麻疯树籽粕脱毒及其抗菌肽的细胞膜色谱制备法和抗菌机理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
麻疯树是目前世界上公认的最具有开发制备生物柴油潜力的树种。据统计,到2015年我国麻疯树栽培面积将达到9000万亩,每年将约有650多万吨的麻疯树籽粕产出,到时将能产出约200多万吨的麻疯树粗蛋白,是一种亟待开发的天然植物蛋白质资源。由于毒素和抗营养因子的存在,长期以来,麻疯树籽粕主要被用作价值较低的肥料,限制了其应用范围。因此,合适脱毒方法的建立,是提高麻疯树籽粕资源利用价值首要解决的问题。由于天然抗菌肽来源有限、分离纯化步骤繁琐,生产效率较低,限制了抗菌肽行业的发展。因此,开发寻找新型天然抗菌肽的蛋白来源,探索绿色、高效、高通量的抗菌肽分离纯化方法迫在眉睫。
     本论文以麻疯树籽粕为原料,在为麻疯树籽粕探索出一种合适的脱毒工艺,制备安全无毒麻疯树籽粕的同时,关注脱毒麻疯树籽粕蛋白的深度开发利用。通过建立一步细胞膜色谱技术及改进的两步细胞膜色谱技术,快速、准确地从脱毒麻疯树籽粕及其蛋白水解物中筛选和制备麻疯树源抗菌肽,并通过对抗菌机理研究手段的创新和对现有的研究手段进行优化组合及设计,实现在活体环境下探索麻疯树源抗菌肽的抗菌特征和机理,为麻疯树籽粕蛋白的增值开发利用提供理论依据和技术支持。主要研究结果如下:
     (1)采用3种不同脱脂方法(溶剂提取法、挤压膨化预处理联合溶剂提取法和高温压榨法)对麻疯树籽进行脱脂处理。结果表明:不同的脱脂过程能显著影响胰蛋白酶抑制剂和植物凝集素的含量及活性(p<0.05),其中挤压膨化粕(SEEPM)和高温压榨粕(SPM)中的胰蛋白酶抑制剂和植物凝集素的含量(3.15mg/g和3.43mg/g,2.67mg/g和1.53mg/g)均显著低于溶剂萃取粕(SEM)(27.28mg/g和38.78mg/g)。但不同脱脂处理并不会对麻疯树籽粕中的佛波酯、植酸、皂苷有良好的脱除效果,仍需进一步采取其他脱毒方式。由于挤压膨化粕中低的残油率和毒性物质含量,因此挤压膨化预处理联合溶剂浸提法为麻疯树籽粕最适脱脂方法。
     (2)以在最适脱脂方法下得到的麻疯树籽粕为研究对象,采用5种不同处理(酶处理:纤维素酶和果胶酶;酶处理+60%甲醇或65%乙醇处理;90%甲醇或90%乙醇处理)对其进行脱毒。结果表明:不同的脱毒方法对麻疯树籽粕中的毒素及抗营养因子含量有显著影响(p<0.05)。其中,经过酶解联合65%乙醇洗脱处理后,粕中佛波酯被全部脱除,胰蛋白酶抑制剂、植物凝集素、植酸和皂苷的含量均显著下降(p<0.05)。且该法得到的脱毒粕中蛋白质含量最高(74.86%),蛋白质体外消化率高达92.37%。此外,该粕中氨基酸总量为66.87克/100克蛋白,必需氨基酸齐全,配比合理,营养指标(EAAI、BV、NI和PDCAAS)均高于其他脱毒粕。可见,酶解处理联合65%乙醇洗脱的方法为麻疯树籽粕最适脱毒方法。
     (3)利用抗菌肽与菌体细胞膜间存在着特异性亲和力,建立了一步细胞膜色谱技术及改进的两步细胞膜色谱技术(细胞膜固相亲和萃取联合HPLC指纹图谱技术),成功地从粕及其水解物中制备2种麻疯树源抗菌肽(JCpep7和JCpep8)。通过质谱技术(MALDI-TOF-MS/MS)鉴定其氨基酸残基序列分别为Lys-Val-Phe-leu-Gly-leu-Lys和Cys-Ala-Ile-Leu-Thr-His-Lys-Arg。抗菌实验表明利用细胞膜亲和色谱技术分离麻疯树源抗菌肽是可行的。所得2种抗菌肽对大肠杆菌、铜绿假单胞菌、痢疾志贺氏菌、金黄色葡萄球菌、枯草芽孢杆菌与肺炎链球菌均有抗菌活性,最适pH为中性,均对热稳定,不耐受高离子强度,对胃蛋白酶、胰蛋白酶和木瓜蛋白酶具有一定的抵抗力,但不能抵抗蛋白酶K的酶解。在低浓度下均对兔红细胞无溶血和凝集作用。
     (4)首次采用毛细管电泳技术,将活体金黄色葡萄球菌作为“假固定相”,依据毛细管电动色谱原理,用相对淌度代替淌度,描述活性菌体对抗菌肽(JCpep7和JCpep8)的迁移行为的影响,建立了一种新的毛细管电泳法测定抗菌肽与活性菌体结合常数的方法。结果表明:抗菌肽JCpep7和JCpep8与活性金黄色葡萄球菌(LSACs)之间的结合过程是自发进行的,而且结合效果均很显著。随着温度的增加,2种抗菌肽与LSACs的结合常数也随着增大。其中JCpep7以疏水相互作用力为主要作用,而JCpep8则以静电吸引力和疏水相互作用为主要作用。
     (5)利用毛细管电动色谱相对淌度法(初始结合常数实验)及对现有研究抗菌肽抗菌机理的手段(生长曲线抑制实验、内外膜破坏实验及菌体微观形态学变化)进行优化组合及设计,实现了在活菌体环境下探索抗菌肽(JCpep7和JCpep8)的抗菌机理。结果表明:抗菌肽JCpep7和JCpep8能快速结合到金黄色葡萄球菌细胞壁上,并对细胞壁造成损伤,进而扩散到细胞膜。当抗菌肽浓度在细胞膜上超过一定的阈值,就会破坏细胞膜的完整性,使得胞内物质泄漏,导致菌体死亡。可见,细胞壁膜是抗菌肽(JCpep7和JCpep8)发挥抗菌作用的主要靶点。其中JCpep7是以“毯式”模式的膜损伤抗菌特征,而JCpep8是以“桶状”模式的膜损伤抗菌特征。
Currently, Jatropha curcas is recognized as the most economical of preparation biodiesel. Up to2015,the output of Jatropha curcas seed meal protein will be more than200million tons, which is a potentialprotein resource. Due to the toxins and anti-nutritional factors, Jatropha curcas seed meal was used as thelower-value fertilizer, limiting its applications. Therefore, the most suitable detoxification methodestablished is the key point. Futhermore, low yield hinders antimicrobial peptides (AMPs) application. As aconsequence, developing new protein sources for AMPs and a promising approach for high-throughputscreening of AMPs are urgent.
     The purpose of this study is not only to establish the most suitable methods of detoxification forJatropha curcas seed meal, but also pay attention to the use of the detoxification protein of Jatropha curcasseed meal. And then cell membrane affinity chromatography (CMAE) and the improved CMAE (cellmembrane affinity chromatography-offline-liquid chromatography fingerprint) were developed to isolateand purify AMPs from Jatropha curcas. Furthermore, the antimicrobial mechanism of antimicrobialpeptides (JCpep7and JCpep8) in the living cell environment of Staphylococcus aureus (S. aureus) wasinvestigated. The main results and conclusions obtained were as follows.
     (1) In order to establish the most suitable methods of defatting for Jatropha curcas seed meals, theJatropha curcas L. seed meals were defatted by three methods (screw extruding-expanding pretreatmentfollowed by petroleum ether extraction, petroleum ether extraction and screw-press). It was shown thatdifferent methods of defatting had great impact on trypsin inhibitors activity (TIA) and lectin in the oilseedmeals (p<0.05). And TIA and lectin in the SEEPM (3.15mg/g and3.43mg/g) and in the SPM (2.67mg/gand1.53mg/g) were significantly lower than that in the SEM (27.28mg/g and38.78mg/g). But thephorbolesters, phytates and saponins were not removed by the different methods of defatting, indicatingthat there must be a detoxification way in the future. Due to the low content of residual oil, toxins andanti-nutritional factors in the SEEPM, the SEEPM obtained by the defatting method (screwextruding-expanding pretreatment followed by petroleum ether extraction) is better for detoxification.
     (2) The Jatropha curcas seed meal obtained by the most suitable methods of defatting was detoxifiedby five different treatments (enzymatic treatment; enzymatic treatment60%methanol and65%ethanoltreatments, respectively;90%methanol and90%ethanol treatments, respectively). It was shown thatdifferent detoxification treatments had significant (p<0.05) effect on the toxin and antinutritionalcomponents (p<0.05). The treatment that hydrolysis of enzymes (cellulase plus pectinase) followed bywashing with ethanol (65%) was the best detoxification method. After this treatment, the phorbolesterswere decreased by100%. The antinutritional components (phytates, tannins, saponins, TIA and lectin) weredecreased to a tolerable level. In this detoxified meal, the crude protein content (74.86%) was highest, andthe in vitro protein digestibility was high to92.37%. In addition, the total amino acid was66.87g/100gprotein and the nutritional indices (EAAI, BV, NI and PDCAAS) were higher than other detoxificationmeal. It can be concluded that the process of hydrolysis of enzymes (cellulase plus pectinase) followed bywashing with ethanol (65%) was a promising way to detoxify Jatropha curcas meal.
     (3) Based on the membrane-binding activity of AMPs, novel methods named CMAE and the improvedCMAE were developed to isolate and purify AMPs from Jatropha curcas. Combining withMALDI-TOF-MS/MS, two novel antimicrobial peptides JCpep7(Lys-Val-Phe-leu-Gly-leu-Lys) andJCpep8(Cys-Ala-Ile-Leu-Thr-His-Lys-Arg) were successfully isolated and identified. The antibacterialtests showed that the novel methods were feasible. These two antimicrobial peptides were active against thetested microorganisms and thermal stability. In addition, the two antimicrobial peptides, which had nohemolytic activities and cytotoxicity in the low concentrations, can resist the enzymolysis of pepsin,trypsase and papain, but could not resist the enzymolysis of proteinase K.
     (4) The characterization of initially binding process between antimicrobial peptides (JCpep7andJCpep8) and the living Staphylococcus aureus cells (LSACs) used as pseudo-stationary phase in Capillary Electrochromatogrpahy (CEC) was firstly investigated. It was shown that the binding process betweenantimicrobial peptides (JCpep7and JCpep8) with LSACs is spontaneous and significant. Hydrophobicinteraction plays a major role in the binding process of JCpep7. However, the electrostatic attraction andhydrophobic interaction play a major role in the binding process of JCpep8.
     (5) The antimicrobial mechanism of antimicrobial peptides (JCpep7and JCpep8) in the living cellenvironment of S. aureus was investigated by time-dependent experimental settings, such as thecharacterization of initially binding process, antibacterial activity kinetics, outer membrane and innermembrane disruption assays, as well as bacterial ultrastructure. Data showed that JCpep7and JCpep8canfirstly and rapidly bind with the cell wall. Once binding to the cell wall, JCpep7and JCpep8can break thecell wall, then continues to move forward to reach the cell membrane and gathers. When the concentrationof JCpep7and JCpep8was beyond a certain threshold, it led the bacteria died caused by forming a stablemembrane holes in the cell membrane. JCpep7killed the bacteria according to the model of “carpet” model,however, JCpep8killed the bacteria according to the model of “barrel-stave” model.
引文
[1]林娟,周选围,唐克轩,等.麻疯树植物资源研究概况[J].热带亚热带植物学报,2004,12(3):285-290.
    [2]张明生,樊卫国,尹杰,等.麻疯树资源概况及其开发利用[J].贵州农业科学,2006,33(6):97-99.
    [3]杨顺林,范月清,沙毓沧,等.麻疯树资源的分布及综合开发利用前景[J].西南农业学报,2006,19(1):447-452.
    [4]费世民,张旭东,杨灌英,等.国内外能源植物资源及其开发利用现状[J].四川林业科技,2005,26(3):20-26.
    [5] Openshaw K. A review of Jatropha curcas: an oil plant of unfulfilled promise[J]. Biomass andBioenergy,2000,19(1):1-15.
    [6] Heller J. Physic nut, Jatropha curcas L. Institute of Plant Genetics and Crop Plant Research(Gartersleben) and International Plant Genetic Resources Institute: Rome,1996; Vol.1.
    [7] Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a highcontent of free fatty acids[J]. Bioresource Technology,2008,99(6):1716-1721.
    [8] Lu H, Liu Y, Zhou H, et al. Production of biodiesel from Jatropha curcas L. oil[J]. Computers&Chemical Engineering,2009,33(5):1091-1096.
    [9] Mohibbe Azam M, Waris A, Nahar N. Prospects and potential of fatty acid methyl esters of somenon-traditional seed oils for use as biodiesel in India[J]. Biomass and Bioenergy,2005,29(4):293-302.
    [10] Adam S. Toxic effects of Jatropha curcas in mice[J]. Toxicology,1974,2(1):67-76.
    [11] Ahmed O, Adam S. Toxicity of Jatropha curcas in sheep and goats[J]. Research in veterinary science,1979,27(1):89-96.
    [12] Panigrahi S, Francis B, Cano L, et al. Toxicity of Jatropha curcas seeds from Mexico[J]. Nutritionreports international,1984,29(5):1089-1100.
    [13] Abdu-Aguye I, Sannusi A, Alafiya-Tayo R, et al. Acute toxicity studies with Jatropha curcas L[J].Human&Experimental Toxicology,1986,5(4):269-274.
    [14] Makkar HPS, Becker K. Jatropha curcas, a promising crop for the generation of biodiesel and value‐added coproducts[J]. European Journal of Lipid Science and Technology,2009,111(8):773-787.
    [15] Liberalino AAA, Bambirra EA, Moraes-Santos T, et al. Jatropha curcas L. seeds: chemical analysisand toxicity[J]. Arquivos de Biologia e Tecnologia,1988,31(4):539-550.
    [16] Kumar V, Makkar H, Becker K. Detoxification of Jatropha curcas seed meal and its utilization as aprotein source in fish diet[J]. Comparative Biochemistry and Physiology-Part A: Molecular&Integrative Physiology,2008,151(1):13-14.
    [17] Stirpe F, Pession-Brizzi A, Lorenzoni E, et al. Studies on the proteins from the seeds of Crotontiglium and of Jatropha curcas. Toxic properties and inhibition of protein synthesis in vitro[J].Biochemical Journal,1976,156(1):1-6.
    [18] Martinez-Herrera J, Siddhuraju P, Francis G, et al. Chemical composition, toxic/antimetabolicconstituents, and effects of different treatments on their levels, in four provenances of Jatrophacurcas.L. from Mexico[J]. Food Chemistry,2006,96(1):80-89.
    [19] Makkar HPS, Becker K. Are Jatropha curcas phorbol esters degraded by rumen microbes?[J].Journal of the Science of Food and Agriculture,2010,90(9):1562-1565.
    [20] Aregheore E, Becker K, Makkar H. Detoxification of a toxic variety of Jatropha curcas using heatand chemical treatments, and preliminary nutritional evaluation with rats[J]. The South PacificJournal of Natural and Applied Sciences,2003,21(1):51-56.
    [21] Gaur S. Development and Evaluation of an Effective Process for the Recovery of Oil andDetoxification of Meal from Jatropha Curcas[D]:[THESIS of Master]. Rolla: Missouri Universityof Science and Technology,2009.
    [22] Chivandi E, Mtimuni J, Read J, et al. Effect of processing method on phorbol ester concentration,total phenolics, trypsin inhibitor activity and the proximate composition of the ZimbabweanJatropha curcas provenance: a potential livestock feed[J]. Pakistan Journal of Biological Sciences,2004,7(6):1001-1005.
    [23] Rakshit K, Darukeshwara J, Rathina KRaj, et al. Toxicity studies of detoxified Jatropha meal(Jatropha curcas) in rats[J]. Food and Chemical Toxicology,2008,46(12):3621-3625.
    [24]黄永光.微生物对麻疯树饼粕毒蛋白的降解研究[D]:[硕士学位论文].贵阳:贵州大学,2008.
    [25]肖建辉.麻疯树籽饼粕脱毒的研究[D]:[硕士学位论文].福州:福建农林大学,2009.
    [26] Berrocal-Lobo M, Molina A, Rodríguez-Palenzuela P, et al. Leishmania donovani: thionins, plantantimicrobial peptides with leishmanicidal activity[J]. Experimental parasitology,2009,122(3):247-249.
    [27]陈彤彤,宋晓妍,解树涛,等.植物源抗菌肽的研究进展[J].西北植物学报,2006,26(002):420-426.
    [28] Van den Berg A, Horsten S, Kettenes-Van Den Bosch J, et al. Curcacycline A--a novel cyclicoctapeptide isolated from the latex of Jatropha curcas L[J]. FEBS letters,1995,358(3):215-218.
    [29] Van den Berg AJJ, Horsten SFAJ, Jantina Kettenes-van den Bosch J, et al. Podacycline A and B, twocyclic peptides in the latex of Jatropha podagrica[J]. Phytochemistry,1996,42(1):129-133.
    [30] Rieg S, Huth A, Kalbacher H, et al. Resistance against antimicrobial peptides is independent ofEscherichia coli AcrAB, Pseudomonas aeruginosa MexAB and Staphylococcus aureus NorA effluxpumps[J]. International Journal of Antimicrobial Agents,2009,33(2):174-176.
    [31] Gunn JS. Mechanisms of bacterial resistance and response to bile[J]. Microbes and Infection,2000,2(8):907-913.
    [32] Drenkard E. Antimicrobial resistance of Pseudomonas aeruginosa biofilms[J]. Microbes andInfection,2003,5(13):1213-1219.
    [33] Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance: themar regulon[J]. Antimicrobial Agents and Chemotherapy,1997,41(10):2067-2075.
    [34]韩文瑜,孙长江.抗菌肽的研究现状与展望[J].中国兽药杂志,2009,43(010):11-19.
    [35]徐建华,朱家勇.昆虫抗菌肽研究现状与展望[J].生物学通报,2004,39(010):5-7.
    [36]王军,庞广昌.抗菌肽抗菌机理的研究现状及趋势[J].食品科学,2005,26(8):526-529.
    [37]宋茹,韦荣,汪东风.食物源蛋白酶解制备抗菌肽研究进展[J].食品科学,2009,30(11):284-288.
    [38]梁永利.天然抗菌肽的来源及分类[J].安徽农业科学,2006,34(018):4728-4734.
    [39]刘艳.化学合成抗菌肽tachyplesin对肿瘤细胞作用机理的初步研究[D]:[硕士学位论文].厦门:厦门大学,2002.
    [40] Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application inpeptide design[J]. Nucleic Acids Research,2009,37(suppl1):933-937.
    [41] Hao G, Shi YH, Han JH, et al. Design and analysis of structure–activity relationship of novelantimicrobial peptides derived from the conserved sequence of cecropin[J]. Journal of PeptideScience,2008,14(3):290-298.
    [42] Cherkasov A, Hilpert K, Jenssen H, et al. Use of artificial intelligence in the design of small peptideantibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs[J]. ACSChemical Biology,2008,4(1):65-74.
    [43]刘梅,武梅,周世权,等.基于厚壳贻贝Mytilin-1的抗菌肽设计,固相合成及抗菌谱分析[J].生物工程学报,2010,26(4):550-556.
    [44] Tamamura H, Murakami T, Horiuchi S, et al. Synthesis of protegrin-related peptides and theirantibacterial and anti-human immunodeficiency virus activity[J]. Chemical&pharmaceuticalbulletin,1995,43(5):853-858.
    [45]谢毅,闵永洁,贾士荣,等.天蚕抗菌肽B基因的化学合成及克隆[J].生物工程学报,1990,6(4):311-315.
    [46]王秀青,张素芳,曹瑞兵,等.抗菌肽天蚕素B基因及其串联体在毕赤酵母中的表达[J].南京农业大学学报,2007,30(3):120-123.
    [47] Hong IP, Lee SJ, Kim YS, et al. Recombinant expression of human cathelicidin (hCAP18/LL-37) inPichia pastoris[J]. Biotechnology letters,2007,29(1):73-78.
    [48] Loit E, Wu K, Cheng X, et al. Functional whole-colony screening method to identify antimicrobialpeptides[J]. Journal of microbiological methods,2008,75(3):425-431.
    [49]袁永俊,胡婷,朱家骅.酪蛋白抗菌肽的酶法制备[J].食品与机械,2010(002):1-4.
    [50]刘汉灵,潘扬昌,王孝英,等.黄粉虫蛋白抗菌肽酶解工艺研究[J].食品科学,2009,30(15):156-159.
    [51]王新保,卢蓉蓉,任举,等.酶法制备乳铁蛋白抗菌肽的工艺[J].食品与发酵工业,2008,34(2):73-78.
    [52]王金玲.基于水产品下脚料ACEIP生物法制备及其分离纯化,性质的研究[D]:[博士学位论文].杭州:浙江大学,2008.
    [53]侯恩娟.酪蛋白抗菌肽的制备与研究[D]:[博士学位论文].成都:西华大学,2010.
    [54]翟青新,张源淑,哈惠馨.乳源抗菌肽的分离纯化及部分性质的研究[J].药物生物技术,2007,13(6):422-425.
    [55] Brogden K. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. NatureReviews Microbiology,2005,3(3):238-250.
    [56]张晓巩,方超,白卉,等.抗菌肽作用机制的研究进展[J].生理科学进展,2011,42(1):11-15.
    [57] Bechinger B. The structure, dynamics and orientation of antimicrobial peptides in membranes bymultidimensional solid-state NMR spectroscopy[J]. Biochimica et Biophysica Acta(BBA)-Biomembranes,1999,1462(1-2):157-183.
    [58] Yang L, Harroun TA, Weiss TM, et al. Barrel-stave model or toroidal model? A case study onmelittin pores[J]. Biophysical journal,2001,81(3):1475-1485.
    [59] Shai Y, Oren Z. From “carpet” mechanism to de-novo designed diastereomeric cell-selectiveantimicrobial peptides[J]. Peptides,2001,22(10):1629-1641.
    [60] Gazit E, Boman A, Boman HG, et al. Interaction of the mammalian antibacterial peptide cecropin P1with phospholipid vesicles[J]. Biochemistry,1995,34(36):11479-11488.
    [61] Wong H, Bowie JH, Carver JA. The solution structure and activity of caerin1.1, an antimicrobialpeptide from the Australian green tree frog, Litoria splendida[J]. European Journal of Biochemistry,1997,247(2):545-557.
    [62] Yamaguchi S, Huster D, Waring A, et al. Orientation and dynamics of an antimicrobial peptide in thelipid bilayer by solid-state NMR spectroscopy[J]. Biophysical journal,2001,81(4):2203-2214.
    [63] Yang L, Harroun TA, Heller WT, et al. Neutron off-plane scattering of aligned membranes. I.Method of measurement[J]. Biophysical journal,1998,75(2):641-645.
    [64] Yamaguchi S, Hong T, Waring A, et al. Solid-state NMR investigations of peptide-lipid interactionand orientation of a β-sheet antimicrobial peptide, protegrin[J]. Biochemistry,2002,41(31):9852-9862.
    [65] Wildman KAH, Lee DK, Ramamoorthy A. Mechanism of lipid bilayer disruption by the humanantimicrobial peptide, LL-37[J]. Biochemistry,2003,42(21):6545-6558.
    [66] Hallock KJ, Lee DK, Ramamoorthy A. MSI-78, an analogue of the magainin antimicrobial peptides,disrupts lipid bilayer structure via positive curvature strain[J]. Biophysical journal,2003,84(5):3052-3060.
    [67]黄现青,高晓平,赵改名,等.抗菌肽抗菌机理研究方法概述[J].安徽农业科学,2007,35(12):3463-3463.
    [68] Fehlbaum P, Bulet P, Chernysh S, et al. Structure-activity analysis of thanatin, a21-residue inducibleinsect defense peptide with sequence homology to frog skin antimicrobial peptides[J]. Proceedingsof the National Academy of Sciences,1996,93(3):1221-1225.
    [69] Hariton-Gazal E, Feder R, Mor A, et al. Targeting of nonkaryophilic cell-permeable peptides into thenuclei of intact cells by covalently attached nuclear localization signals[J]. Biochemistry,2002,41(29):9208-9214.
    [70]安春菊,盛长忠,李德森,等.一类潜在的新药-抗菌肽[J].中国新药杂志,2003,12(9):704-707.
    [71]石芳,翟朝阳.乳铁多肽,一种具有潜在抗菌能力的活性多肽[J].生命的化学,2004,24(4):312-314.
    [72]陈琛,王新华,薄新文,等.抗菌肽及其在畜牧生产体系中的应用[J].饲料工业,2006,27(007):6-8.
    [73] Wang Y, Zhang Z, Chen L, et al. Cathelicidin-BF, a Snake Cathelicidin-Derived AntimicrobialPeptide, Could Be an Excellent Therapeutic Agent for Acne Vulgaris[J]. PloS one,2011,6(7):e22120.
    [74]赵红艳,慕玉,赵宝华.抗菌肽在食品防腐剂中的研究应用[J].卫生研究,2009,48(4):502-504.
    [75]姜兰,黄自然.重组抗菌肽的制备及其对水产养殖中常见病原菌的抑菌效果[J].中国水产科学,2002,9:152-156.
    [76]陈晓生,张辉华,田允波,等.抗菌肽作饲料添加剂对肉鸭生长性能的影响[J].黑龙江畜牧兽医,2005(3):64-65.
    [77]阎晓宇,陈晓光.昆虫抗菌肽的研究进展[J].热带医学杂志,2004,4(2):218-221.
    [78]方艺霖,张艺,肖小河,等.细胞膜色谱技术用于中药活性成分筛选的研究进展[J].中草药,2008,39(007):1119-1121.
    [79] Hou X, Zhou M, Jiang Q, et al. A vascular smooth muscle/cell membranechromatography-offline-gas chromatography/mass spectrometry method for recognition,separation and identification of active components from traditional Chinese medicines[J]. Journalof Chromatography A,2009,1216(42):7081-7087.
    [80] Hou X, Ren J, Wang S, et al. Establishment of a High Expression of Adrenergic Receptor CellMembrane Chromatography-RPLC Method for Screening Target Components from RadixCaulophylli[J]. Chromatographia,2010:1-6.
    [81] Wang C, He L, Wang N, et al. Screening anti-inflammatory components from Chinese traditionalmedicines using a peritoneal macrophage/cell membrane chromatography-offline-GC/MSmethod[J]. Journal of Chromatography B,2009,877(27):3019-3024.
    [82] Wang S, Sun M, Zhang Y, et al. A new A431/cell membrane chromatography and online highperformance liquid chromatography/mass spectrometry method for screening epidermal growthfactor receptor antagonists from Radix sophorae flavescentis[J]. Journal of Chromatography A,2010,1217(32):5246-5252.
    [83] Wang L, Ren J, Sun M, et al. A combined cell membrane chromatography and online HPLC/MSmethod for screening compounds from Radix Caulophylli acting on the humanα1A-adrenoceptor[J]. Journal of pharmaceutical and biomedical analysis,2010,51(5):1032-1036.
    [84] Li M, Wang S, Zhang Y, et al. An online coupled cell membrane chromatography with LC/MSmethod for screening compounds from Aconitum carmichaeli Debx. acting on VEGFR-2[J].Journal of pharmaceutical and biomedical analysis,2010,53(4):1063-1069.
    [85]杨广德,贺浪冲,边晓丽,等.胰岛β-细胞膜色谱模型建立及其生物亲合特性[J].科学通报,2005,50(16):1709-1713.
    [86]李义平,贺浪冲.血管内皮细胞膜色谱模型的建立及初步应用[J].科学通报,2007,52(4):410-415.
    [1] Liberalino AAA, Bambirra EA, Moraes-Santos T, et al. Jatropha curcas L. seeds: chemical analysisand toxicity[J]. Arquivos de Biologia e Tecnologia,1988,31(4):539-550.
    [2] Adam S. Toxic effects of Jatropha curcas in mice[J]. Toxicology,1974,2(1):67-76.
    [3] Ahmed O, Adam S. Effects of Jatropha curcas on calves[J]. Veterinary Pathology Online,1979,16(4):476-482.
    [4] Ahmed O, Adam S. Toxicity of Jatropha curcas in sheep and goats[J]. Research in veterinary science,1979,27(1):89-96.
    [5] Mohibbe Azam M, Waris A, Nahar N. Prospects and potential of fatty acid methyl esters of somenon-traditional seed oils for use as biodiesel in India[J]. Biomass and Bioenergy,2005,29(4):293-302.
    [6] Berchmans HJ, Hirata S. Biodiesel production from crude Jatropha curcas L. seed oil with a highcontent of free fatty acids[J]. Bioresource Technology,2008,99(6):1716-1721.
    [7] Martinez-Herrera J, Siddhuraju P, Francis G, et al. Chemical composition, toxic/antimetabolicconstituents, and effects of different treatments on their levels, in four provenances of Jatrophacurcas L. from Mexico[J]. Food Chemistry,2006,96(1):80-89.
    [8] Makkar HPS, Becker K. Jatropha curcas, a promising crop for the generation of biodiesel andvalue-added coproducts[J]. European Journal of Lipid Science and Technology,2009,111(8):773-787.
    [9] Makkar HPS, Aderibigbe A, Becker K. Comparative evaluation of non-toxic and toxic varieties ofJatropha curcas for chemical composition, digestibility, protein degradability and toxic factors[J].Food Chemistry,1998,62(2):207-215.
    [10]王国栋,王竹,杨晶明,等.转基因食品胰蛋白酶抑制剂活性的测定[J].中国食品卫生杂志,2009,21:232-235.
    [11]戴大章,刘建新,叶均安,等.饲料中植物凝集素(lectin)的快速检测方法——血凝法[J].饲料博览,2002,1(1):22.
    [12]王俊,杨克迪,陈钧.分光光度法测定薯蓣皂苷元[J].分析试验室,2004,23(001):73-75.
    [13]严守雷,王清章,彭光华.藕节中总酚含量的福林法测定[J].华中农业大学学报,2003,22(4):412-414.
    [14]任传英,赵永焕,崔洪斌,等.豆粕和米糠中植酸含量的测定方法研究[J].大豆通报,2007(3):43-46.
    [15] Makkar H, Becker K, Sporer F, et al. Studies on nutritive potential and toxic constituents of differentprovenances of Jatropha curcas[J]. Journal of Agricultural and Food Chemistry,1997,45(8):3152-3157.
    [16] Chavan U, McKenzie D, Shahidi F. Functional properties of protein isolates from beach pea(Lathyrus maritimus L.)[J]. Food Chemistry,2001,74(2):177-187.
    [17] Nunes A, Correia I, Barros A, et al. Sequential in vitro pepsin digestion of uncooked and cookedsorghum and maize samples[J]. Journal of Agricultural and Food Chemistry,2004,52(7):2052-2058.
    [18]彭智华,龚敏方.蛋白质的营养评价及其在食用菌营养评价上的应用[J].食用菌学报,1996,3(003):56-64.
    [19] Mensa-Wilmot Y, Phillips R, Hargrove J. Protein quality evaluation of cowpea-based extrusioncooked cereal/legume weaning mixtures[J]. Nutrition research,2001,21(6):849-857.
    [20] Vasconcelos IM, Siebra EA, Maia AAB, et al. Composition, toxic and antinutritional factors ofnewly developed cultivars of Brazilian soybean (Glycine max)[J]. Journal of the Science of Foodand Agriculture,1997,75(4):419-426.
    [21] Aderibigbe A, Johnson C, Makkar H, et al. Chemical composition and effect of heat on organicmatter-and nitrogen-degradability and some antinutritional components of Jatropha meal[J].Animal feed science and technology,1997,67(2):223-243.
    [22] Abdu-Aguye I, Sannusi A, Alafiya-Tayo R, et al. Acute toxicity studies with Jatropha curcas L[J].Human&Experimental Toxicology,1986,5(4):269-274.
    [23] Singh U. Antinutritional factors of chickpea and pigeonpea and their removal by processing[J]. PlantFoods for Human Nutrition (Formerly Qualitas Plantarum),1988,38(3):251-261.
    [24] Makkar HPS, Becker K. Jatropha curcas, a promising crop for the generation of biodiesel andvalue-added coproducts[J]. European Journal of Lipid Science and Technology,2009,111(8):773-787.
    [25] Aregheore EM, Makkar HPS, Becker K. Assessment of lectin activity in a toxic and a non-toxicvariety of Jatropha curcas using latex agglutination and haemagglutination methods andinactivation of lectin by heat treatments[J]. Journal of the Science of Food and Agriculture,1998,77(3):349-352.
    [26] Reddy N, Pierson M. Reduction in antinutritional and toxic components in plant foods byfermentationa[J]. Food Research International,1994,27(3):281-290.
    [27] Wolf WJ, Schaer ML, Abbott TP. Nonprotein nitrogen content of defatted jojoba meals[J]. Journalof the Science of Food and Agriculture,1994,65(3):277-288.
    [28] Elvin-Lewis M. Non-Traditional Oilseeds and Oils of India[J]. Economic Botany,1988,42(4):540-540.
    [29] Panigrahi S, Francis B, Cano L, et al. Toxicity of Jatropha curcas seeds from Mexico[J]. Nutritionreports international,1984,29(5):1089-1100.
    [1]陆婕,汪俊汉,钟雅,等.弱酸性家蝇蛆抗菌肽MD_(7095)的分离纯化及性质研究[J].微生物学报,2006,46(3):406-411.
    [2] Wang G, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application inpeptide design[J]. Nucleic Acids Research,2009,37(suppl1):933-937.
    [3] Hao G, Shi YH, Han JH, et al. Design and analysis of structure–activity relationship of novelantimicrobial peptides derived from the conserved sequence of cecropin[J]. Journal of PeptideScience,2008,14(3):290-298.
    [4] Cherkasov A, Hilpert K, Jenssen H, et al. Use of artificial intelligence in the design of small peptideantibiotics effective against a broad spectrum of highly antibiotic-resistant superbugs[J]. ACSChemical Biology,2008,4(1):65-74.
    [5] Loit E, Wu K, Cheng X, et al. Functional whole-colony screening method to identify antimicrobialpeptides[J]. Journal of microbiological methods,2008,75(3):425-431.
    [6]方艺霖,张艺,肖小河,等.细胞膜色谱技术用于中药活性成分筛选的研究进展[J].中草药,2008,39:1119-1121.
    [7] Hou X, Zhou M, Jiang Q, et al. A vascular smooth muscle/cell membrane chromatography-offline-gaschromatography/mass spectrometry method for recognition, separation and identification of activecomponents from traditional Chinese medicines[J]. Journal of Chromatography A,2009,1216(42):7081-7087.
    [8] Hou X, Ren J, Wang S, et al. Establishment of a High Expression of A Adrenergic Receptor CellMembrane Chromatography-RPLC Method for Screening Target Components from RadixCaulophylli[J]. Chromatographia,2010,72(7-8):635-640.
    [9] Wang C, He L, Wang N, et al. Screening anti-inflammatory components from Chinese traditionalmedicines using a peritoneal macrophage/cell membrane chromatography-offline-GC/MSmethod[J]. Journal of Chromatography B,2009,877(27):3019-3024.
    [10] Wang S, Sun M, Zhang Y, et al. A new A431/cell membrane chromatography and online highperformance liquid chromatography/mass spectrometry method for screening epidermal growthfactor receptor antagonists from Radix sophorae flavescentis[J]. Journal of Chromatography A,2010,1217(32):5246-5252.
    [11] Wang L, Ren J, Sun M, et al. A combined cell membrane chromatography and online HPLC/MSmethod for screening compounds from Radix Caulophylli acting on the humanα1A-adrenoceptor[J]. Journal of pharmaceutical and biomedical analysis,2010,51(5):1032-1036.
    [12] Li M, Wang S, Zhang Y, et al. An online coupled cell membrane chromatography with LC/MSmethod for screening compounds from Aconitum carmichaeli Debx. acting on VEGFR-2[J].Journal of pharmaceutical and biomedical analysis,2010,53(4):1063-1069.
    [13] Brogden K. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. NatureReviews Microbiology,2005,3(3):238-250.
    [14] Tang YL, Shi YH, Zhao W, et al. Discovery of a novel antimicrobial peptide using membranebinding-based approach[J]. Food control,2009,20(2):149-156.
    [15]杨文博.微生物学实验[M].北京:化学工业出版社,2004.
    [16]贺浪冲,杨广德,耿信笃.固定在硅胶表面细胞膜的酶活性及其色谱特性[J].科学通报,1999,44(6):632-637.
    [17] Bilgili MS. Adsorption of4-chlorophenol from aqueous solutions by xad-4resin: Isotherm, kinetic,and thermodynamic analysis[J]. Journal of hazardous materials,2006,137(1):157-164.
    [18] Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of proteinutilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976,72(1-2):248-254.
    [19]廖敏,于秀霞,阮期平,等.航天诱变凤仙花种子抗菌肽的分离纯化及抗菌活性研究初报[J].时珍国医国药,2009,20(011):2781-2782.
    [20]曹英林,周亚滨.医学免疫学与微生物学实验[M].北京:科学出版社,2000.143-144.
    [21]陶淑霞,韩静菲,李玉.黄粉虫抗菌肽的生物学性质及初步分离纯化[J].安徽农业科学,2009,37:14167-14170.
    [22]索相敏,陆秀君,董建臻,等.2种昆虫高活性抗菌肽制备方法的优化[J].华北农学报,2007,22(3):119-122.
    [23]谢海伟,代建国,郭勇,等.鲎素抗菌肽的分子结构稳定性及生物活性[J].华南理工大学学报(自然科学版),2008,36(4):144-150.
    [24]崔亚男,王东凯,邱志斌.2种溶血性试验方法在复方参芍注射剂研究中的应用[J].中国药房,2007,18(3):182-183.
    [25] He L, Wang S, Geng X. Coating and fusing cell membranes onto a silica surface and theirchromatographic characteristics[J]. Chromatographia,2001,54(1):71-76.
    [26]侯晓姝,胡宗利,陈国平,等.抗菌肽的抗菌机制及其临床应用[J].微生物学通报,2009,36(1):97-105.
    [27] Li L, He J, Eckert R, et al. Design and Characterization of an Acid‐Activated AntimicrobialPeptide[J]. Chemical biology&drug design,2010,75(1):127-132.
    [28]李桂平,陈仪本.抗菌肽及其工业应用前景[J].工业微生物,2007,37(5):60-60.
    [29]于健,邱芳萍,张玲.抗菌肽及其应用前景[J].长春工业大学学报:自然科学版,2004,25(001):65-68.
    [30]唐亚丽.家蝇抗菌肽的分离及对细菌壁膜和DNA的作用[D]:[博士学位论文].无锡:江南大学,2009.
    [1]贺浪冲,耿信笃.细胞膜受体色谱法-研究药物与受体作用的新方法[J].生物医药色谱新进展,1996,3(8):8-9.
    [2]方艺霖,张艺,肖小河,等.细胞膜色谱技术用于中药活性成分筛选的研究进展[J].中草药,2009,39(7):1119-1121.
    [3]黄赵刚.血小板生物亲和萃取结合HPLC法筛选三七抗血小板聚集活性皂苷成分[D]:[硕士学位论文].合肥:安徽医科大学,2005.
    [4]樊宏伟.血小板细胞膜固相色谱法的建立及其在治疗血栓性疾病中药分析中的应用[D]:[博士学位论文].南京:南京中医药大学,2004.
    [5]张君慧.大米蛋白抗氧化肽的制备,分离纯化和结构鉴定[D]:[博士学位论文].无锡:江南大学,2009.
    [6] Zhang J, Zhang H, Wang L, et al. Isolation and identification of antioxidative peptides from riceendosperm protein enzymatic hydrolysate by consecutive chromatography and MALDI-TOF/TOFMS/MS[J]. Food Chemistry,2010,119(1):226-234.
    [7] Zhang Q, Ren J, Zhao M, et al. Isolation and Characterization of Three Novel Peptides from CaseinHydrolysates That Stimulate the Growth of Mixed Cultures of Streptococcus thermophilus andLactobacillus delbrueckii subsp. bulgaricus[J]. Journal of Agricultural and Food Chemistry,2011,59(13):7045-7053.
    [8]程云辉,王璋,许时婴.酶解麦胚蛋白制备抗氧化肽的研究[J].食品科学,2006,27(6):147-151.
    [9]宋茹,韦荣,汪东风.食物源蛋白酶解制备抗菌肽研究进展[J].食品科学,2009,30(11):284-288.
    [10]张艳,胡志和.乳蛋白源ACE抑制肽的研究进展[J].食品科学,2008,29(10):634-640.
    [11]霍健聪.带鱼下脚料蛋白酶水解物亚铁螯合修饰及其抑菌机理研究[D]:[博士学位论文].重庆:西南大学,2009.
    [12] Mine Y, Ma F, Lauriau S. Antimicrobial peptides released by enzymatic hydrolysis of hen egg whitelysozyme[J]. Journal of Agricultural and Food Chemistry,2004,52(5):1088-1094.
    [13] Brogden K. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. NatureReviews Microbiology,2005,3(3):238-250.
    [14]于健,邱芳萍,张玲.抗菌肽及其应用前景[J].长春工业大学学报:自然科学版,2004,25(001):65-68.
    [15]唐亚丽.家蝇抗菌肽的分离及对细菌壁膜和DNA的作用[D]:[博士学位论文].无锡:江南大学,2009.
    [16]李丽.抗菌肽Abaecin制备及其对肉鸡生长及免疫影响的研究[D]:[博士学位论文].呼和浩特:内蒙古农业大学,2010.
    [17]易华西.分泌广谱抗菌肽乳酸菌的筛选及高效表达的调控研究[D]:[博士学位论文].哈尔滨:哈尔滨工业大学,2010.
    [18] Che Q, Zhou Y, Yang H, et al. A novel antimicrobial peptide from amphibian skin secretions ofOdorrana grahami[J]. Peptides,2008,29(4):529-535.
    [1] Ramamoorthy A, Lee DK, Narasimhaswamy T, et al. Cholesterol reduces pardaxin's dynamics—abarrel-stave mechanism of membrane disruption investigated by solid-state NMR[J]. Biochimica etBiophysica Acta (BBA)-Biomembranes,2010,1798(2):223-227.
    [2] Pokorny A, Almeida PFF. Kinetics of dye efflux and lipid flip-flop induced by δ-lysin inphosphatidylcholine vesicles and the mechanism of graded release by amphipathic, α-helicalpeptides[J]. Biochemistry,2004,43(27):8846-8857.
    [3] Ehrenstein G, Lecar H. Electrically gated ionic channels in lipid bilayers[J]. Quarterly reviews ofbiophysics,1977,10(01):1-34.
    [4] Ludtke SJ, He K, Heller WT, et al. Membrane pores induced by magainin[J]. Biochemistry,1996,35(43):13723-13728.
    [5] Matsuzaki K, Murase O, Fujii N, et al. An antimicrobial peptide, magainin2, induced rapid flip-flopof phospholipids coupled with pore formation and peptide translocation[J]. Biochemistry,1996,35(35):11361-11368.
    [6] Shai Y. Mode of action of membrane active antimicrobial peptides[J]. Peptide Science,2002,66(4):236-248.
    [7] Thennarasu S, Tan A, Penumatchu R, et al. Antimicrobial and membrane disrupting activities of apeptide derived from the human cathelicidin antimicrobial peptide LL37[J]. Biophysical journal,2010,98(2):248-257.
    [8] Brogden K. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?[J]. NatureReviews Microbiology,2005,3(3):238-250.
    [9] Heegaard NHH, Kennedy RT. Identification, quantitation, and characterization of biomolecules bycapillary electrophoretic analysis of binding interactions[J]. Electrophoresis,1999,20(15-16):3122-3133.
    [10] Groessl M, Hartinger C, Poe\Pawlak K, et al. Elucidation of the Interactions of an AnticancerRuthenium Complex in Clinical Trials with Biomolecules Utilizing Capillary ElectrophoresisHyphenated to Inductively Coupled Plasma\Mass Spectrometry. Short Communication[J].Chemistry&Biodiversity,2008,5(8):1609-1614.
    [11] Aleksenko S, Hartinger C, Semenova O, et al. Characterization of interactions between human serumalbumin and tumor-inhibiting amino alcohol platinum (II) complexes using capillaryelectrophoresis[J]. Journal of Chromatography A,2007,1155(2):218-221.
    [12] Araya F, Huchet G, McGroarty I, et al. Capillary electrophoresis for studying drug-DNAinteractions[J]. Methods,2007,42(2):141-149.
    [13] Kostal V, Katzenmeyer J, Arriaga E. Capillary electrophoresis in bioanalysis[J]. Analytical chemistry,2008,80(12):4533-4550.
    [14] El-Hady D, Kühne S, El-Maali N, et al. Precision in affinity capillary electrophoresis fordrug-protein binding studies[J]. Journal of pharmaceutical and biomedical analysis,2010,52(2):232-241.
    [15] Anderot M, Nilsson M, Vgvcri, et al. Determination of dissociation constants betweenpolyelectrolytes and proteins by affinity capillary electrophoresis[J]. Journal of Chromatography B,2009,877(10):892-896.
    [16] Berthod A, Rodriguez M, Armstrong DW. Evaluation of molecule‐microbe interactions withcapillary electrophoresis: Procedures, utility and restrictions[J]. Electrophoresis,2002,23(6):847-857.
    [17] Zhang Y, Zhang R, Hjertn S, et al. Liposome capillary electrophoresis for analysis of interactionsbetween lipid bilayers and solutes[J]. Electrophoresis,1995,16(1):1519-1523.
    [18] Carrozzino JM, Khaledi MG. Interaction of basic drugs with lipid bilayers using liposomeelectrokinetic chromatography[J]. Pharmaceutical research,2004,21(12):2327-2335.
    [19] Szumski M, Klodzinska E, Buszewski B. Separation of microorganisms using electromigrationtechniques[J]. Journal of Chromatography A,2005,1084(1-2):186-193.
    [20] Joklik W, Willett H, Amos D, et al. Staphylococcus[J]. Zinsser microbiology. eds Joklik WK, WilletHP, Amos DB, et al.(Appleton&Lange, East Norwalk, CT),1992.401-416.
    [21] Tanaka Y, Terabe S. Estimation of binding constants by capillary electrophoresis[J]. Journal ofChromatography B: Analytical Technologies in the Biomedical and Life Sciences,2002,768(1):81-92.
    [22] Ross P, Subramanian S. Thermodynamics of protein association reactions: forces contributing tostability[J]. Biochemistry,1981,20(11):3096-3102.
    [23]刘忠渊.新疆家蚕抗菌肽结构与功能的关系及抗菌作用机理的研究[D]:[博士学位论文].乌鲁木齐:新疆大学,2008.
    [24] Marri L, Dallai R, Marchini D. The novel antibacterial peptide ceratotoxin A alters permeability ofthe inner and outer membrane of Escherichia coli K-12[J]. Current microbiology,1996,33(1):40-43.
    [25] Helm D, Naumann D. Identification of some bacterial cell components by FT-IR spectroscopy*[J].FEMS microbiology letters,1995,126(1):75-79.
    [26] Berthod A, Rodriguez M, Armstrong D. Evaluation of molecule-microbe interactions with capillaryelectrophoresis: Procedures, utility and restrictions[J]. Electrophoresis,2002,23(6):847-857.
    [27] Xia Z, Li L, Yang J, et al. Investigation of interaction between the drug and cell membrane bycapillary electrophoresis[J]. Science in China Series B: Chemistry,2009,52(12):2200-2204.
    [28] Okun V, Ronacher B, Blaas D, et al. Capillary electrophoresis with postcolumn infectivity assay forthe analysis of different serotypes of human Rhinovirus (common cold virus)[J]. Analyticalchemistry,2000,72(11):2553-2558.
    [29] Okun VM, Moser R, Ronacher B, et al. VLDL Receptor Fragments of Different Lengths Bind toHuman Rhinovirus HRV2with Different Stoichiometry[J]. Journal of Biological Chemistry,2001,276(2):1057-1062.
    [30] Okun VM, Ronacher B, Blaas D, et al. Affinity Capillary Electrophoresis for the Assessment ofComplex Formation between Viruses and Monoclonal Antibodies[J]. Analytical chemistry,2000,72(19):4634-4639.
    [31] Naumann D, Helm D, Labischinski H. Microbiological characterizations by FT-IR spectroscopy[J].Nature,1991,351(6321):81-82.
    [32] Orsini F, Ami D, Villa A, et al. FT-IR microspectroscopy for microbiological studies[J]. Journal ofmicrobiological methods,2000,42(1):17-27.
    [33] Helm D, Labischinski H, Schallehn G, et al. Classification and identification of bacteria byFourier-transform infrared spectroscopy[J]. Journal of general microbiology,1991,137(1):69-79.
    [34] Fischer G, Braun S, Thissen R, et al. FT-IR spectroscopy as a tool for rapid identification andintra-species characterization of airborne filamentous fungi[J]. Journal of microbiological methods,2006,64(1):63-77.
    [35] Bhunia A, Ramamoorthy A, Bhattacharjya S. Helical Hairpin Structure of a Potent AntimicrobialPeptide MSI-594in Lipopolysaccharide Micelles by NMR Spectroscopy[J]. Chemistry–AEuropean Journal,2009,15(9):2036-2040.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700