeding. N Engl J Med.2005. 352(3):238-244
    3 Hallas J, Dall M, Andries A, et al. Use of single and combined antithrombotic therapy and risk of serious upper gastrointestinal bleeding: population based case-control study. BMJ.2006.333(7571):726-728
    4 Savi P, Herbert JM, Pflieger AM. et al. Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol.1992.44(3):527-532
    5 Savi P5 Combalbert J. Gaich C, et al. The anti aggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P450-1A.Thromb Haemost.1994.72(2):313-317
    6 Laine K. Anttila M, Nyman L, Wahlberg A, Bertilsson L. CYP2C19 polymorphism is not important for the in vivo metabolism of selegiline. Eur J Clin Pharmacol.2001.57(2):137-142
    7 Santos PC, Soares RA; Santos DB, et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet.2011.12:13-19
    8 Kazui M, Nishiya Y, Ishizuka T. et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos.2010.38(1):92-99
    9 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drue. Discov.2010.9(2):354-169
    10 Trenk D, Hochholzer W, Fromm MF, et al. Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol.2008.51(20):1925-1934
    11 Cuisset T, Frere C, Quilici J, et al. Comparison of omeprazole and pantoprazole influence on a high 150-mg clopidogrel maintenance dose the PACA (Proton Pump Inhibitors And Clopidogrel Association) prospective randomized study. J Am Coll Cardiol.2009.54(13): 1149-1153
    12 Angiolillo DJ, Gibson CM, Cheng S, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects:randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011.89(1):65-74
    13 Li XQ, Andersson TB, Ahlstrom M, Weidolf L. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole. esomeprazole, Iansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos.2004.32(8):821-827
    14 Ogilvie BW, Yerino P, Kazmi F, et al. The proton pump inhibitor, omeprazole, but not Iansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19:implications for coadministration with clopidogrel. Drug Metab Dispos.2011.39(11):2020-2033
    15 Meehan RR, Gosden JR, Rout D, et al. Human cytochrome P-450 PB-1:a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am J Hum Genet.1988.42(1):26-37
    16 Coutts RT, Urichuk LJ. Polymorphic cytochromes P450 and drugs used in psychiatry. Cell Mol Neurobiol.1999.19(3):325-354
    17 Pirmohamed M, Park BK. Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci.2001.22(6):298-305
    18 Brandt JT. Close SL. Iturria SJ. et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost.2007.5(12): 2429-2436
    19 Umemura K, Furuta T, Kondo K. The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects. J Thromb Haemost.2008.6(8):1439-1441
    20 Hulot JS, Bura A, Villard E, et al. Cytochrome P4502C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood.2006.108(7):2244-2247
    21 Jinnai T, Horiuchi H, Makiyama T, et al. Impact of CYP2C19 polymorphisms on the antiplatelet effect of clopidogrel in an actual clinical setting in Japan. Circ J.2009.73(8):1498-1503
    22 Hwang SJ, Jeong YH, Kim IS, et al. The cytochrome 2C19*2 and *3 alleles attenuate response to clopidogrel similarly in East Asian patients undergoing elective percutaneous coronary intervention. Thromb Res. 2011.127(1):23-28
    23 Pettersen AA, Arnesen H, Opstad TB, et al. The influence of CYP 2C19*2 polymorphism on platelet function testing during single antiplatelet treatment with clopidogrel. Thromb J.2011.9:4-11
    24 Toth PP, Armani A. Thienopyridine therapy and risk for cardiovascular events in secondary prevention. Curr Atheroscler Rep.2009.11(5): 364-370
    25 Gilard M, Arnaud B, Le GG, Abgrall JF, et al. Influence of omeprazol on the antiplatelet action of clopidogrel associated to aspirin. J Thromb Haemost.2006.4(11):2508-2509
    26 Gilard M, Arnaud B, Cornily JC, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin:the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol.2008.51(3):256-260
    27 Kwan J, Htun WW, Huang Y, et al. Effect of proton pump inhibitors on platelet inhibition activity of clopidogrel in Chinese patients with percutaneous coronary intervention. Vasc Health Risk Manag.2011.7: 399-404
    28 Wu JQ, Zhu LP, Ou XT, et al. The polymorphism of cytochrome P(450) 2C19 gene in patients with invasive fungal infections. Zhonghua Nei Ke Za Zhi.2010.49(2):138-141
    29 Matetzky S, Shenkman B, Guetta V, et al. Clopidogrel resistance is associated with increased risk of recurrent atherothrombotic events in patients with acute myocardial infarction. Circulation.2004.109(25): 3171-3175
    30 Gurbel PA, Bliden KP, Hiatt BL, et al.. Clopidogrel for coronary stenting: response variability, drug resistance, and the effect of pretreatment platelet reactivity. Circulation.2003.107(23):2908-2913
    31 Furuta T. Sugimoto M, Shirai N, et al. CYP2C19 pharmacogenomics associated with therapy of Helicobacter pylori infection and gastro-esophageal reflux diseases with a proton pump inhibitor. Pharmacogenomics.2007.8(9):1199-1210
    32 Juurlink DN. Proton pump inhibitors and clopidogrel:putting the interaction in perspective. Circulation.2009.120(23):2310-2312
    33 Stedman CA, Barclay ML. Review article:comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors. Aliment Pharmacol Ther.2000.14(8):963-978
    34 Kaneko A, Lum JK, Yaviong L, et al. High and variable frequencies of CYP2C19 mutations:medical consequences of poor drug metabolism in Vanuatu and other Pacific islands. Pharmacogenetics.1999.9(5):581-590.
    35 de Morais SM. Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem.1994.269(22):15419-15422
    36 De Morais SM, Wilkinson GR, Blaisdell J, et al. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol.1994.46(4):594-598
    37 Kimura M,Ieiri I, Mamiya K, et al. Genetic polymorphism of cytochrome P450s, CYP2C19, and CYP2C9 in a Japanese population. Ther Drug Monit.1998.20(3):243-247
    38 Adithan C, Gerard N, Vasu S, et al. Allele and genotype frequency of CYP2C19 in a Tamilian population. Br J Clin Pharmacol.2003.56(3): 331-333
    39 Bravo-Villalta HV, Yamamoto K, Nakamura K, et al. Genetic polymorphism of CYP2C9 and CYP2C19 in a Bolivian population:an investigative and comparative study. Eur J Clin Pharmacol.2005.61(3): 179-184
    40 Namazi S, Azarpira N, Hendijani F, et al. The impact of genetic polymorphisms and patient characteristics on warfarin dose requirements: a cross-sectional study in Iran. Clin Ther.2010.32(6):1050-1060
    41 Celebi A, Kocaman O, Savli H, et al. The prevalence of CYP2C19 mutations in Turkish patients with dyspepsia. Turk J Gastroenterol.2009, 20(3):161-164
    42 Zalloum I, Hakooz N, Arafat T. Genetic polymorphism of CYP2C19 in a Jordanian population:influence of allele frequencies of CYP2C19*1 and CYP2C19*2 on the pharmacokinetic profile of lansoprazole. Mol Biol Rep. 2012.39(4):4195-4200
    43 Djaffar JI, Chamseddine N, Keleshian S, et al. Prevalence of CYP2C19 polymorphisms in the Lebanese population. Mol Biol Rep.2011.3.8(8): 5449-5452
    44 Bhatt DL, Fox KA, Hacke W,et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med.2006. 354(16):1706-1717
    45 Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction:randomised placebo-controlled trial. Lancet.2005.366(9497):1607-1621
    46 Lanas A, Scheiman J. Low-dose aspirin and upper gastrointestinal damage: epidemiology, prevention and treatment. Curr Med Res Opin.2007. 23(1):163-173
    47 Yamamoto K, Hokimoto S, Chitose T, et al. Impact of CYP2C19 polymorphism on residual platelet reactivity in patients with coronary heart disease during antiplatelet therapy. J Cardiol. 2011.57(2):194-201
    48 Chen L, Qin S, Xie J, et al. Genetic polymorphism analysis of CYP2C19 in Chinese Han populations from different geographic areas of mainland China. Pharmacogenomics.2008.9(6):691-702
    49 Wang SM, Zhu AP, Li D, et al. Frequencies of genotypes and alleles of the functional SNPs in CYP2C19 and CYP2E1 in mainland Chinese Kazakh, Uygur and Han populations. J Hum Genet.2009.54(6):372-375
    50 Zuo LJ, Guo T, Xia DY, et al. Allele and Genotype Frequencies of CYP3A4, CYP2C19, and CYP2D6 in Han, Uighur, Hui, and Mongolian Chinese Populations. Genet Test Mol Biomarkers.2012.16(2):102-108
    51 Collet JP, Hulot JS, Pena A, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction:a cohort study. Lancet.2009.373(9660):309-317
    52 Chen BL, Zhang W, Li Q, et al. Inhibition of ADP-induced platelet aggregation by clopidogrel is related to CYP2C19 genetic polymorphisms. Clin Exp Pharmacol Physiol.2008.35(8):904-908
    53 Kang MK, Jeong YH, Yoon SE, et al. Pre-procedural platelet reactivity after clopidogrel loading in korean patients undergoing scheduled percutaneous coronary intervention. J Atheroscler Thromb.2010.17(11): 1122-1131
    54 Jeong YH, Kim IS, Park Y, et al. Carriage of cytochrome 2C19 polymorphism is associated with risk of high post-treatment platelet reactivity on high maintenance-dose clopidogrel of 150 mg/day:results of the ACCEL-DOUBLE (Accelerated Platelet Inhibition by a Double Dose of Clopidogrel According to Gene Polymorphism) study. JACC Cardiovasc Interv.2010.3(7):731-741
    55 Harmsze AM, van WJW, Ten BJM, et al. CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis:a case-control study. Eur Heart J.2010.31(24):3046-3053
    56 Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med.2009. 360(4):363-375
    57 Maeda A, Ando H, Asai T, et al. Differential impacts of CYP2C19 gene polymorphisms on the antiplatelet effects of clopidogrel and ticlopidine. Clin Pharmacol Ther.2011.89(2):229-233
    58 Park KW, Park JJ, Lee SP, et al. Cilostazol attenuates on-treatment platelet reactivity in patients with CYP2C19 loss of function alleles receiving dual antiplatelet therapy:a genetic substudy of the CILON-T randomised controlled trial. Heart.2011.97(8):641-647
    1 Chan FK, Ching JY, Hung LC, et al. Clopidogrel versus aspirin and esomeprazole to prevent recurrent ulcer bleeding. N Engl J Med. 2005. 352(3): 238-244
    2 Hallas J, Dall M, Andries A, et al. Use of single and combined antithrombotic therapy and risk of serious upper gastrointestinal bleeding: population based case-control study. BMJ. 2006. 333(7571): 726-728
    3 KSB, Smith SC Jr, Hirshfeld JW Jr, et al. 2007 focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention: a report of the American College of Cardiology/American Heart Association Task Force on Practice guidelines. J Am Coll Cardiol. 2008. 51(2): 172-209
    4 Santos PC, Soares RA, Santos DB, et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to etlmicity in the Brazilian general population. BMC Med Genet. 2011. 12: 13-19
    5 Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos. 2010. 38(1): 92-99
    6 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov. 2010.9(2): 154-169
    7 Trenk D, Hochholzer W, Fromm MF, et al. Cytochrome P450 2C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol. 2008. 51(20): 1925-1934
    8 Furuta T, Sugimoto M, Shirai N, et al.. CYP2C19 pharmacogenomics associated with therapy of Helicobacter pylori infection and gastro-esophageal reflux diseases with a proton pump inhibitor. Pharmacogenomics. 2007. 8(9): 1199-1210
    9 Li XQ, Andersson TB, Ahlstrom M, et al.. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos.2004.32(8):821-827
    10 Juurlink DN. Proton pump inhibitors and clopidogrel:putting the interaction in perspective. Circulation.2009.120(23):2310-2312
    11 Stedman CA, Barclay ML. Review article:comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors. Aliment Pharmacol Ther.2000.14(8):963-978
    12 Ogilvie BW, Yerino P, Kazmi F, et al. The proton pump inhibitor, omeprazole, but not lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19:implications for coadministration with clopidogrel. Drug Metab Dispos.2011.39(11): 2020-2033
    13 Cuisset T, Frere C, Quilici J, et al. Comparison of omeprazole and pantoprazole influence on a high 150-mg clopidogrel maintenance dose the PACA (Proton Pump Inhibitors And Clopidogrel Association) prospective randomized study. J Am Coll Cardiol.2009.54(13): 1149-1153
    14 Angiolillo DJ, Gibson CM, Cheng S, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects:randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011.89(1):65-74
    15 Collet JP, Hulot JS, Pena A, et al. Cytochrome P4502C19 polymorphism in young patients treated with clopidogrel after myocardial infarction:a cohort study. Lancet.2009.373(9660):309-317
    16 de Morais SM, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem.1994.269(22):15419-15422
    17 De Morais SM. Wilkinson GR. Blaisdeil J. el al. Idemification of a genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol. 1994.46(4): 594-598
    18 Pirmohamed M, Park BK. Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci. 2001. 22(6): 298-305
    19 Yamamoto K, Hokimoto S, Chitose T, et al. Impact of CYP2C1P polymorphism on residual platelet reactivity in patients with coronary heart disease during antiplatelet therapy. J Cardiol. 2011. 57(2): 194-201
    20 Jorgensen PW, Calleja EL, Gaso PS, Matarranz dAM, NavaiTO RAS Sanchez JM. Antiagregation and anticoagulation, relationship with upper gastrointestinal bleeding. Rev Esp Enferm Dig. 2011. 103(7): 360-365
    21 Toth PP, Armani A. Thienopyridine therapy and risk for cardiovascular events in secondary prevention. Curr Atheroscler Rep. 2009. 11(5): 364470
    22 Gilard M, Arnaud B, Le GG, Abgrall JF, et al. Influence of omeprazol on the antiplatelet action of clopidogrel associated to aspirin. J Thromb Haernost. 2006. 4(11): 2508-2509
    23 Gilard M, Arnaud B, Cornily JC, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin: the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol. 2008. 51(3): 256-260
    24 Kwan J, Htun WW. Huang Y. et al. Effect of proton pump inhibitors on platelet inhibition activity of clopidogrel in Chinese patients with percutaneous coronary intervention. Vasc Health Risk Manag. 2011. 7: 399-404
    25 Siller-Matula JM, Spiel AO, Lang IM, et al. Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel. Am Heart J. 2009. 157(1): 148.el-5
    26 Meyer UA. Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur J Gastroenterol Hepatol. 1996. 8 Suppl 1: S21- S25
    27 Siller-Matula JM. Spiel AO. Lang IM. et al. Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel. Am Heart J.2009. 157(1):148.e1-5
    28 Schmidt M, Johansen MB, Robertson DJ, et al. Concomitant use of clopidogrel and proton pump inhibitors is not associated with major adverse cardiovascular events following coronary stent implantation. Aliment Pharmacol Ther.2012.35(1):165-174
    29 Sarafoff N, Sibbing D, Sonntag U, et al. Risk of drug-eluting stent thrombosis in patients receiving proton pump inhibitors. Thromb Haemost. 2010.104(3):626-632
    30 Gremmel T, Steiner S, Seidinger D, et al. The influence of proton pump inhibitors on the antiplatelet potency of clopidogrel evaluated by 5 different platelet function tests. J Cardiovasc Pharmacol.2010.56(5): 532-539
    31 Mega JL, Close SL, Wiviott SD. et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med.2009.360(4):354-362
    32 Giusti B, Gori AM, Marcucci R, et al. Cytochrome P450 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10 + 12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet Genomics.2007.17(12):1057-1064
    33 Harmsze A, van WJW, Bouman HJ, et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet Genomics.2010.20(1):18-25
    34 Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med.2009. 360(4):363-375
    35 Huang CC, Chen YC, Leu HB, et al. Risk of adverse outcomes in Taiwan associated with concomitant use of clopidogrel and proton pump inhibitors in patients who received percutaneous coronary intervention. Am J Cardiol. 2010.105(12):1705-1709
    36 Goodman SG, Clare R, Pieper KS. et al. Association of Proton Pump Inhibitor Use on Cardiovascular Outcomes With Clopidogrel and Ticagrelor. Insights From the Platelet Inhibition and Patient Outcomes Trial. Circulation.2012.125(8):978-986
    1 Harrington RA, Becker RC, Ezekowitz M, et al. Antithrombotic therapy for coronary artery disease:the Seventh ACCP Conference on Antithrombotic and Thrombolytic Therapy. Chest.2004.126(3 Suppl): 513S-548S
    2 Kereiakes DJ, Montalescot G, Antman EM, et al. Low-moleeular-weight heparin therapy for non-ST-elevation acute coronary syndromes and during percutaneous coronary intervention:an expert consensus. Am Heart J.2002.144(4):615-624. Montalescot G, Collet JP, Tanguy ML, et al. Anti-Xa activity relates to survival and efficacy in unselected acute coronary syndrome patients treated with enoxaparin. Circulation.2004. 110(4):392-398
    3 Bodor GS, Porter S, Landt Y, et al. Development of monoclonal antibodies for an assay of cardiac troponin-I and preliminary results in suspected cases of myocardial infarction. Clin Chem.1992.38(11): 2203-2214
    4 AJE, Schechtman KB, Landt Y, Ladenson JH. et al. Comparable detection of acute myocardial infarction by creatine kinase MB isoenzyme and cardiac troponin I. Clin Chem.1994.40(7 Pt 1):1291-1295
    5 Antman EM, Grudzien C. Sacks DB. Evaluation of a rapid bedside assay for detection of serum cardiac troponin T. JAMA.1995.273(16): 1279-1282
    6 KSB, Smith SC Jr, Hirshfeld JW Jr, et al.2007 focused update of the ACC/AHA/SCAI 2005 guideline update for percutaneous coronary intervention:a report of the American College of Cardiology/American Heart Association Task Force on Practice guidelines. J Am Coll Cardiol. 2008.51(2):172-209
    7 Bhatt DL, Fox KA, Hacke W, et al. Clopidogrel and aspirin versus aspirin alone for the prevention of atherothrombotic events. N Engl J Med.2006. 354(16):1706-1717.
    8 Chen ZM, Jiang LX, Chen YP, et al. Addition of clopidogrel to aspirin in 45,852 patients with acute myocardial infarction:randomised placebo-controlled trial. Lancet.2005.366(9497):1607-1621
    9 Lanas A, Scheiman J. Low-dose aspirin and upper gastrointestinal damage: epidemiology, prevention and treatment. Curr Med Res Opin.2007. 23(1):163-173
    10 Santos PC, Soares RA, Santos DB, et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet.2011.12:13-19
    11 Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Drug Metab Dispos.2010.38(1):92-99
    12 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov.2010.9(2):154-169
    13 Trenk D, Hochholzer W, Fromm MF, et al. Cytochrome P4502C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol.2008.51(20):1925-1934
    14 Li XQ, Andersson TB. Ahlstrom M, et al. Comparison of inhibitory effects of the proton pump-inhibiting drugs omeprazole, esomeprazole, lansoprazole, pantoprazole, and rabeprazole on human cytochrome P450 activities. Drug Metab Dispos.2004.32(8):821-827.
    15 Furuta T, Sugimoto M, Shirai N, et al. CYP2C19 pharmacogenomics associated with therapy of Helicobacter pylori infection and gastro-esophageal reflux diseases with a proton pump inhibitor. Pharmacogenomics.2007.8(9):1199-1210
    16 Stedman CA, Barclay ML. Review article:comparison of the pharmacokinetics, acid suppression and efficacy of proton pump inhibitors. Aliment Pharmacol Ther.2000.14(8):963-978
    17 Juurlink DN. Proton pump inhibitors and clopidogrel:putting the interaction in perspective. Circulation.2009.120(23):2310-2312
    18 Ho PM, Maddox TM, Wang L, et al. Risk of adverse outcomes associated with concomitant use of clopidogrel and proton pump inhibitors following acute coronary syndrome. JAMA.2009.301(9):937-944
    19 Hsiao FY, Mullins CD, Wen YW, et al. Relationship between cardiovascular outcomes and proton pump inhibitor use in patients receiving dual antiplatelet therapy after acute coronary syndrome. Pharmacoepidemiol Drug Saf.2011.20(10):1043-1049
    20 Collet JP, Hulot JS, Pena A, et al. Cytochrome P450 2C19 polymorphism in young patients treated with clopidogrel after myocardial infarction:a cohort study. Lancet.2009.373(9660):309-317
    21 de Morais SM, Wilkinson GR, Blaisdell J, et al. The major genetic defect responsible for the polymorphism of S-mephenytoin metabolism in humans. J Biol Chem.1994.269(22):15419-15422
    22 De Morais SM, Wilkinson GR, Blaisdell J, et al. Identification of a new genetic defect responsible for the polymorphism of (S)-mephenytoin metabolism in Japanese. Mol Pharmacol.1994.46(4):594-598.
    23 Hwang SJ, Jeong YH, Kim IS, et al. The cytochrome 2C19*2 and*3 alleles attenuate response to clopidogrel similarly in East Asian patients undergoing elective percutaneous coronary intervention. Thromb Res. 2011.127(1):23-28
    24 Harmsze AM, van WJW, Ten BJM; et al. CYP2C19*2 and CYP2C9*3 alleles are associated with stent thrombosis:a case-control study. Eur Heart J.2010.31(24):3046-3053
    25 Yamamoto K, Hokimoto S, Chitose T, et al. Impact of CYP2C19 polymorphism on residual platelet reactivity in patients with coronary heart disease during antiplatelet therapy. J Cardiol.2011.57(2):194-201.
    26 Pirmohamed M, Park BK. Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci.2001.22(6):298-305
    27 Saadeddin SM, Habbab MA. Sobki SH. et al. Biochemical detection of minor myocardial injury after elective, uncomplicated, successful percutaneous coronary intervention in patients with stable angina:clinical outcome. Ann Clin Biochem.2002.39(Pt 4):392-397
    28 Saadeddin SM, Habbab MA, Sobki SH, et al. Minor myocardial injury after elective uncomplicated successful PTCA with or without stenting: detection by cardiac troponins. Catheter Cardiovasc Interv.2001.53(2): 188-192
    29 Tavassoli N, Voisin S, Carrie D, et al. High maintenance dosage of clopidogrel is associated with a reduced risk of stent thrombosis in clopidogrel-resistant patients. Am J Cardiovasc Drugs.2010.10(1):29-35.
    30 Dumaine R, Borentain M, Bertel O, et al. Intravenous low-molecular-weight heparins compared with unfractionated heparin in percutaneous coronary intervention:quantitative review of randomized trials. Arch Intern Med.2007.167(22):2423-2430
    31 Chan FK, Ching JY, Hung LC, et al. Clopidogrel versus aspirin and esomeprazole to prevent recurrent ulcer bleeding. N Engl J Med.2005. 352(3):238-44
    32 Hallas J. Dall M, Andries A, et al. Use of single and combined antithrombotic therapy and risk of serious upper gastrointestinal bleeding: population based case-control study. BMJ.2006.333(7571):726-728
    33 Jorgensen PW, Calleja EL, Gaso PS. et al. Antiagregation and anticoagulation, relationship with upper gastrointestinal bleeding. Rev Esp Enferm Dig.2011.103(7):360-365
    34 Yasuda H, Yamada M, Sawada S, et al. Upper gastrointestinal bleeding in patients receiving dual antiplatelet therapy after coronary stenting. Intern Med.2009.48(19):1725-1730
    35 Cuisset T, Frere C, Quilici J, et al. Comparison of omeprazole and pantoprazole influence on a high 150-mg clopidogrel maintenance dose the PACA (Proton Pump Inhibitors And Clopidogrel Association) prospective randomized study. J Am Coll Cardiol.2009.54(13): 1149-1153
    36 Angiolillo DJ, Gibson CM, Cheng S, et al. Differential effects of omeprazole and pantoprazole on the pharmacodynamics and pharmacokinetics of clopidogrel in healthy subjects:randomized, placebo-controlled, crossover comparison studies. Clin Pharmacol Ther. 2011.89(1):65-74
    37 Ogilvie BW, Yerino P, Kazmi F, et al. The proton pump inhibitor, omeprazole, but not lansoprazole or pantoprazole, is a metabolism-dependent inhibitor of CYP2C19:implications for coadministration with clopidogrel. Drug Metab Dispos.2011.39(11): 2020-2033
    38 Gilard M, Araaud B, Le GG, et al. Influence of omeprazol on the antiplatelet action of clopidogrel associated to aspirin. J Thromb Haemost. 2006.4(11):2508-2509
    39 Gilard M, Arnaud B, Cornily JC, et al. Influence of omeprazole on the antiplatelet action of clopidogrel associated with aspirin:the randomized, double-blind OCLA (Omeprazole CLopidogrel Aspirin) study. J Am Coll Cardiol.2008.51(3):256-260.
    40 Toth PP, Armani A. Thienopyridine therapy and risk for cardiovascular events in secondary prevention. Curr Atheroscler Rep.2009.11(5): 364-370
    41 Kwan J. Htun WW, Huang Y, et al. Effect of proton pump inhibitors on platelet inhibition activity of clopidogrel in Chinese patients with percutaneous coronary intervention. Vasc Health Risk Manag.2011.7: 399-404
    42 Siller-Matula JM, Spiel AO, Lang IM, et al. Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel. Am Heart J.2009. 157(1):148.e1-5
    43 Meyer UA. Metabolic interactions of the proton-pump inhibitors lansoprazole, omeprazole and pantoprazole with other drugs. Eur J Gastroenterol Hepatol.1996.8 Suppl 1:S21-S25.
    44 Siller-Matula JM, Spiel AO, Lang IM, et al. Effects of pantoprazole and esomeprazole on platelet inhibition by clopidogrel. Am Heart J.2009. 157(1):148.e1-5
    45 Ricciardi MJ, Davidson CJ, Gubernikoff G, et al. Troponin I elevation and cardiac events after percutaneous coronary intervention. Am Heart J.2003. 145(3):522-528
    46 Saadeddin SM, Habbab MA, Sobki SH, et al. Detection of minor myocardial injury after successful percutaneous transluminal coronary angioplasty with or without stenting. Med Sci Monit.2000.6(4):708-712
    47 Okmen E. Kasikcioglu H, Sanli A, et al. Correlations between cardiac troponin I, cardiac troponin T, and creatine phosphokinase MB elevation following successful percutaneous coronary intervention and prognostic value of each marker. J Invasive Cardiol.2005.17(2):63-67
    48 Schmidt M, Johansen MB, Robertson DJ, et al. Concomitant use of clopidogrel and proton pump inhibitors is not associated with major adverse cardiovascular events following coronary stent implantation. Aliment Pharmacol Then 2012.35(1):165-174
    49 Gupta E. Bansal D, Sotos J. Olden K. Risk of adverse clinical outcomes with concomitant use of clopidogrel and proton pump inhibitors following percutaneous coronary intervention. Dig Dis Sci.2010.55(7): 1964-1968
    50 Tentzeris I, Jarai R, Farhan S, et al. Impact of concomitant treatment with proton pump inhibitors and clopidogrel on clinical outcome in patients after coronary stent implantation. Thromb Haemost.2010.104(6): 1211-1218
    51 Rossini R, Capodanno D, Musumeci G, et al. Safety of clopidogrel and proton pump inhibitors in patients undergoing drug-eluting stent implantation. Coron Artery Dis.2011.22(3):199-205
    52 Sarafoff N, Sibbing D, Sonntag U, et al. Risk of drug-eluting stent thrombosis in patients receiving proton pump inhibitors. Thromb Haemost. 2010.104(3):626-632
    53 Harmsze A. van WJW, Bouman HJ, et al. Besides CYP2C19*2, the variant allele CYP2C9*3 is associated with higher on-clopidogrel platelet reactivity in patients on dual antiplatelet therapy undergoing elective coronary stent implantation. Pharmacogenet Genomics.2010.20(1):18-25
    54 Simon T, Verstuyft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med.2009. 360(4):363-375
    55 Harmsze AM. van WJW. Souverein PC, et al. Combined influence of proton-pump inhibitors, calcium-channel blockers and CYP2C19*2 on on-treatment platelet reactivity and on the occurrence of atherothrombotic events after percutaneous coronary intervention. J Thromb Haemost.2011. 9(10):1892-1901
    56 Huang CC. Chen YC. Leu MB. et al. Risk of adverse outcomes in Taiwan associated with concomitant use of clopidogrel and proton pump inhibitc in patients who received percutaneous coronary intervention. Am J C 2010.105(12):1705-1709
    1 Savi P, Herbert JM, Pflieger AM, et al. Importance of hepatic metabolism in the antiaggregating activity of the thienopyridine clopidogrel. Biochem Pharmacol.1992.44(3):527-532
    2 Savi P, Combalbert J, Gaich C, et al. The antiaggregating activity of clopidogrel is due to a metabolic activation by the hepatic cytochrome P45G-1A. Thromb Haemost.1994.72(2):313-317
    3 Laine K, Anttila M, Nyman L, Wahlberg A, Bertilsson L. CYP2C19 polymorphism is not important for the in vivo metabolism of selegiline. Eur J Clin Pharmacol.2001.57(2):137-142
    4 Santos PC, Soares RA, Santos DB, et al. CYP2C19 and ABCB1 gene polymorphisms are differently distributed according to ethnicity in the Brazilian general population. BMC Med Genet.2011.12:13-19
    5 Kazui M, Nishiya Y, Ishizuka T, et al. Identification of the human cytochrome P450 enzymes involved in the two oxidative steps in the bioactivation of clopidogrel to its pharmacologically active metabolite. Ding Metab Dispos.2010.38(1):92-99
    6 Michelson AD. Antiplatelet therapies for the treatment of cardiovascular disease. Nat Rev Drug Discov.2010.9(2):154-169
    7 Trenk D, Hochholzer W, Fromm MF, et al. Cytochrome P4502C19 681G>A polymorphism and high on-clopidogrel platelet reactivity associated with adverse 1-year clinical outcome of elective percutaneous coronary intervention with drug-eluting or bare-metal stents. J Am Coll Cardiol.2008.51(20):1925-1934
    8 Meehan RR, Gosden JR, Rout D, et al. Human cytochrome P-450 PB-1:a multigene family involved in mephenytoin and steroid oxidations that maps to chromosome 10. Am J Hum Genet.1988.42(1):26-37
    9 Coutts RT, Urichuk LJ. Polymorphic eytochromes P450 and drugs used in psychiatry. Cell Mol Neurobiol.1999.19(3):325-354
    10 Pirmohamed M, Park BK. Genetic susceptibility to adverse drug reactions. Trends Pharmacol Sci.2001.22(6):298-305
    11 Ferguson RJ, De Morais SM, Benhamou S, et al. A new genetic defect in human CYP2C19:mutation of the initiation codon is responsible for poor metabolism of S-mephenytoin. J Pharmacol Exp Ther.1998.284(1): 356-361
    12 Ibeanu GC, Blaisdell J, Ghanayem BI, et al. An additional defective allele, CYP2C19*5, contributes to the S-mephenytoin poor metabolizer phenotype in Caucasians. Pharmaeogenetics.1998.8(2):129-135
    13 Ibeanu GC, Goldstein JA, Meyer U, et al. Identification of new human CYP2C19 alleles (CYP2C19*6 and CYP2C19*2B) in a Caucasian poor metabolizer of mephenytoin. J Pharmacol Exp Ther.1998.286(3): 1490-1495
    14 Ibeanu GC, Blaisdell J, Ferguson RJ, et al. A novel transversion in the intron 5 donor splice junction of CYP2C19 and a sequence polymorphism in exon 3 contribute to the poor metabolizer phenotype for the anticonvulsant drug S-mephenytoin, J Pharmacol Exp Ther.1999.290(2): 635-640
    15 Sim SC, Risinger C. Dahl ML, et al. A common novel CYP2C19 gene variant causes ultrarapid drug metabolism relevant for the drug response to proton pump inhibitors and antidepressants. Clin Pharmacol Ther.2006. 79(1):103-113
    16 Brandt JT, Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost 2007.5(12): 2429-2436
    17 Umemura K5 Furuta T, Kondo K. The common gene variants of CYP2C19 affect pharmacokinetics and pharmacodynamics in an active metabolite of clopidogrel in healthy subjects. J Thromb Haemost.2008.6(8):1439-1441
    18 Hulot JS, Bura A, Villard E, et al. Cytochrome P4502C19 loss-of-function polymorphism is a major determinant of clopidogrel responsiveness in healthy subjects. Blood.2006.108(7):2244-2247
    19 Frere C, Cuisset T, Morange PE, et al. Effect of cytochrome p450 polymorphisms on platelet reactivity after treatment with clopidogrel in acute coronary syndrome. Am J Cardiol.2008.101(8)'.1088-1093
    20 Jinnai T, Horiuchi H, Makiyama T, et al. Impact of CYP2C19 polymorphisms on the antiplatelet effect of clopidogrel in an actual clinical setting in Japan. Circ J.2009.73(8):1498-1503
    21 Desta Z, Zhao X, Shin JG, Flockhart DA. Clinical significance of the cytochrome P450 2C19 genetic polymorphism. Clin Pharmacokinet.2002. 41(12):913-958
    22 Chen BL, Zhang W, Li Q, et al. Inhibition of ADP-induced platelet aggregation by clopidogrel is related to CYP2C19 genetic polymorphisms. Clin Exp Pharmacol Physiol.2008.35(8):904-908
    23 Mega JL, Close SL, Wiviott SD5 et al. Cytochrome p-450 polymorphisms and response to clopidogrel. N Engl J Med.2009.360(4):354-362
    24 Pettersen AA, Arnesen H, Opstad TB, et al. The influence of CYP 2C19*2 polymorphism on platelet function testing during single antiplatelet treatment with clopidogrel. Thromb J.2011.9:4-11
    25 Liu XL, Wang ZJ5 Yang Q, et al. Impact of CYP2C19 polymorphism and smoking on response to clopidogrel in patients with stable coronary artery disease. Chin Med J (Engl).2010.123(22):3178-3183
    26 Geisler T, Schaeffeler E, Dippon J, et al. CYP2C19 and nongenetic factors predict poor responsiveness to clopidogrel loading dose after coronary stent implantation. Pharmacogenomics.2008.9(9):1251-1259
    27 Giusti B, Gori AM, Marcucci R, et al. Cytochrome P45O 2C19 loss-of-function polymorphism, but not CYP3A4 IVS10+12G/A and P2Y12 T744C polymorphisms, is associated with response variability to dual antiplatelet treatment in high-risk vascular patients. Pharmacogenet Genomics.2007.17(12):1057-1064
    28 Collet JP, Hulot JS, Pena A, et al. Cytochrome P4502C19 polymorphism in young patients treated with clopidogrel after myocardial infarction:a cohort study. Lancet.2009.373(9660):309-317
    29 Simon T, Verstayft C, Mary-Krause M, et al. Genetic determinants of response to clopidogrel and cardiovascular events. N Engl J Med,2009. 360(4):363-375
    30 Malek LA, Przvlmki J, Spiewak M, et al. Cytochrome P4502C19 polymorphism, subopthnal reperftision and all-cause mortality in patients with acute myocardial infarction. Cardiology.2010.117(2):81-87
    31 Shuldiner AR, O'Connell JR3 Bliden KP, et al. Association of eytocbrome P450 2C19 genotype with the antiplatelet effect and clinical efficacy of clopidogrel therapy. JAMA.2009.302(8):849-857
    32 Pare G, Mehta SR, Yusuf S, et al. Effects of CYP2C19 genotype on outcomes of clopidogrel treatment. N Engl J Med.2010.363(18): 1704-1714
    33 Sibbing D, Stegherr J, Latz W, et al. Cytochrome P450 2C19 loss-of-function polymorphism and stent thrombosis following percutaneous coronary intervention. Eur Heart J.2009.30(8):916-922
    34 Mega JL, Simon T, Collet JP, et al. Reduced-function CYP2C19 genotype and risk of adverse clinical outcomes among patients treated with clopidogrel predominantly for PCI:a meta-analysis. JAMA.2010.304(16): 1821-1830
    35 Sawada T, Shinke T, Shite J, et al. Impact of cytochrome P4502C19*2 polymorphism on intra-stent thrombus after drug-eluting stent implantation in Japanese patients receiving clopidogrel. Circ J.2010.75(1): 99-105
    36 Giusti B, Gori AM, Marcucci R, et al. Relation of cytochrome P4502C19 loss-of-function polymorphism to occurrence of drug-eluting coronary stent thrombosis. Am J Cardiol.2009.103(6):806-811
    37 Hulot JS, Collet JP, Silvain J, et al, Cardiovascular risk in clopidogrel-treated patients according to cytochrome P4502C19*2 loss-of-function allele or proton pump inhibitor coadministration:a systematic meta-analysis. J Am Coll Cardiol.2010.56(2):134-143
    38 Zabalza M, Subirana I, Sala J, et al. Meta-analyses of the association between cytochrome CYP2C19 loss- and gain-of-function polymorphisms and cardiovascular outcomes In patients with coronary arteiy disease treated With clspidogl.Heart, 2011.98(2):100-108
    39 Fontena P, Senouf D, Mach F. Biological effect of increased maintenance dose of clopidogrel in cordiovascular outpatients and influence of the eytodsrome P450 2C19*2 allele on clopidogrel responsiveivess. Thromb Res. 2008.12l(4) 463-468
    40 Tavassoli N, Voisin S, Carrie D, et at High maintenance dosage of clopidogrel is associated with a reduced risk of stem thrombosis in clopidogrel-restent patiente. Am J Cardiovasc Drugs. 2010.10(1): 29-35
    41 Maeda A, Ando H, Asai T, et al Differential impacts of CYP2C19 gene polymorphisms on the antiplatelet effects of clopidogrel atnd ticlopidine. Clin Pharmacol Then 2011. 89(2): 229-233
    42 Jeong YH, Lee SW, Choi BR, et al. Randomized comparison of adjunctive cilostazol versus high maintenance dose clopidogrel in patients with high post-treatment platelet reactivity: results of the ACCEL-RESISTANCE (Adijunctive Cilostazol Versus High Maintenance Dose Clopidogrel in Patients With Clopidogrcl Resistance) randomized study. J Am Coll Gardiol 2009. 53(13):1101-1109
    43 Park K W, Park JJ, Lee SP, et al. Cilostazol attenuates on-trettment platelet reactivity in patients with CYP2C19 loss of function alkies receiving dual antiplatelet therapy; a genetic suhstudy of the CILON-T randomised Dontrolled trial Heart, 2011.97(8): 641-647
    44 Wallentin L, Varenhorst C, James S, et al. Prasugrel achieves greater and fester P2Y12reeeptor-mediated platelet inhibition than clopidogrel due to more efficient generation of its active metabolite in aspirin-treated patients with coronary arteiy disease. Eur Heart J. 2008. 29(1): 21-30
    4.5 Alexflpoulos D, Dimitropoulos P, Davlouros P, et al. Prasugrel overcomes high on-clopidogrel platelet reactivity post-stenting more effectively than high-dose (150-mg) dcpidogrel: the importance of CYP2C19*2 genotyping. JACC Cardiovasc Interv. 2011.4(4): 403-410
    46 Angiolillo DJ, Fernandez-Ortiz A, Bernardo E, et al. High clopidogrel loading dose during coronary stenting:effects on drug response and interindividual variability. Eur Heart J.2004.25(21):1903-1910
    47 Gurbel PA, Bliden KP, Hayes KM, et al. The relation of dosing to clopidogrel responsiveness and the incidence of high post-treatment platelet aggregation in patients undergoing coronary stenting. J Am Coll Cardiol.2005.45(9):1392-196
    48 Bathum L, Andersen-Ranberg K, Boldsen J, B et al. Genotypes for the cytochrome P450 enzymes CYP2D6 and CYP2C19 in human longevitY. Role of CYP2D6 and CYP2C19 in longevity. Eur J Clin Pharmacol.1998. 54(5):427-430
    49 von BN, Taubert D, Pogatsa-Murray G, et al. Absorption, metabolization, and antiplatelet effects of 300-,600-, and 900-mgloading doses of clopidogrel:results of the ISAR-CHOICE (Intracoronary Stenting and Antithrombotic Regimen:Choose Between 3 High Oral Doses for ImmediateClopidogrel Effect) Trial. Circulation.2005.112(19): 2946-2950
    50 Collet JP, Hulot JS, Anzaha G, et al. High doses of clopidogrel to overcome genetic resistance:the randomized crossover CLOVIS-2 (Clopidogrel and Response Variability Investigation Study 2). JACC Cardiovasc Interv.2011.4(4):392-402
    51 Bonello L, Armero S, Ait MO, et al. Clopidogrel loading dose adjustment according to platelet reactivity monitoring in patients carrying the 2C19*2 loss of function polymorphism. J Am Coll Cardiol.2010.56(20): 1630-1636
    52 Jeong YH, Kim IS, Park Y, et al. Carnage of cytochrome 2C19 polymorphism is associated with risk of high post-treatment platelet reactivity on high maintenance-dose clopidogrel of 150 mg/day:results of the ACCEL-DOUBLE (Accelerated Platelet Inhibition by a Double Dose of Clopidogrel According to Gene Polymorphism) study. JACC Cardiovasc Interv.2010.3(7):731-741
    53 Cuisset T, Quilici J, Cohen W, et al. to CYP2C19 Genotypes in Clopidogrel Low Responders Undergoing Coronary Stenting for Non ST Elevation Acute Coronary Syndrome. Am J Cardiol.2011.108(6): 760-765
    54 Mehta SR, Bassand JP, Chrolavicius S, et al. Dose comparisons of clopidogrel and aspirin in acute coronary syndromes. N Engl J Med.2010. 363(10):930-942
    55 Lee BK, Lee SW, Park SW, et al. Effects of triple antiplatelet therapy (aspirin, clopidogrel, and cilostazol) on platelet aggregation and P-selectin expression in patients undergoing coronary artery stent implantation. Am J Cardiol.2007.100(4):610-614.
    56 Lee SW, Park SW. Hong MK, et al. Triple versus dual antiplatelet therapy after coronary stenting:impact on stent thrombosis. J Am Coll Cardiol. 2005.46(10):1833-1837
    57 Brandt JT, Payne CD, Wiviott SD, et al. A comparison of prasugrel and clopidogrel loading doses on platelet function:magnitude of platelet inhibition is related to active metabolite formation. Am Heart J.2007. 153(1):66.e9-16
    58 Matsushima N. Jakubowski JA, Asai F, et al. Platelet inhibitory activity and pharmacokinetics of prasugrel (CS-747) a novel thienopyridine P2Y12 inhibitor:a multiple-dose study in healthy humans. Platelets.2006.17(4): 218-226
    59 Jernberg T, Payne CD, Winters KJ, et al. Prasugrel achieves greater inhibition of platelet aggregation and a lower rate of non-responders compared with clopidogrel in aspirin-treated patients with stable coronary artery disease. Eur Heart J.2006.27(10):1166-1173
    60 Jakubowski JA, Payne CD, Brandt JT, et al. The platelet inhibitory effects and pharmacokinetics of prasugrel after administration of loading and maintenance doses in healthy subjects. J Cardiovasc Pharmacol.2006. 47(3):377-384
    61 Asai F. Jakubowski JA. Naganuma H. et al. Platelet inhibitory activity and pharmacokinetics of prasugrel (CS-747) a novel thienopyridine P2Y12 inhibitor:a single ascending dose study in healthy humans. Platelets.2006. 17(4):209-217
    62 Niitsu Y, Jakubowski JA, Sugidachi A, et al. Pharmacology of CS-747 (prasugrel, LY640315), a novel, potent antiplatelet agent with in vivo P2Y12 receptor antagonist activity. Semin Thromb Hemost.2005.31(2): 184-194
    63 Petersen KU. Relevance of metabolic activation pathways:the example of clopidogrel andprasugrel. Arzneimittelforschung.2009.59(5):213-227
    64 Nishiya Y, Hagihara K, Kurihara A, et al. Comparison of mechanism-based inhibition of human cytochrome P4502C19 byticlopidine, clopidogrel, and prasugrel. Xenobiotica.2009.39(11):836-843
    65 Varenhorst C, James S, Erlinge D, et al. Genetic variation of CYP2C19 affects both pharmacokinetic and pharmacodynamicresponses to clopidogrel but not prasugrel in aspirin-treated patients withcoronary artery disease. Eur Heart J.2009.30(14):1744-1752
    66 Brandt JT. Close SL, Iturria SJ, et al. Common polymorphisms of CYP2C19 and CYP2C9 affect the pharmacokinetic and pharmacodynamic response to clopidogrel but not prasugrel. J Thromb Haemost.2007.5(12): 2429-2436
    67 Wiviott SD, Braunwald E, McCabe CH, et al. Prasugrel versus clopidogrei in patients with acute coronary syndromes. N Engl J Med.2007.357(20): 2001-2015
    68 Wiviott SD, Trenk D, Frelinger AL. et al. Prasugrel compared with high loading-and maintenance-dose clopidogrel inpatients with planned percutaneous coronary intervention:the Prasugrel inComparison to Clopidogrel for Inhibition of Platelet Activation andAggregation-Thrombolysis in Myocardial Infarction 44 trial. Circulation,2007,116(25): 2923-2932
    69 Husted S, Emanuelsson H, Heptinstall S. et al. Pharmacodynamics, pharmacokinetics. and safety of the oral reversible P2Y12antagonis AZD6140 with aspirin in patients with atherosclerosis:a double-blind comparison to clopidogrel with aspirin. Eur Heart J.2006.27(9): 1038-1047
    70 Wallentin L, Becker RC, Budaj A, et al. Ticagrelor versus clopidogrel in patients with acute coronary syndromes. N Engl J Med.2009.361(11): IWS-10S7
    71 Wallentin L, James S, Storey RF, et al. Effect of CYP2C19 and ABCB1 single nucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrel for acute coronary syndromes:a genetic substudy of the PLATO trial. Lancet 2010.376(9749):1320-1328
    72 Pettersen AA, Amesen H, Opstad TB, et al. The influence of CYP 2C19*2 polymorphism on platelet function testing during single antiplatelet treatment with clopidogrel. Thromb J.2011.9:4-9
    73 Hochholzer W, Trenk D, Fromm MF, et al. Impact of cytochrome P450 2C19 loss-of-function polymorphism and of major demographic characteristics on residual platelet function after loading and maintenance treatment with clopidogrel in patients undergoing elective coronary stent placement. J Am Coll Cardiol.2010.55(22):2427-2434
    74 Yamamoto K, Hokimoto S, Chitose T, et al. Impact of CYP2C19 polymorphism on residual platelet reactivity in patients with coronary heart disease during antiplatelet therapy, J Cardiol.2011.57(2):194-201
    75 Kang MK, Jeong YH, Yoon SE, et al. Pre-procedural platelet reactivity after clopidogrel loading in korean patients undergoing scheduled percutaneous, coronary intervention. J Atheroscler Thromb.2010.17(11): 1122-1131

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700