液相萃取新方法的建立和应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
分析化学中一个重要的研究方向就是建立快速,准确和灵敏的分析方法。尽管现在发明了许多先进的仪器设备能够对生物样品、环境样品和药物制剂中的分析物进行直接测定,但是样品的前处理-萃取通常也是必不可少的步骤,通过萃取步骤可以将分析物从复杂样品中分离和富集出来,从而建立灵敏度和高选择性好的分析方法。大多数的分析仪器是无法直接处理复杂样品的,所以样品前处理步骤也就成为分析方法中不可缺少的重要环节,因此开发快速简便的样品前处理方法一直都是分离富集研究领域中的热门课题。本论文以分析化学和分离科学为研究背景,研究了表面活性剂和离子液体作为绿色萃取剂对一些药物和食品添加剂的萃取能力,以荧光和高效液相色谱作为检测手段进行了测定,分别建立了高灵敏度的药物制剂、生物体液、中草药及食品中分析物的荧光光谱和高效液相色谱新方法,本论文研究的内容和结果共分六个部分:
     1.对浊点萃取和离子液体微萃取方法的原理进行了介绍。综述了这两种方法与各种分析手段结合用于测定各类无机和有机化合物的研究进展。评述了浊点萃取和离子液体萃取现有方法存在的优缺点。
     2.采用非离子表面活性剂PONPE 7.5和阴离子表面活性剂十二烷基硫酸钠混合表面活性剂进行浊点萃取,对该混合表面活性剂从水溶液中萃取氧氟沙星和加替沙星的能力进行了研究。该方法采用电解质NaCl使混合表面活性剂产生浊点现象,继而进行分离后用荧光光谱测定。对影响萃取的pH值、表面活性剂用量、电解质用量、浊点温度及萃取时间等各种因素进行了研究。在最佳条件下,氧氟沙星和加替沙星的线性范围分别为0.1~150和0.1~250 ng ml~(-1),检出限分别为0.04和0.06 ng ml~(-1)。将该方法应用于药物制剂,加标尿样和血浆中这两种药物的测定,其准确度和精密度令人满意。
     3.采用荧光分光光度法研究了盐酸哌唑嗪在阴离子表面活性剂中的光谱行为,发现使用阴离子表面活性剂凝聚固相微萃取对盐酸哌唑嗪的富集因子很高,在此基础上建立了一种阴离子表面活性剂固相微萃取荧光分光光度法测定盐酸哌唑嗪的新方法。阴离子表面活性剂十二烷基硫酸钠会在水溶液中形成胶束溶液,当加入MgCl_2之后会产生分散均匀的固相,将该溶液离心分离后用乙醇将富集相定容,通过荧光进行测定。该方法具有对分析物富集率高、操作简便、灵敏度高和选择性好的优点。可以用于药物制剂和生物样品中盐酸哌唑嗪的测定。
     4.对小檗碱、巴马汀、药根碱和黄连碱在离子液体中的荧光光谱进行了研究,发现离子液体能使这些药物荧光显著增强,其中[C_8MIM][PF_6]对他们荧光的增强为最大。进一步研究发现,这些药物能够采用温度辅助离子液体扩散液相微萃取法被[C_8MIM][PF_6]从水溶液中萃取出来,其富集因子和萃取率分别为83.3和98.5%、98.1%、98.3%和98.8%,基于离子液体[C_8MIM][PF_6]能够富集,分离和增敏这四种药物荧光这一现象,提出了一种灵敏度高和选择性好的从水溶液中富集和测定这四种药物的新方法。在最佳条件下,线性范围分别为0.8~130 ng/mL、0.9~160 ng/mL、0.7~140 ng/mL和0.6~110 ng/mL,检出限分别为0.089 ng/mL、0.112 ng/mL、0.124 ng/mL和0.099ng/mL。该方法已成功应用于测定药物制剂,尿样和血样中的这些药物。
     5.将离子液体原位溶剂形成微萃取法与高效液相色谱联用,测定了博落回和白屈菜中的血根碱和白屈菜红碱,黄连和黄柏以及中成药中的小檗碱、巴马汀和黄连碱。当把一定量的离子对试剂KPF_6加入到含有水溶性的离子液体溶液中后,生成了可以作为萃取剂的非水溶离子液体[C_6MIM][PF_6],这一离子液体可以替代易挥发有机溶剂进行萃取。对影响萃取效率的多种因素进行了研究,比如离子液体的类型和体积、KPF_6的用量、样品的pH值、萃取时间和离心时间进行了优化。实验结果表明该方法可以应用于测定中草药及中成药中的这几种生物碱。
     6.建立了一种新颖和简单的微萃取方法,该方法是基于手动震荡离子液体扩散液相微萃取测定六种合成食品色素,如柠檬黄、苋菜红、日落黄、诱惑红、胭脂红和赤藓红。采用高效液相色谱紫外检测器测定了这些合成色素。与已报道的离子液体扩散液液微萃取方法相比较该过程不需要扩散溶剂,加热,超声波或额外的化学试剂。这种方法是将[C_8MIM][BF_4]通过手晃动的方法完全扩散到水溶液中,加速了被分析物从水相中传质到离子液体中的传质过程。对影响萃取过程的因素进行了详细研究,如离子液体体积、样品pH、萃取时间和离心时间等。在最佳实验条件下,该方法有非常好的灵敏度,检出限为0.015–-0.32 ng mL~(-1)。该方法已成功应用于食品样品的测定,加标回收的范围在95.8–104.5%之间。
In recent years, the development of fast, precise, accurate andsensitive methodologies has become an important issue. However,despite the advances in the development of highly efficientanalytical instrumentation for the end-point determination ofanalytes in biological and environmental samples andpharmaceutical products, sample pre-treatment is usuallynecessary in order to extract, to isolate and to concentrate theanalytes of interest from complex matrices because most of theanalytical instruments cannot directly handle the matrix. A samplepreparation step is therefore commonly required. Based on theanalytical chemistry and separation science, the ability ofsurfactants and ionic liquids as green extractant for extractionsome drugs and food additives was studied. Fluorescence and highperformance liquid chromatography as the means of detection weredetermined. The high sensitivity fluorescence and high performanceliquid chromatography methods for the analysts in pharmaceuticalpreparations, biological fluids, herbal medicines and food wereestablished. The contents of this paper are as follows:
     (1) The principle of the methods of cloud point extraction andionic liquid micro-extraction was introduced. Reviewed these twomethods combined with variety of analytical tools for the determination of various inorganic and organic compounds.Advantages and disadvantages of existing methods of cloud pointextraction and ionic liquid extraction have been introduced.
     (2) A cloud-point extraction process using mixed micelle of theanionic surfactant sodium dodecyl sulfate and the nonionicsurfactant polyoxyethylene(7.5)nonylphenylether to extract twofluoroquinolone antimicrobial agents ofloxacin and gatifloxacinfrom aqueous media was investigated. The method is based on themixed micelle-mediated extraction of fluoroquinolones in thepresence of NaCl electrolyte as an inducing phase separation, thenspectrofluorimetric determination. The effect of different variablessuch as pH, PONPE7.5 concentration, SDS concentration, sodiumchloride concentration, cloud point temperature and time wasinvestigated and optimum conditions were established. At theoptimum conditions, the rectilinear calibration graphs wereobtained in the concentration range 0.1~150 and 0.1~250 ng ml~(-1)ofofloxacin and gatifloxacin and the limits of detection was 0.04 and0.06 ng ml~(-1), respectively. The proposed procedures were appliedsuccessfully for the determination of the investigated drugs in theirpharmaceutical dosage forms, spiked urine and spiked plasmasamples with a good precision and accuracy.
     (3) The fluorescence spectral behavior of Prazosin Hydrochloridein anionic surfactant has been studied, and maximum extractionefficiency was observed. Accordingly, a method for thedetermination of Prazosin Hydrochloride using anionic surfactantSodium dodecyl sulfate (SDS) by fluorescence spectrometry aftercoacervation cloud point extraction was proposed. Under optimum conditions, Prazosin Hydrochloride was separated andpreconcentrated owing to the formation of stable micelle in thepresence of SDS. After phase separation, the surfactant-rich phasewas diluted with ethanol, and then determined by fluorescence. Theproposed method is simple, sensitive, and selective, and has a highenrichment factor, the method was successfully applied for thedetermination of the drug in pharmaceutical preparations and urine.
     (4) The fluorescence spectrum of berberine, palmatine,jatrorrhizine and coptisine in ionic liquids were studied, found thattheir fluorescence significant increased in ionic liquids and[C_8MIM][PF_6] could make the most increased of fluorescence.Further studies showed that these drugs could be extracted fromaqueous by [C_8MIM][PF_6] used the method of temperature-assistedionic liquid dispersive liquid phase microextraction and theenrichment factor and extraction recovery was 83.3 and 98.5%,98.1%, 98.3% and 98.8% respectively. Based on the [C_8MIM][PF_6]preconcentraton, separation and sensitized fluorescence for thesedrugs, a new selective and sensitive method for the determinationof the concentration of these four drugs in aqueous samples ispresented. At the optimum conditions, the linear relationship wasobtained i n the range were 0.8-130, 0.9-160, 0.7-140 and 0.6-110 ngmL~(-1), with a detection limit were 0.089, 0.112, 0.124 and 0.099 ngmL~(-1), respectively. The proposed method was successfully appliedfor the determination of the drug in pharmaceutical preparations,urine and serum samples.
     (5) An efficient in situ solvent formation microextraction (ISFME)combining high performance liquid chromatography was developed for the determination of sanguinarine and chelerythrine in Macleayacordata (Willd.) R. Br. and Chelidonium majus L and berberine,palmatine, and coptisine in medicinal plants and pharmaceuticalpreparations. The amount of ion-pairing agent (KPF_6) was added tothe sample solution containing a water-miscible ionic liquid([C_6MIM][Br]) to obtain a hydrophobic ionic liquid ([C_6MIM]PF_6),which acted as the extraction phase to replace volatile organicsolvent as an extraction solvent. Several important parametersinfluencing the extraction efficiency of IL-ISFME such as the typeand volume of IL, amount of KPF6, sample pH, extraction time,centrifugation time were optimized. The experimental resultsindicated that the proposed method was successfully applied to theanalysis of these alkaloids in medicinal plants and pharmaceuticalpreparations
     (6) A novel and simple microextraction method is introducedbased on manual shaking ionic liquid dispersive liquid phasemicroextraction (MS-IL-DLLME) for the determination of sixsynthetic food colorants such as Tartrazine, Amaranth, SunsetYellow, Allura Red, Ponceau 4R, Erythrosine. High performanceliquid chromatography coupled with UV detector was used for thedetermination of synthetic food colorants. The procedure is no needfor a dispersive solvent, heating, ultrasonic or additional chemicalreagents, in contrast to conventional IL-DLLME. In this method1-octyl-3-methylimidazolium tetrafluoroborate ([C_8MIM][BF_4]) wasdispersed into the aqueous sample solution as fine droplets bymanual shaking, and which promoted the analytes more easilymigrate into the ionic liquid phase. Some effective factors such as the volume of [C_8MIM][BF_4], sample pH, extraction time,centrifuging time have been investigated in detail. Under theoptimum experimental conditions, the proposed method hadexcellent detection sensitivity with limits of detection (LOD, S/N = 3)in the range of 0.015–0.32 ng mL~(-1). This method has been alsosuccessfully applied to analyze the real food samples and goodspiked recoveries over the range of 95.8–104.5% were obtained.
引文
[1] W. L. Hinze, E. Pramauro, A Critical Review of Surfactant-Mediated Phase Separations(Cloud-Point Extractions): Theory and Applications[J]. Crit. Rev. Anal. Chem. 1993, 24, 133—177.
    [2] C. Mahugo Santana, Z. Sosa Ferrera, J. J. Santana Rodríguez, Extraction and Determination ofPhenolic Derivatives in Water Samples by Using Polyoxyethylene Surfactants and LiquidChromatography with Photodiode Array Detection[J]. J. AOAC Int., 2004, 87, 166—171
    [3] A. Eiguren Fernández, Z. Sosa Ferrera, J.J. Santana Rodríguez, Cloud-point extraction andpreconcentration of polychlorinated biphenyls and their determination using high performance liquidchromatography[J]. Quím. Anal. 1997, 16, 283.
    [4] C. Mahugo Santana, Z. Sosa Ferrera, J.J. Santana Rodríguez, Use of non-ionic surfactant solutionsfor the extraction and preconcentration of phenolic compounds in water prior to their HPLC-UVdetection[J]. Analyst (Cambridge, UK) 2002, 127, 1031—1037.
    [5] B. Moreno Cordero, J.L. Pérez Pavón, C. García Pinto, E. Fernández Laespada, Cloud pointmethodology: A new approach for preconcentration and separation in hydrodynamic systems ofanalysis [J]. Talanta, 1993,40: 1703—1710.
    [6] R.P. Frankewich, W. Hinze, Evaluation and Optimization of the Factors Affecting NonionicSurfactant-Mediated Phase Separations Anal. Chem. 1994, 66: 944—954.
    [7] S.R. Sirimanne, J.R. Barr, D.G. Patterson, Quantification of Polycyclic Aromatic Hydrocarbonsand Polychlorinated Dibenzo-p-dioxins in Human Serum by Combined Micelle-Mediated Extraction(Cloud-Point Extraction) and HPLC. Anal. Chem. 1996,,68: 1556—1560.
    [8] M.F. Silva, L. Fernández, R.A. Olsina, D. Stacchiola, Cloud point extraction, preconcentration andspectrophotometric determination oferbium(III)-2-(3,5-dichloro-2-pyridylazo)-5-dimethylaminophenol Anal. Chim. Acta, 1997, 342:229—238.
    [9] A. Eiguren Fernández, Z. Sosa Ferrera, J.J. Santana Rodríguez, Determination of polychlorinatedbiphenyls by liquid chromatography following cloud-point extraction Anal. Chim. Acta 1998, 358:145—155.
    [10] T. Saitoh, W.L. Hinze, Concentration of hydrophobic organic compounds and extraction ofprotein using alkylammoniosulfate zwitterionic surfactant mediated phase separations (cloud pointextractions) Anal. Chem. 1991, 63: 2520—2525.
    [11] B. Froschl, G. Stangl, R. Niessner, Fresenius Combination of micellar extraction and GC-ECD forthe determination of polychlorinated biphenyls (PCBs) in water J. Anal. Chem. 1997, 357: 743—746.
    [12] A. Eiguren Fernández, Z. Sosa Ferrera, J.J. Santana Rodríguez, Application of cloud-pointmethodology to the determination of polychlorinated dibenzofurans in sea water by high-performanceliquid chromatography Analyst (Cambridge, UK) 1999, 24: 487—491.
    [13]H Watanabe, H. Tanaka. A non-ionic surfactant as a new solvent for liquid—liquid extraction ofzinc(II) with 1-(2-pyridylazo)-2-naphthol. Talanta, 1978, 25(10): 585—589
    [14] L. Sombra, M. Luconi, M. Fernanda Silva, R. A. Olsina, L. Fernandez. Spectrophotometricdetermination of trace aluminium content in parenteral solutions by combined cloud pointpreconcentration–flow injection analysis Analyst[J], 2001, 126: 1172—1176.
    [15] M. F. Silva, L. P. Fernandez, R. A. Olsina, Cloud point preconcentration and spectrophotometricdetermination of Gd (Ⅲ)-2-(3, 5-dichloro-2-pyridylazo)-5-dimethylaminophenol in urine. Analyst[J],1998, 123: 1803—1807.
    [16] M. E. F. Laespada, J. L. P. Pavon, B. M. Cordero, Micelle-mediated methodology for thepreconcentration of uranium prior to its determination by flow injection. Analyst[J], 1993, 118:209—212.
    [17] M. Garrido, M. S. Di-Nezio, A. G. Lista, M. Palomeque, B. S. Fernández Band, Cloud-pointextraction/preconcentration on-line flow injection method for mercury determination Anal ChimActa[J], 2004, 502: 173—177.
    [18] A. Safavi, H. Abdollahi, M. R. H. Nezhad. Cloud point extraction, preconcentration andsimultaneous spectrophotometric determination of nickel and cobalt in water samples. SpectrochimActa Part A[J], 2004, 60: 2897—2901.
    [19] F. Shemirani, R. R. Kozani, M. R. Jamali, Y. Assadi. S. M. R. Milani,. Micelle-MediatedExtraction for Direct Spectrophotometric Determination of Trace Uranium(VI) in Water Samples SepSci& Tech[J], 2005, 40: 2527—2537.
    [20] E. K. Paleologos, M. A. Koupparis, M. I. Karayannis, P. G.Veltsistas, Nonaqueous CatalyticFluorometric Trace Determination of Vanadium Based on the Pyronine B Hydrogen PeroxideReaction and Flow Injection after Cloud Point Extraction Anal Chem[J], 2001, 73: 4428—4433.
    [21] S. Igarashi, K. Endo, Room temperature phosphorescence of palladium(II)-coproporphyrin IIIcomplex in a precipitated nonionic surfactant micelle phase: determination of traces of palladium(II)Anal Chim Acta[J], 1996, 320: 133—138.
    [22] E. K. Paleologos, A. G. Vlessidis, M. I. Karayannis. On-line sorption preconcentration of metalsbased on mixed micelle cloud point extraction prior to their determination with micellarchemiluminescence: Application to the determination of chromium at ng l 1levels Anal Chim Acta[J],2003, 477: 223—231.
    [23] C. G. Pinto, J. L. P. Pavon, B. M. Cordero, E. R. Beato, S. G. Sánchez, Cloud pointpreconcentration and flame atomic absorption spectrometry: application to the determination ofcadmium J Anal At Spectrom[J], 1996, 11: 37—41.
    [24] J. L. Manzoori, K. N. Ghasem, Sensitive and simple cloud-point preconcentration atomicabsorption spectrometry: Application to the determination of cobalt in urine samples Anal Sci[J], 2003,19: 579—583.
    [25] C. C. Nascentes, M. A. Z. Arruda, Cloud point formation based on mixed micelles in the presenceof electrolytes for cobalt extraction and preconcentration Talanta[J], 2003, 61: 759—768.
    [26] J. L. Manzoori, A. Bavili-Tabrizi, The application of cloud point preconcentration for thedetermination of Cu in real samples by flame atomic absorption spectrometry Micro chem J[J], 2002,72: 1—7.
    [27] K. C. Teo, J. Chen. Determination of manganese in water samples by flame atomicabsorptionspectrometry after cloud point extraction. Analyst[J], 2001, 126: 534—537.
    [28] S. A. Kulichenko, V. A. Doroshchuk Atomic-absorption determination of zinc in water withmicellar-extraction preconcentration with phases of nonionic surfactants J Anal Chem[J], 2003, 58(6):524—527.
    [29] J. Chen, K. C. Teo, Determination of cobalt and nickel in water samples by flame atomicabsorption spectrometry after cloud point extraction. Anal Chim Act a[J], 2001, 434: 325—330.
    [30] J. L. Manzoori, A. Bavili-Tabrizi, Cloud point preconcentration and flame atomic absorptionspectrometric determination of cobalt and nickel in water samples. Micro chim Acta[J], 2003, 141:201—207.
    [31] D. L. Giokas, E. K. Paleologos, M. I. Karayannis. Single-sample cloud point determination of iron,cobalt and nickel by flow injection analysis flame atomic absorption spectrometry—application to realsamples and certified reference materials. J Anal At Spectrom[J], 2001, 16: 521—526.
    [32] J. Chen, K. C. Teo, Determination of cadmium, copper, lead and zinc in water samples by flameatomic absorption spectrometry after cloud point extractionAnal Chim Acta[J], 2001, 450: 215—222.
    [33] V. O. Doroschuk, S. O. Lelyushok, V. B. Ishchenko, S. A. Kulichenko. Flame atomic absorptiondetermination of manganese(II) in natural water after cloud point extraction Talanta[J], 2004, 64:853—856.
    [34] L. M. Coelho, M. A. Z. Arruda. Preconcentration procedure using cloud point extraction in thepresence of electrolyte for cadmium determination by flame atomic absorption spectrometrySpectrochim Acta: Part B[J], 2005, 60: 743—748.
    [35] P. Liang, L. Jing, X. Yang. Cloud Point Extraction Preconcentration of Trace Cadmium as1-Phenyl-3-methyl-4-benzoyl-5-pyrazolone Complex and Determination by Flame Atomic AbsorptionSpectrometry Microchim Acta[J], 2005, 152: 47—51.
    [36] A. Ohashi, H. Ito, C. Kanai, H. Imura, K. Ohashi. Cloud point extraction of iron(III) andvanadium(V) using 8-quinolinol derivatives and Triton X-100 and determination of 10 7mol dm 3level iron(III) in riverine water reference by a graphite furnace atomic absorption spectroscopyTalanta[J], 2005, 65: 525—530.
    [37] F. Shemirani, M. Baghdadi, M. Ramezani, M. R. Jamali. Determination of ultra trace amounts ofbismuth in biological and water samples by electrothermal atomic absorption spectrometry (ET-AAS)after cloud point extraction Anal Chim Acta[J], 2005, 534: 163—169.
    [38] A. N. Tang, G. S. Ding. X. P. Yan. Cloud point extraction for the determination of As(III) inwater samples by electrothermal atomic absorption spectrometry Talanta[J], 2005, 67: 942—946.
    [39] J. R. Chen, S. M. Xiao. X. H. Wu, K. M. Fang, W. H. Liu, Determination of lead in water samplesby graphite furnace atomic absorption spectrometry after cloud point extraction Talanta[J], 2005, 67:992—996.
    [40] L. L. Sombra, M. O. Luconi, L. P. Fernandez, R. A. Olsina, M. F. Silva, L. D. Matinez.Assessment of trace aluminium content in parenteral solutions by combined cloud pointpreconcentration-flow injection inductively coupled plasma optical emission spectrometry. J PharmBiomed Anal[J], 2003, 30: 1451—1458.
    [41] C. Ortega, S. Cerutti, R. A. Olsina, M. F. Silva, L. D. Martinez. On-line complexation/cloud pointpreconcentration for the sensitive determination of dysprosium in urine by flow injection inductivelycoupled plasma-optical emission spectrometry. Anal Bioanal Chem[J], 2003, 375: 270—274.
    [42] C. Ortega, R. Gomez, R. A. Olsina, M. F. Silva, L. D. Martinez. On-line cloud pointpreconcentration and determination of gadolinium in urine using flow injection inductively coupledplasma optical emission spectrometry. J Anal At Spectrom[J], 2002, 17: 530—533.
    [43] G. M. Wuilloud, J. C. A. Wuilloud, R. G. Wuilloud, M. F. Silva, R. A. Olsina, L. D. Martinez,Cloud point extraction of vanadium in parenteral solutions using a nonionic surfactant (PONPE 5.0)and determination by flow injection-inductively coupled plasma optical emission spectrometry.Talanta[J], 2002, 58: 619—627.
    [44] J. C. A. Wuilloud, R. G. Wuilloud, M. F. Silva, R. A. Olsina, L. D. Martinez. Sensitivedetermination of mercury in tap water by cloud point extraction pre-concentration and flowinjection-cold vapor-inductively coupled plasma optical emission spectrometry. Spectrochim Acta:Part B[J], 2002, 57: 365—374.
    [45] J. Li, P. Liang, T. Q. Shi, H. B. Lu, Sensitive determination of mercury in tap water by cloud pointextraction pre-concentration and flow injection-cold vapor-inductively coupled plasma opticalemission spectrometry. At Spectrosc[J], 2003, 24: 169—172.
    [46] M. A. M. Silva, V. L. A. Frescura, A. J. Curtius. Determination of noble metals in biologicalsamples by electrothermal vaporization inductively coupled plasma mass spectrometry, followingcloud point extraction. Spectrochim Acta: Part B[J], 2001, 56: 1941—1949.
    [47] M. A. M. Silva, V. L. A. Frescura, A. J. Curtius. Determination of trace elements in water samplesby ultrasonic nebulization inductively coupled plasma mass spectrometry after cloud point extraction.Spectrochim Acta: Part B[J], 2000, 55: 803—813.
    [48] A. C. S. Bellato, A. P. G. Gervasio, M. F. Gine. Cloud-point extraction of molybdenum in plantsand determination by isotope dilution inductively coupled plasma mass spectrometry. J. Anal AtSpectrom[J], 2005, 20: 535—537.
    [49] I. Casero, D. Sicilia, S. Rubio, D. Pérez-Bendito. An Acid-Induced Phase Cloud Point SeparationApproach Using Anionic Surfactants for the Extraction and Preconcentration of Organic Compounds.Anal. Chem., 1999, 71: 4519—4526
    [50] T. Saitoh, W. L. Hinze. Concentration of hydrophobic organic compounds and extraction ofprotein using alkylammoniosulfate zwitterionic surfactant mediated phase separations (cloud pointextractions) Anal. Chem., 1991, 63: 2520—2525
    [51] A. Boeckelen, R. Niessner. Fresenius Combination of micellar extraction of polycyclic aromatichydrocarbons from aqueous media with detection by synchronous fluorescence J. Anal. Chem., 1993,346: 435—440
    [52] J. L. Li, B. H. Chen. Cloud-Point Extraction of Phenanthrene by Nonionic Surfactants. J. Chin.Inst. Chem. Eng., 2002, 33: 581—589
    [53] G. Stangl, R. Niessner, Albaiges Micellar extraction- a new step for enrichment in the analysis ofnapropamide. J. Int. J. Environ. Anal.Chem., 1995, 58: 15―22
    [54] C. G. Pinto, J. L. P. Pavon, B. M. Cordero. Cloud point preconcentration and high-performanceliquid chromatographic determination of organophosphorus pesticides with dual electrochemicaldetection Anal. Chem., 1995, 67:2606—2612
    [55] R. C. Martinez, E. R. Gonzalo, M. G. G. Jiménez, G. Pinto, J. L. P. Pavon, J. H. Méndez,Determination of the fungicides folpet, captan and captafol by cloud-point preconcentration andhigh-performance liquid chromatography with electrochemical detection. J.Chromatogr. A, 1996, 754:85—96
    [56] E. Evdokimov, R. Wandruszka. Decontamination of DDT-Polluted Soil by Soil Washing/CloudPoint Extraction Anal. Lett., 1998, 31: 2289—2298
    [57] R. Halko, M. Hutta. Study of high-performance liquid chromatographic separation of selectedherbicides by hydro-methanolic and micellar liquid chromatography using Genapol X-080 non-ionicsurfactant as mobile phase constituent Anal. Chim. Acta, 2002, 466 (2): 325—333
    [58] R. Halko, M. Hutta. Cloud point extraction and high-performance liquid chromatographicdetermination of selected herbicides. Fresenius Environ. Bull., 2002, 11: 22—26
    [59] R .C. Martinez, E. R. Gonzalo, J. D. Alvarez, J. H. Méndez,. Cloud Point Extraction as aPreconcentration Step Prior to Capillary Electrophoresis. Anal. Chem., 1999,71: 2468—2474
    [60] A. E. Fernàndez, Z. S. Ferrera, J. J. S. Rodriguez. Application of cloud-point methodology to thedetermination of polychlorinated dibenzofurans in sea water by high-performance liquidchromatography Analyst, 1999, 124: 487—494
    [61] R. P. Frankewich, W. L. Hinze. Evaluation and optimization of the factors affecting nonionicsurfactant-mediated phase separations Anal. Chem., 1994, 66: 944—954
    [62] Y. C. Wu, S. D. Huang. Cloud point preconcentration and liquid chromatographic determinationof aromatic amines in dyestuffs. Anal. Chim. Acta, 1998, 373: 197—206
    [63] Y. C. Wu, S. D. Huang. Trace determination of hydroxyaromatic compounds in dyestuffs usingcloud point preconcentration Analyst, 1998, 123: 1535—1539
    [64] R. L. Revia, G. A. Makharadze. Cloud-point preconcentration of fulvic and humic acids Talanta,1999, 48: 409—413
    [65] J. C. A. De Wuilloud, R. G. Wuilloud, B. B. M. Sadi, J. A. Caruso, Trace humic and fulvic aciddetermination in natural water by cloud point extraction/preconcentration using non-ionic and cationicsurfactants with FI-UV detection Analyst, 2003, 128 (5): 453—458
    [66] S. Akita, H. Takeuchi. Cloud-Point Extraction of Organic Compounds from Aqueous Solutionswith Nonionic Surfactant Sep. Sci. Tech., 1995, 30: 833—846
    [67] C. M. Santana, Z. S. Ferrera, J. J. S. Rodriguez. Use of non-ionic surfactant solutions for theextraction and preconcentration of phenolic compounds in water prior to their HPLC-UV detectionAnalyst, 2002, 127(8): 1031—1037
    [68] Q. Fang, H. W. Yeung, H. W. Leung, C. W. Huie, Micelle-mediated extraction andpreconcentration of ginsenosides from Chinese herbal medicine, J. Chromatogr. A,2000, 904 (1): 47—55
    [69] E. K. Paleologos, S. D. Chytiri, I. N. Savvaidis, M. G. Kontominas, Determination of biogenicamines as their benzoyl derivatives after cloud point extraction with micellar liquid chromatographicseparation, J. Chromatogr. A, 2003, 1010 (2): 217—224
    [70] R. Halko, C. P. Sanz, Z. S. Ferrera, J. J. S. Rodriguez. Determination of BenzimidazoleFungicides by HPLC with Fluorescence Detection After Micellar Extraction, Chromatographia, 2004,60(3P4): 151—156
    [71] Z. H. Shi, J. T. He, W. B. Chang. Micelle-mediated extraction of tanshinones from Salviamiltiorrhiza bunge with analysis by high-performance liquid chromatography. Talanta, 2004, 64(2):401—407
    [72] J. T. He, Z. W. Zhao, Z. H. Shi, M. P. Zhao, Y. Z. Li, W. B. Chang, Analysis of IsoflavoneDaidzein in Puerariae radix with Micelle-Mediated Extraction and Preconcentration. J. Agric. FoodChem., 2005, 53(3): 518—523
    [73] A. Ohashi, M. Ogiwara, R. Ikeda, H. Okada, K. Ohashi. Cloud Point Extraction andPreconcentration for the Gas Chromatography of Phenothiazine Tranquilizers in Spiked Human SerumAnal. Sci., 2004, 20 (9): 1353—1357
    [74] H. Abdollahi, L. Bagheri. Simultaneous spectrophotometric determination of Vitamin K3 and1,4-naphthoquinone after cloud point extraction by using genetic algorithm based wavelengthselection-partial least squares regression Anal. Chim. Acta, 2004, 514: 211—218
    [75] C. Bordier. Phase separation of integral membrane proteins in Triton X-114 solution[J]. J BiolChem, 1981, 256(4): 1604—1607.
    [76] T. Saitoh, W. L. Hinze. Use of surfactant-mediated phase separation (cloud point extraction) withaffinity ligands for the extraction of hydrophilic proteins[J]. Talanta, 1995, 42(1): 119—127.
    [77] H. Tani, T. Ooura, T. Kamidate,. Separation of microsomal cytochrome b5 via phase separation ina mixed solution of Triton X-114 and charged dextran[J]. J Chromatogr B Biomed Sci Appl, 1998,708(1-2): 294—298.
    [78] M. D. Rukhadze, S. K. Tsagareli, N. S. Sidamonidze, et al. Cloudpoint extraction for thedetermination of the free fraction of antiepileptic drugs in blood plasma and saliva[J]. Anal Biochem,2000, 287(2): 279—283.
    [79] S. R. Sirimanne, D. G. Patterson Jr, L. Ma, Application of cloud-point extraction-reversed-phasehigh-performance liquid chromatography. A preliminary study of the extraction and quantification ofvitamins A and E in human serum and whole blood[J]. J Chromatogr B Biomed Sci Appl, 1998, 716(1-2): 129—137.
    [80] M. P. Choi, K. K. Chan, H. W. Leung, Pressurized liquid extraction of active ingredients(ginsenosides) from medicinal plants using non-ionic surfactant solutions[J]. J Chromatogr A, 2003,983(1-2): 153—162.
    [81] C. L. Arthur, J. Pawliszyn, Solid phase microextraction with thermal desorption using fused silicaoptical fibers Anal. Chem. 1990. 63: 2145—2148.
    [82] A. Kumar, Gaurav, A. K. Malik, D.K. Tewary, B. Singh, A review on development of solid phasemicroextraction fibers by sol–gel methods and their applications. Anal.Chim. Acta, 2008, 610: 1—14.
    [83] D. R. MacFarlane, K. R. Seddon, Ionic Liquids—Progress on the Fundamental Issues Aust. J.Chem. 2007, 60: 3—5.
    [84] P. Wasserscheid, T. Welton (Eds.), Ionic Liquids in Synthesis, Wiley-VCH,Weinheim, 2003.
    [85] C. F. Poole, Chromatographic and spectroscopic methods for the determination of solventproperties of room temperature ionic liquids J. Chromatogr. A, 2004, 1037: 49—82.
    [86] S.A. Forsyth, J.M. Pringle, D.R. MacFarlane, Ionic Liquids-An Overview, Aust. J. Chem. 2004,57: 113—119.
    [87] D.M. Eike, J.F. Brennecke, E.J. Maginn, Predicting melting points of quaternary ammonium ionicliquids, Green Chem. 2003, 5: 323—328.
    [88] P.A. Hunt, I.R. Gould, B. Kirchner, The Structure of Imidazolium-Based Ionic Liquids: InsightsFrom Ion-Pair Interactions Aust. J. Chem. 2007, 60: 9—14.
    [89] S. Trohalaki, R. Pachter, Prediction of Melting Points for Ionic Liquids QSAR Comb. Sci. 2005,24: 485—490.
    [90] E. I. Izgorodena, M. Forsyth, D. R. MacFarlane, Towards a better understanding of'delocalizedcharge'in ionic liquid anions Aust. J. Chem. 2007, 60: 15—20.
    [91] M. Kosmulski, J. Gustafsson, J. B. Rosenholm, Thermal stability of low temperature ionic liquidsrevisited Thermochim. Acta, 2004, 412: 47—53.
    [92] H. Luo, J. F. Huang, S. Dai, Studies on Thermal Properties of Selected Aprotic and Protic IonicLiquids, Sep. Sci. Technol. 2008, 43: 2473—2488.
    [93] J. P. Leal, J. M. S. S. Esperanca, M. E. Minasde Piedade, J. N. Canongia Lopes, L. P. N. Rebelo, K.R. Seddon, The Nature of Ionic Liquids in the Gas Phase J. Phys. Chem. A, 2007, 111: 6176—6182.
    [94] H. L. Ngo, K. LeCompte, L. Hargens, A. B. McEwen, Thermal properties of imidazolium ionicliquids, Thermochim. Acta, 2000, 357: 97—102.
    [95] C. F. Poole, B. R. Kersten, S. S. J. Ho, M. E. Coddens, K. G. Furton, Organic salts, liquid at roomtemperature, as mobile phases in liquid chromatography J. Chromatogr., 1986, 352: 407—425.
    [96] A. Berthod, M. J. Ruiz-Angel, S. Carda-Broch, Ionic liquids in separation techniques J.Chromatogr. A 2008, 1184: 6—18.
    [97] R. L. Gardas, J. A. P. Coutinho, Group contribution methods for the prediction of thermophysicaland transport properties of ionic liquids AIChE J., 2009, 55: 1274—1290.
    [98] O. O. Okoturo, T. J. VanderNoot, Temperature dependence of viscosity for room temperature ionicliquids J. Electroanal. Chem., 2004, 568: 167—181.
    [99] A. Berthod, S. Carda-Broch, Use of the ionic liquid 1-butyl-3-methylimidazoliumhexafluorophosphate in countercurrent chromatography Anal. Bioanal. Chem. 2004, 380: 168—177.
    [100] W. Liu, T. Zhao, Y. Zhang, H. Wang, M. Yu, The Physical Properties of Aqueous Solutions of theIonic Liquid [BMIM][BF4] J. Sol. Chem., 2006, 35: 1337—1346.
    [101] R. Liu, J. F. Liu, Y. G. Yin, X. L. Hu, Ionic liquids in sample preparation, Anal. Bioanal. Chem.2009, 393: 871—883.
    [102] D.M. Fox, W.H. Awad, J.W. Gilman, P.H. Maupin, H.C. De Long, F.C. Trulove, Flammability,thermal stability, and phase change characteristics of several trialkylimidazolium salts, Green Chem.,2003, 5: 724—727.
    [103] M. Smiglak, W. M. Reichart, J. D. Holbrey, J. S. Wilkes, L. Sun, J. S. Thrasher, K. Kirichenko, S.Singh, A.R. Katritzky, R.D. Rogers, Combustible ionic liquids by design: is laboratory safety anotherionic liquid myth? Chem. Commun. 2006, 2554—2556.
    [104] L. S. Wang, L. Wang, L. Wang, G. Wang, Z. H. Li, J. J. Wang, Effect of1-butyl-3-methylimidazolium tetrafluoroborate on the wheat (Triticum aestivum L.) seedlings Environ.Toxicol., 2009, 24: 296—303.
    [105] M. M. Bailey, M. B. Townsend, P. L. Jernigan, J. Sturdivant, W. L. Hough-Troutman, J. F. Rasco,R. P. Swatlaski, R. D. Rogers, R. D. Hood, Developmental toxicity assessment of the ionic liquid1-butyl-3-methylimidazolium chloride in CD-1 mice, Green Chem., 2008, 10: 1213—1217.
    [106] A. Romero, A. Santos, J. Tojo, A. Rodrigues, Toxicity and biodegradability of imidazolium ionicliquids. J. Hazard. Mater. 2008, 151: 268—273.
    [107] M. A. Jeannot, F. F. Cantwell, Solvent Microextraction into a Single Drop, Anal. Chem., 1996,68: 2236—2240.
    [108] J. F. Liu, G. B. Jiang, Y. G. Chi, Y. Q. Cai, Q. X. Zhou, J. T. Hu, Use of Ionic Liquids forLiquid-Phase Microextraction of Polycyclic Aromatic Hydrocarbons. Anal. Chem., 2003, 75:5870—5876.
    [109] J. F. Liu, Y. G. Chi, G. B. Jiang, C. Tai, J. F. Peng, J. T. Hu, Ionic liquid-based liquid-phasemicroextraction, a new sample enrichment procedure for liquid chromatography J. Chromatogr. A,2004, 1026: 143—147.
    [110] J. F. Liu, J. F. Peng, Y. G. Chi, G. B. Jiang, Determination of formaldehyde in shiitakemushroom by ionic liquid-based liquid-phase microextraction coupled with liquid chromatographyTalanta, 2005, 65: 705—709.
    [111] J. F. Peng, J. F. Liu, G. B. Jiang, C. Tai, M. J. Huang, Ionic liquid for high temperatureheadspace liquid-phase microextraction of chlorinated anilines in environmental water samples J.Chromatogr. A, 2005, 1072: 3—6.
    [112] J. F. Liu, Y. G. Chi, G. B. Jiang, Screening the extractability of some typical environmentalpollutants by ionic liquids in liquid-phase microextraction. J. Sep. Sci. 2005, 28: 87—91.
    [113] C. L. Ye, Q. X. Zhou, X. M. Wang, Headspace liquid-phase microextraction using ionic liquid asextractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at tracelevels in water samples Anal. Chim. Acta, 2006, 572: 165—171.
    [114] Q. X. Zhou, J. P. Xiao, C. L. Ye, X. M. Wang, Enhancement of Sensitivity for Determination ofPhenols in Environmental Water Samples by Single-drop Liquid Phase Microextraction Using IonicLiquid prior to HPLC Chin. Chem. Lett., 2006, 17: 1073—1076.
    [115] L. Vidal, A. Chisvert, A. Canals, A. Salvador, Sensitive determination of free benzophenone-3 inhuman urine samples based on an ionic liquid as extractant phase in single-drop microextraction priorto liquid chromatography analysis. J. Chromatogr. A., 2007, 1174: 95—103.
    [116] L. Vidal, E. Psillakis, C. E. Domini, N. Grané, F. Marken, A. Canals, An ionic liquid as a solventfor headspace single drop microextraction of chlorobenzenes from water samples. Anal. Chim. Acta,2007, 584: 189—195.
    [117] L. Vidal, C. E. Domini, N. Grané, E. Psillakis, A. Canals, Microwave-assisted headspacesingle-drop microextration of chlorobenzenes from water samples Anal.Chim. Acta, 2007, 592: 9—15.
    [118] Q. X. Zhou, C. L. Ye, Ionic liquid for improved single-drop microextraction of aromatic aminesin water samples Microchim. Acta, 2008, 162: 153—159.
    [119] F. Pena-Pereira, I. Lavilla, C. Bendicho, L. Vidal, A. Canals, Speciation of mercury by ionicliquid-based single-drop microextraction combined with high-performance liquidchromatography-photodiode array detection Talanta, 2009, 78: 537—541.
    [120] E. Aguilera-Herrador, R. Lucena, S. Cárdenas, M. Valcárcel, Direct Coupling of Ionic LiquidBased Single-Drop Microextraction and GC/MS Anal. Chem., 2008, 80: 793—800.
    [121] E. Aguilera-Herrador, R. Lucena, S. Cárdenas, M. Valcárcel, Ionic liquid-based single-dropmicroextraction/gas chromatographic/mass spectrometric determination of benzene, toluene,ethylbenzene and xylene isomers in waters J. Chromatogr., A 2008, 1201: 106—111.
    [122] E. Aguilera-Herrador, R. Lucena, S. Ca′rdenas, M. Valcárcel, Determination of trihalomethanesin waters by ionic liquid-based single drop microextraction/gas chromatographic/mass spectrometryJ.Chromatogr., A 2008, 1209: 76—82.
    [123] F. Q. Zhao, J. Li, B. Z. Zeng, Coupling of ionic liquid-based headspace single-dropmicroextraction with GC for sensitive detection of phenols, J. Sep. Sci., 2008, 31: 3045—3049.
    [124] F. Q. Zhao, J. Li, B. Z. Zeng, Ionic liquid based headspace single-drop micro extraction of ethylesters and their gas chromatographic analysis. Chin. J. Anal. Chem., 2009, 37: 939—942.
    [125] F. Q. Zhao, S. Lu, W. Du, B. J. Zeng, Ionic liquid-based headspace single-drop microextractioncoupled to gas chromatography for the determination of chlorobenzene derivatives. Microchim. Acta,2009, 165: 29—33.
    [126] A. Chisvert, I. P. Román, L. Vidal, A. Canals, Simple and commercial readily-availableapproach for the direct use of ionic liquid-based single-drop microextraction prior to gaschromatography: Determination of chlorobenzenes in real water samples as model analyticalapplication. J. Chromatogr. A, 2009, 1216: 1290—1295.
    [127] L. B. Xia, X. Li, Y. L. Wu, B. Hu, R. Chen, Ionic liquids based single drop microextractioncombined with electrothermal vaporization inductively coupled plasma mass spectrometry fordetermination of Co, Hg and Pb in biological and environmental samples. Spectrochim. Acta Part B,2008, 63: 1290—1296.
    [128] S. Pedersen-Bjergaard, K. E. Rasmussen, Liquid Liquid Liquid Microextraction for SamplePreparation of Biological Fluids Prior to Capillary Electrophoresis. Anal. Chem., 1999, 71:2650—2656.
    [129] J. F. Peng, J. F. Liu, X. L. Hu, G. B. Jiang, Direct determination of chlorophenols inenvironmental water samples by hollow fiber supported ionic liquid membrane extraction coupled withhigh-performance liquid chromatography J. Chromatogr. A, 2007, 1139: 165—170.
    [130] C. Basheer, A. A. Alnedhary, B. S. M. Rao, R. Balasubramanian, H. K. Lee, Ionic liquidsupported three-phase liquid–liquid–liquid microextraction as a sample preparation technique foraliphatic and aromatic hydrocarbons prior to gas chromatography-mass spectrometry. J. Chromatogr.A, 2008, 1210: 19—24.
    [131] Y. Tao, J. F. Liu, X. L. Hu, H. C. Li, T. Wang, G. B. Jiang, Hollow fiber supported ionic liquidmembrane microextraction for determination of sulfonamides in environmental water samples byhigh-performance liquid chromatography. J. Chromatogr. A, 2009, 1216: 6259—6266.
    [132] H. Lin H. Yan, M. Luo, H. Li, 2nd Int. Conf. Bioinform. Biomed. Eng. (ICBBE), 2008.
    [133] M.Rezaee, Y. Assadi, M. R. M. Hosseini, Aghaee, E., Fardin Ahmadi,, Sana Berijani, S.,.Determination of organic compounds in water using dispersive liquid–liquid microextraction. J.Chromatogr. A, 2006, 1116(1): 1—9.
    [134] M. Rezaee, Y. Yamini, M. Faraji, Evolution of dispersive liquid–liquid microextraction method.J. Chromatogr. A, 2010, 1217(16): 2342—2357.
    [135] X. H. Zhang, Q. H. Wu, M. Y. Zhang, G. H. Xi, Z. Wang, Developments of DispersiveLiquid-Liquid Microextraction Technique. Chin J Anal Chem, 2009, 37(2): 161–168
    [136] S. R. Yousefi, F. Shemirani, M. R. Jamali, ,. Continuous pressurized solvent extraction ofpolycyclic aromatic hydrocarbons from biosolids. Assessment of their lability in soils amended withbiosolids. Analytical Letters, 2010, 43(16): 2465—2476.
    [137] M. R. K. Zanjani, Y. Yamini, S. Shariati, J.A. J nsson, ,. A new liquid-phase microextractionmethod based on solidification of floating organic drop. Analytica Chimica Acta 2007, 585(2):286—293.
    [138] Z. G. Shi, H. K. Lee, ,. Dispersive liquid–liquid microextraction coupled with dispersiveμ-solid-phase extraction for the fast determination of polycyclic aromatic hydrocarbons inenvironmental water. Analytical Chemistry 2010, 82: 1540—1545.
    [139] A. Saleh, Y. Yamini, M. Faraji, M. Rezaee, M. Ghambarian, ,. Ultrasound-assisted emulsificationmicroextraction method based on applying low density organic solvents followed by gaschromatography analysis for the determination of polycyclic aromatic hydrocarbons in water samples.Journal of Chromatography A 2009, 1216: 6673—6679.
    [140] L. Kocurova, I. S. Balogh, J. Skrlikova, J. Posta, V. Andruch, ,. A novel approach in dispersiveliquid–liquid microextraction based on the use of an auxiliary solvent for adjustment of density:UV–Vis spectrophotometric and graphite furnace atomic absorption spectrometric determination ofgold based on ion pair formation. Talanta, 2010, 82(5): 1958—1964.
    [141] E. M. Martinis, R. A. Olsina, J. C. Altamirano, R. G. Wuilloud, Sensitive determination ofcadmium in water samples by room temperature ionic liquid-based preconcentration andelectrothermal atomic absorption spectrometry. Anal. Chim. Acta 2008, 628: 41—48.
    [142] Y. Liu, E. Zhao, W. Zhu, H. Gao, Z. Zhou, Determination of four heterocyclic insecticides byionic liquid dispersive liquid–liquid microextraction in water samples. J. Chromatogr. A, 2009, 1216:885—891.
    [143] M. H. Mallah, F. Shemirani, M. G. Maragheh, Ionic Liquids for Simultaneous Preconcentrationof Some Lanthanoids Using Dispersive Liquid Liquid Microextraction Technique in Uranium DioxidePowder. Environ. Sci. Technol., 2009, 43: 1947—1951.
    [144] M. Gharehbaghi, F. Shemirani, M. Baghdadi, Dispersive liquid–liquid microextraction based onionic liquid and spectrophotometric determination of mercury in water samples. Int. J. Environ. Anal.Chem., 2009, 89: 21—33.
    [145] Y. C. Fan, Z. L. Hu, M. L. Chen, C. S. Tu, Y. Zhu, Ionic liquid based dispersive liquid–liquidmicroextraction of aromatic amines in water samples. Chin. Chem. Lett., 2008, 19: 985-987.
    [146] Y. C. Fan, M. L. Chen, C. Shen-Tu, Y. Zhu, A ionic liquid for dispersive liquid-liquidmicroextraction of phenols. J. Anal. Chem. 2009, 64: 1017—1022.
    [147] H. Abdolmohammad-Zadeh, G. H. Sadeghi, A novel microextraction technique based on1-hexylpyridinium hexafluorophosphate ionic liquid for the preconcentration of zinc in water and milksamples. Anal. Chim. Acta, 2009, 640: 211—217.
    [148] M. Baghdadi, F. Shemirani, In situ solvent formation microextraction based on ionic liquids: Anovel sample preparation technique for determination of inorganic species in saline solutions Anal.Chim. Acta, 2009, 634: 186—191.
    [149] C. Yao, J. L. Anderson, Dispersive liquid–liquid microextraction using an in situ metathesisreaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds fromwater. Anal. Bioanal. Chem., 2009, 395: 1491—1502.
    [150] L. M. Ravelo-Pérez, J. Hernández-Borges, M. Asensio-Ramos, M.A.Rodríguez-Delgado, Ionicliquid based dispersive liquid–liquid microextraction for the extraction of pesticides from bananas. J.Chromatogr.A, 2009, 1216: 7336—7345.
    [151] L. M. Ravelo-Pérez, J. Hernández-Borges, A. V. Herrera-Herrera,M. A. Rodríguez-Delgado,Pesticide extraction from table grapes and plums using ionic liquid based dispersive liquid–liquidmicroextraction. Anal. Bioanal. Chem., 2009, 395: 2387—2395
    [152] M. Cruz-Vera, R. Lucena, S. Cárdenas, M. Valcarcel, One-step in-syringe ionic liquid-baseddispersive liquid–liquid microextraction. J. Chromatogr. A, 2009, 1216: 6459—6465.
    [153] Q. X. Zhou, H. Bai, G. Xie, J. P. Xiao, Temperature-controlled ionic liquid dispersive liquidphase micro-extraction J. Chromatogr. A, 2008, 1177: 43—49.
    [154] Q. X. Zhou, H. Bai, G. Xie, J. P. Xiao, Trace determination of organophosphorus pesticides inenvironmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextractionJ. Chromatogr. A, 2008, 1188: 148—153.
    [155] H. Bai, Q. X. Zhou, G. Xie, J. P. Xiao, Enrichment and sensitive determination ofdichlorodiphenyltrichloroethane and its metabolites with temperature controlled ionic liquid dispersiveliquid phase microextraction prior to high performance liquid phase chromatography. Anal. Chim.Acta, 2009, 651: 64—68.
    [156] P. Berton, E. M. Martinis, L. D. Martinez, R. G. Wuilloud, Room temperature ionic liquid-basedmicroextraction for vanadium species separation and determination in water samples by electrothermalatomic absorption spectrometry, Anal. Chim. Acta, 2009, 640: 40—46.
    [157] M. Baghdadi, F. Shemirani, Cold-induced aggregation microextraction: A novel samplepreparation technique based on ionic liquids, Anal. Chim. Acta, 2008, 613: 56—63.
    [158] M. Gharehbaghi, F. Shemirani, M. D. Farahani, Cold-induced aggregation microextraction basedon ionic liquids and fiber optic-linear array detection spectrophotometry of cobalt in water samples. J.Hazard. Mater. 2009, 165: 1049—1055.
    [159] Q. X. Zhou, X. Zhang, J. P. Xiao, Ultrasound-assisted ionic liquid dispersive liquid-phasemicro-extraction: A novel approach for the sensitive determination of aromatic amines in watersamples. J. Chromatogr. A 2009, 1216: 4361—4365.
    [160] T. Mao, B. Hao, J. He, W. Li, S. Li, Z. Yu, Ultrasound assisted ionic liquid dispersive liquidphase extraction of lovastatin and simvastatin: A new pretreatment procedure. J. Sep. Sci., 2009, 32:3029—3033.
    [1] Martindale, The Extra Pharmacopoeia, 33rd ed., Royal Pharmaceutical Society, London, 2002.
    [2] V. Kapetanovi , L. Milovanovi , M. Erceg, Spectrophotometric and polarographic investigation ofthe Ofloxacin—Cu(II) complexes. Talanta 43 (1996) 2123―2130.
    [3] M.S. García, M.I. Albero, C.S. Pedre o, M.S. Abuherba, Flow injection spectrophotometricdetermination of ofloxacin in pharmaceuticals and urine. Eur. J. Pharm. Biopharm. 61 (2005) 87―93.
    [4] C.S.P. Sastry, K.R. Rao, D.S. Prasad, Extractive spectrophotometric determination of somefluoroquinolone derivatives in pure and dosage forms. Talanta 42 (1995) 311―316.
    [5] K. Basavaiah, U.R.A. Kumar, Sensitive Spectrophotometric Methods for the Determination ofGatifloxacin in Pharmaceuticals Using Bromate-Bromide, Methylene Blue and Rhodamine-B asReagents. E-J.Chem. 4 (2007) 154―161.
    [6] A.S. Amin, A.A.E. Goudab, R. El-Sheikh, F. Zahran, Spectrophotometric determination ofgatifloxacin in pure form and in pharmaceutical formulation. Spectrochim. Acta A 67 (2007)1306―1312.
    [7] K.Venugopal, R. N. Saha, New, simple and validated UV-spectrophotometric methods for theestimation of gatifloxacin in bulk and formulations. Il Farmaco 60 (2005) 906―912.
    [8] J.A.O. González, M.C. Mochón, F.J.B. Rosa, Spectrofluorimetric determination of levofloxacin intablets, human urine and serum. Talanta 52 (2000) 1149―1156.
    [9] O. Ballesteros, J.L. Vílchez, A. Navalón, Determination of the antibacterial ofloxacin in humanurine and serum samples by solid-phase spectrofluorimetry. J. Pharm. Biomed. Anal. 30 (2002)1103―1110.
    [10] S.T. Ulu, Rapid and sensitive spectrofluorimetric determination of enrofloxacin, levofloxacin andofloxacin with 2,3,5,6-tetrachloro-p-benzoquinone. Spectrochim. Acta A 72 (2009) 1038―1042.
    [11] X. Zhu, A. Gong, S. Yu, Fluorescence probe enhanced spectrofluorimetric method for thedetermination of gatifloxacin in pharmaceutical formulations and biological fluids. Spectrochim. ActaA 69 (2008) 478―482.
    [12] C. Guo, L. Wang, Z. Hou,W. Jiang, L. Sang, Micelle-enhanced and terbium-sensitizedspectrofluorimetric determination of gatifloxacin and its interaction mechanism. Spectrochim. Acta A72 (2009) 766―771.
    [13] J. A. Oca a, F. J. Barragán, M. Callejón, Spectrofluorimetric and micelle-enhancedspectrofluorimetric determination of gatifloxacin in human urine and serum. J. Pharm. Biomed. Anal.37 (2005) 327―332.
    [14] L.M. Du, Y.Q. Yang, Q.M. Wang, Spectrofluorometric determination of certain quinolonethrough charge transfer complex formation. Anal. Chim. Acta, 516 (2004) 237―243.
    [15] L.M. Du, A.P. Lin, Y.Q. Yang, Spectrofluorimetric Determination of Certain FluoroquinoloneThrough Charge Transfer Complex Formation. Anal. Lett. 37 (2004) 2175―2188.
    [16] G. Zhou, J. Pan, Polarographic and voltammetric behaviour of ofloxacin and its analyticalapplication. Anal. Chim. Acta 307 (1995) 49―53.
    [17] M. Rizk, F. Belal, F.A. Aly, N.M. El-Enany, Differential pulse polarographic determination ofofloxacin in pharmaceuticals and biological fluids. Talanta 46 (1998) 83―89.
    [18] N.T.A. Ghani, M.A. El-Ries, M.A. El-Shall, Validated Polarographic Methods for theDetermination of Certain Antibacterial Drugs. Anal. Sci. 23 (2007) 1053―1058.
    [19] M.A. El-Ries, A.A. Wassel, N.T.A. Ghani, M. A. El-Shall, Wassel, Electrochemical adsorptivebehaviour of some fluoroquinolones at carbon paste electrode. Anal. Sci. 21 (2005) 1249.
    [20] T.M. Reddy, K. Balaji, S.J. Reddy, Voltammetric behavior of some fluorinated quinoloneantibacterial agents and their differential pulse voltammetric determination in drug formulations andurine samples using aβ-cyclodextrin-modified carbon-paste electrode. J. Anal. Chem. 62 (2007)168―175.
    [21] Y. Ni, Y. Wang, S. Kokot, Simultaneous determination of three fluoroquinolones by linear sweepstripping voltammetry with the aid of chemometrics. Talanta 69 (2006) 216.
    [22] A. Tamer, Adsorptive stripping voltammetric determination of ofloxacin. Anal. Chim. Acta231(1990) 129―131.
    [23] L. Wang, P. Yang, Y. Li, H. Chen, M. Li, F. Luo, A flow injection chemiluminescence method forthe determination of fluoroquinolone derivative using the reaction of luminol and hydrogen peroxidecatalyzed by gold nanoparticles. Talanta 72 (2007) 1066―1072.
    [24] H. Sun, L. Li, X. Chen, Investigation on sensitized chemiluminescence systems and theirmechanism for five fluoroquinolones. Anal. Chim. Acta 576 (2006) 192―199.
    [25] A. Espinosa-Mansilla, A.M. Pe a, D.G. Gómez, F.S. López, HPLC determination of enoxacin,ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorimetric (PIF) detection andmultiemission scanning: Application to urine and serum. J. Chromatogr. B 822 (2005) 185―193.
    [26] A. Espinosa-Mansilla, A.M. Pe a, D.G. Gómez, F.S. López, Determination of fluoroquinolones inurine and serum by using high performance liquid chromatography and multiemission scanfluorimetric detection. Talanta 68 (2006) 1215―1221.
    [27] L. Zivanovic, G. Zigic, M. Zecevic, Investigation of chromatographic conditions for theseparation of ofloxacin and its degradation products. J. Chromatogr. A 1119 (2006) 224―230.
    [28] X. Gao, G. Yao, N. Guo, F. An, X. Guo, A simple and rapid high performance liquidchromatography method to determine levofloxacin in human plasma and its use in a bioequivalencestudy. Drug Discov. Ther. 1 (2007) 136.
    [29] C. Immanuel, A.K.H. Kumar, Simple and rapid high-performance liquid chromatography methodfor the determination of ofloxacin concentrations in plasma and urine. J. Chromatogr. B 760 (2001)91―95.
    [30] A. Espinosa-Mansilla, A.M. Pe a, D.G. Gómez, F. Salinas, HPLC determination of enoxacin,ciprofloxacin, norfloxacin and ofloxacin with photoinduced fluorimetric (PIF) detection andmultiemission scanning: Application to urine and serum. J.Chromatogr. B 822 (2005) 185―193.
    [31] B.R. Overholser, M.B. Kays, K.M. Sowinski, Determination of gatifloxacin in human serum andurine by high-performance liquid chromatography with ultraviolet detection. J. Chromatogr. B 798(2003) 167―173.
    [32] H.A. Nguyen, J. Grellet, B.B. Ba, C. Quentin, M. Saux, Simultaneous determination oflevofloxacin, gatifloxacin and moxifloxacin in serum by liquid chromatography with column switching.J. Chromatogr. B 810 (2004) 77―83.
    [33] S. Al-Dgither, S.N. Alvi, M.M. Hammami, Development and validation of an HPLC method forthe determination of gatifloxacin stability in human plasma. J. Pharm. Biomed. Anal. 41 (2006)251―255.
    [34] F. Merino, S. Rubio, D. Perez-Bendito, Mixed aggregate-based acid-induced cloud-pointextraction and ion-trap liquid chromatography–mass spectrometry for the determination of cationicsurfactants in sewage sludge, J. Chromatogr. A 998 (2003) 143―154.
    [35] C.P. Sanz, R. Halko, Z.S. Ferrera, J.J.S. Rodriguez, Micellar extraction of organophosphoruspesticides and their determination by liquid chromatography. Anal. Chim. Acta 524 (2004) 265―270.
    [36] J.C. Shen, X.G. Shao, Determination of tobacco alkaloids by gas chromatography–massspectrometry using cloud point extraction as a preconcentration step. Anal. Chim. Acta 561 (2006)83―87.
    [37] K.C. Hung, B.H. Chen, L.E. Yu, Cloud-point extraction of selected polycyclic aromatichydrocarbons by nonionic surfactants. Sep. Purif. Technol. 57 (2007) 1―10.
    [38] W.N. Maclay, Factors affecting the solubility of nonionic emulsifiers. J. Colloid Sci. 11 (1956)272―285.
    [39] T. Gu, S. Qin, C. Ma, The effect of electrolytes on the cloud point of mixed solutions of ionic andnonionic surfactants. J. Colloid Interf. Sci. 127 (1989) 586―588.
    [40] T. Gu, P.A. Galera-Gomez, Clouding of Triton X-114: The effect of added electrolytes on thecloud point of Triton X-114 in the presence of ionic surfactants. Colloids Surface A 104 (1995)307―312.
    [41] L. Marszall, The effect of electrolytes on the cloud point of ionic-nonionic surfactant solutions.Colloids Surfaces 25 (1987) 279―285.
    [42] L. Marszall, Cloud point of mixed ionic-nonionic surfactant solutions in the presence ofelectrolytes. Langmuir, 4 (1988) 90―93.
    [43] L. Marszall, Effect of aromatic hydrotropic agents on the cloud point of mixed ionic-nonionicsurfactant solutions. Langmuir, 6 (1990) 347―350
    [44] T. Gu, S. Qin, C. Ma, The effect of electrolytes on the cloud point of mixed solutions of ionic andnonionic surfactants. J. Colloid Interf. Sci. 127 (1989) 586―588.
    [45] L. Marszall, Effect of aromatic hydrotropic agents on the cloud point of mixed ionic-nonionicsurfactant solutions. Langmuir 6 (1990) 347―350.
    [46] C.C. Nascentes, M.A.Z. Arruda, Cloud point formation based on mixed micelles in the presenceof electrolytes for cobalt extraction and preconcentration. Talanta 61 (2003) 759.
    [1] Biljana Panzova, Miroslava Ilievska, Gordana Trendovska, Bogdan Bogdanov, Simultaneousdetermination of polythiazide and prazosin in tablets by second-order derivative UV spectroscopy,International Journal of Pharmaceutics, 1991, 70(1-2): 187―190
    [2] K.Sreedhar, C.S.P. Sastry, M. Narayana Reddy, D.G. Sankar, Spectrophotometric methods for thedetermination of prazosin hydrochloride in tablets. Talanta, 43 (1996) 1847―1855
    [3] Fatma M. Abdel-Gawad. Spectrophotometric determination of some pharmaceutical piperazinederivatives through charge-transfer and ion-pair complexation reactions, Journal of Pharmaceutical andBiomedical Analysis, 15 (1997) 1679―1685
    [4] P. Parimoo, P.V. Ballimane, Indian Drugs 34 (1997) 21―23.
    [5] E.M. Niazy, Y.M. El-Sayed, S.H. Khidr, Analysis of Prazosin in Plasma by High-PerformanceLiquid Chromatography Using Fluorescence Detection. J. Liq. Chromatogr. 18 (1995) 977―987.
    [6] R. Sohr, I. Weisshuhn, R. Preiss, Determination of prazosin (Adversuten) by hplc with fluorescencedetection. J. Scholze, Pharmazie 38 (1983) 496―497.
    [7] Y. G. Yee, P. C. Rubin, P. Meffin, Prazosin determination by high-pressure liquid chromatographyusing flourescence detection, J. Chromatogr. A, 1979, 172: 313―318
    [8]A. Arranz, S. Fernandez de Betono, C. Echevarria, J.M. Modera, Cid A, Valentin J F A,Voltammetric and spectrophotometric techniques for the determination of the antihypertensive drugPrazosin in urine and formulations, J. Pharm. Biomed. Anal. 21 (1999) 797–807.
    [9] G. Altiokka, M. Tuncel, Differential pulse polarographic determination of prazosin hydrochloride intablets. Pharmazie 52 (1997) 401–2.
    [10] M. Aranzazu-Goicolea, Z. Gomez de Balugera, M. Jesus Portela, R. Barrio, Evaluation ofamperometric detection at a glassy carbon electrode for the liquid-chromatographic determination ofantihypertensive substances, Analyst 119 (1994) 269–272.
    [11] O. Matou ová, M. Peterková, B. Kaká, Densitometric determination of prazosin in plasma. esk.Farm. 32 (1983) 245–246.
    [12] F. Merino, S. Rubio, D. Perez-Bendito, Mixed aggregate-based acid-induced cloud-pointextraction and ion-trap liquid chromatography–mass spectrometry for the determination of cationicsurfactants in sewage sludge, J. Chromatogr. A 998 (2003) 143―154.
    [13] C.P. Sanz, R. Halko, Z.S. Ferrera, J.J.S. Rodriguez, Micellar extraction of organophosphoruspesticides and their determination by liquid chromatography. Anal. Chim. Acta 524 (2004) 265―270.
    [14] J.C. Shen, X.G. Shao, Determination of tobacco alkaloids by gas chromatography–massspectrometry using cloud point extraction as a preconcentration step. Anal. Chim. Acta 561 (2006)83―87.
    [15] K.C. Hung, B.H. Chen, L.E. Yu, Cloud-point extraction of selected polycyclic aromatichydrocarbons by nonionic surfactants. Sep. Purif. Technol. 57 (2007) 1―10.
    [16] I. Casero, D. Sicilia, S. Rubio, and D. Pe′rez-Bendito. An Acid-Induced Phase Cloud PointSeparation Approach Using Anionic Surfactants for the Extraction and Preconcentration of OrganicCompounds, Anal. Chem. 71 (1999), 4519―4526
    [17] Apichai Santalad, Supalax Srijaranai, Rodjana Burakham, Tadao Sakai, Richard L. Deming.Acid-induced cloud-point extraction coupled to spectrophotometry for the determination of carbarylresidues in waters and vegetables. Microchemical Journal 90 (2008) 50–55
    [18] Guifang Jia, Li Li, Jing Qiu, Xinquan Wang, Wentao Zhu, Ying Sun, Zhiqiang Zhou,Determination of carbaryl and its metabolite 1-naphthol in water samples by fluorescencespectrophotometer after anionic surfactant micelle-mediated extraction with sodium dodecylsulfate,Spectrochimica Acta Part A 67 (2007) 460–464
    [1] M. Megyesi, L. Biczok, Effect of ion pairing on the fluorescence of berberine, a naturalisoquinoline alkaloid. Chem. Phys. Lett. 447 (2007) 247―251.
    [2] S.K. Kulkarni, A. Dhir, Possible involvement of L-arginine-nitric oxide (NO)-cyclic guanosinemonophosphate (cGMP) signaling pathway in the antidepressant activity of berberine chloride. Eur. J.Pharmacol. 569 (2007) 77―83.
    [3] S. Jantova, L. Cipak, S. Letasiova, Berberine induces apoptosis through a mitochondrial/caspasepathway in human promonocytic U937 cells. Toxicology in Vitro, 21 (2007) 25―31.
    [4] R. Piyanuch, M. Sukhthankar, G. Wandee, S.J. Baek, Berberine, a natural isoquinoline alkaloid,induces NAG-1 and ATF3 expression in human colorectal cancer cells. Cancer Lett. 258 (2007)230―240.
    [5] K. Ravilkumar, S.H. Kim, Y.A. Son, Design of experiments for the optimization and statisticalanalysis of Berberine finishing of polyamide substrates. Dyes and Pigments. 75 (2007) 401―407.
    [6] S.O. Gudima, L.V. Memelova, V.B. Borodulin, D.K. Pokholok, B.M.Mednmov, O.N. Tolkachevand S.N. Kochetkov, Kinetic analysis of interaction of human immunodeficiency virus reversetranscriptase with alkaloids. Mol. Biol. 28 (1994) 809―812.
    [7] J.D. Phlillipson, C.W. Wright, Trans. Roy. Sot. Trop. Med. Hyg. 85 ( 1991) 18―21.
    [8] K. I. Wasa. M. Kamigauchi, M. Sugiura, H. Nanba, Antimicrobial activity of some13-alkay-substituted protoberberinium salts. Planta Medica 63 (1997) 196―198.
    [9]T. Schmeller, B. Latzbrunmg and M. Wink, Biochemical activities of berberine, palmatine, andsanguinarine mediating chmical defence against microorganisms and herbivores. Phytochemistry 44(1997) 257―266.
    [10] Y. Li, L.Y. Fu, W.X. Yao, G.J. Xia, M.X. Jiang, Effects of benzyltetrahydropalmatine onpotassium currents in guinea pig and rat ventricular myocytes. Acta Pharmacol. Sin. 23 (2002)612―616.
    [11] B.X. Li, B.F. Yang, J. Zhou, C.Q. Xu, Y.R. Li, Inhibitory effects of berberine on IK1, IK, andHERG channels of cardiac myocytes. Acta Pharmacol. Sin. 22 (2001) 125―131.
    [12] H. Ingrid, S. Kurt, Antifungal activity of radix Colombo [calumba Jatrorrhiza palmate, root]components. Pharm. Ztg. 113 (1968) 50―945.
    [13] W.H. Chen, Y. Qin, Z.W. Cai,C.L. Chan, G.A. Luo, Z.H. Jiang, Spectrometric studies of cytotoxicprotoberberine alkaloids binding to double-stranded DNA. Bioorganic & Medicinal Chemistry 13(2005) 1859―1866
    [14] Y. Li, W. He, J. Liu, F. Sheng, Z. Hu, X. Chen. Binding of the bioactive component Jatrorrhizineto human serum albumin. Biochimica et Biophysica Acta 1722 (2005) 15―21
    [15] R. Marek, P. Seckarova, D. Hulova, J. Marek, J. Dostal, V. Sklenar, Palmatine and BerberineIsolation Artifacts. J. Nat. Prod. 66 (2003) 481―486.
    [16] A.H. Gilani, B. Samra, K.H. Janbaz, A. Khan, Pharmacological basis for the use of Fumariaindica in constipation and diarrhea. J. Ethnopharmacol. 96 (2005) 585―589.
    [17] C.L. Kuo, C.W. Chi, T.Y. Liu, The anti-inflammatory potential of berberine in vitro and in vivo.Cancer Lett. 203 (2004) 127―137.
    [18] B.S. Ko, S.B. Choi, S.K. Park, J.S. Jang, Y.E. Kim, S. Park, Insulin sensitizing and insulinotropicaction of berberine from Cortidis rhizome. Biol. Pharm. Bull. 28 (2005) 1431―1437.
    [19] H. Tanabe, H. Suzuki, H. Mizukami, M. Inoue, Double blockade of cell cycle progression bycoptisine in vascular smooth muscle cells. Biochem. Pharmacol. 70 (2005)1176―1184.
    [20] P.L. Tsai, T. H. Tsai, Simultaneous determination of berberine in rat blood, liver and bile usingmicrodialysis coupled to high-performance liquid chromatography. J. Chromatogr. A. 961 (2002)125―130.
    [21] L.H. Yin, B.N. Lu, Y. Qi, L.N. Xu, X. Han, Y.W. Xu, J.Y. Peng, C.K. Sun, Simultaneousdetermination of 11 active components in two well-known traditional Chinese medicines by HPLCcoupled with diode array detection for quality control. J. Pharm. Biomed. Anal. 49 (2009) 1101―1108
    [22] Y. Deng, Q. Liao, S. Li, K. Bi, B. Pan, Z. Xie. Simultaneous determination of berberine,palmatine and jatrorrhizine by liquid chromatography–tandem mass spectrometry in rat plasma and itsapplication in a pharmacokinetic study after oral administration of coptis–evodia herb couple. J.Chromatogr. B, 863 (2008) 195―205
    [23] J. Huang, G. Wang, Y. Jin, T. Shen, W. Weng, Determination of palmatine in canine plasma byliquid chromatography–tandem mass spectrometry with solid-phase extraction. J. Chromatogr. B, 854(2007) 279―285
    [24] S. Yu, X. Pang, Y. Deng, L. Liu, Y. Liang, X. Liu, L. Xie, G. Wang, X. Wang. A sensitive andspecific liquid chromatography mass spectrometry method for simultaneous determination of berberine,palmatine, coptisine, epiberberine and jatrorrhizine from Coptidis Rhizoma in rat plasma. Int. J. MassSpectrom. 268 (2007) 30―37
    [25] J. Chen, F. Wang, J. Liu, F.S.C. Lee, X. Wang, H. Yang, Analysis of alkaloids in Coptis chinensisFranch by accelerated solvent extraction combined with ultra performance liquid chromatographicanalysis with photodiode array and tandem mass spectrometry detections. Anal. Chim. Acta 613 (2008)184―195
    [26] S.W. Sun, H.M. Tseng, Sensitivity improvement on detection of Coptidis alkaloids by sweepingin capillary electrophoresis. J. Pharm. Biomed. Anal. 37 (2005) 39―45
    [27] L. Liu, X. Chen, Z. Hu, On-line concentration by head-column field amplified sample injectionfor the analysis of berberine, palmatine and jatrorrhizine in herbal medicine by flow injection-micellarelectrokinetic chromatography. Microchim. Acta 159 (2007) 125―131
    [28] K.L. Li, S.J. Sheu, Determination of flavonoids and alkaloids in the scute-coptis herb couple bycapillary electrophoresis. Anal. Chim. Acta. 313 (1995) 113―120.
    [29] J.F. Song, Y.Y. He, W. Guo, Polarographic determination of berberine in the presence of H2O2 inmedicinal plants. J. Pharm. Biomed. Anal. 28 (2002) 355―363.
    [30] J. Ková, K. imek, E. Ko ou ková, H. Klukanová, J. Slavík, Fluorescence properties of someisoquinoline alkaloids, Collect. Czech. Chem. Commun. 50 (1985) 1312―1328
    [31] F. Liu, H. L. Liang, K. H. Xu, L. L. Tong, B. Tang, Supramolecular interaction ofethylenediamine linkedβ-cyclodextrin dimer and berberine hydrochloride by spectrofluorimetry andits analytical application, Talanta. 74 (2007) 140―145.
    [32] T. Sakai, N. Ohno, Y. S. Chung, and H. Nishikawa, Spectrofluorimetric determination ofberberine in oriental pharmaceutical preparations by flow-injection analysis coupled with liquid-liquidextraction. Anal. Chim. Acta. 308 (1995) 329―333.
    [33] C.F. Li, L.M. Du, W.Y. Wu, A. Z. Sheng, Supramolecular interaction of cucurbit[n]urils andcoptisine by spectrofluorimetry and its analytical application. Talanta 80 (2010) 1939―1944
    [34] C.Y. Li, S.I. Tsai, A.G. Damu, T.S.Wu. A rapid and simple determination of protoberberinealkaloids in Rhizoma Coptidis by 1H NMR and its application for quality control of commercialprescriptions. J. Pharm. and Biomed. Anal. 49 (2009) 1272―1276
    [35]A. Paul, P. K. Mandal, A. Samanta, Fluorescence studies in a pyrrolidinium ionic liquid: Polarityof the medium and solvation dynamics. J. Phys. Chem. B 109 (2005) 9148―9153
    [36] R. Karmaka, A. Samanta, Steady-State and Time-Resolved Fluorescence Behavior of C153 andPRODAN in Room-Temperature Ionic Liquids. J. Phys. Chem. A 106 (2002) 6670―6675
    [37] R. Karmaka, A. Samanta, Dynamics of Solvation of the Fluorescent State of Some ElectronDonor Acceptor Molecules in Room Temperature Ionic Liquids, [BMIM][(CF3SO2)2N] and
    [EMIM][(CF3SO2)2N]. J. Phys. Chem. A 107 (2003) 7340―7346
    [38] N. Ito, S. Arzhantsev, M. Maroncelli, The probe dependence of solvation dynamics and rotation inthe ionic liquid 1-butyl-3-methyl-imidazolium hexafluorophosphate. Chem. Phys. Lett. 396 (2004)83―91
    [39] A.M. Powe, K.A. Fletcher, N.N.S. Luce, M. Lowry, S. Neal, M.E. McCarroll, P.B. Oldham, L.B.McGown, I.M. Warner, Molecular fluorescence, phosphorescence, and chemiluminescencespectrometry. Anal. Chem. 76 (2004) 4614―4634.
    [40] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, Temperature-controlled ionic liquid dispersive liquidphase micro-extraction. J. Chromatogr. A 1177 (2008) 43―49.
    [41] F. Kamarei, H. Ebrahimzadeh, Y. Yamini, Optimization of temperature-controlled ionic liquiddispersive liquid phase microextraction combined with high performance liquid chromatography foranalysis of chlorobenzenes in water samples. Talanta 83 (2010) 36―41
    [42] R.S. Zhao, X. Wang, J.P. Yuan, S.S. Wang, C.G. Cheng. Trace determination ofhexabromocyclododecane diastereomers in water samples with temperature controlled ionic liquiddispersive liquid phase microextraction. Chin. Chem. Lett. 2011, 22: 97―100
    [43] H.F. Zhang, Y.P.Shi. Temperature-assisted ionic liquid dispersive liquid–liquid microextractioncombined with high performance liquid chromatography for the determination of anthraquinones inRadix et Rhizoma Rhei samples. Talanta 82 (2010) 1010―1016
    [44] L.M. Du, Y.Q. Yang, Q.M. Wang, Spectrofluorometric determination of certain quinolonethrough charge transfer complex formation. Anal. Chim. Acta. 516 (2004) 237―243.
    [45] M. Megyesi, L. Biczók, Effect of ion pairing on the fluorescence of berberine, a naturalisoquinoline alkaloid. Chemical Physics Letters 447 (2007) 247―251
    [46] Pharmacopoeia of the People’s Republic of China, Beijing: Peoples Medicinal Publishing House,2010, Vol.1 pp. 1070―1071 and Vol.2 pp. 640.
    [1] Lenfeld, J., Kroutil, M., Marálek, E., Slavík, J., Preininger, V., imánek, V.. Antiinflammatoryactivity of quaternary benzophenanthridine alkaloids from chelidonoum majus Planta Med. 1981, 43,161―165.
    [2] Colombo, M. L., Bosisio E. Pharmacological Activities of Chelidonium Majus L. (Papaveraceae)Pharmacol. Res. 1996, 33, 127―134.
    [3] Herbert, J. M., Augereau, J. M., Gleye, J., Maffrand, J. P. Chelerythrine is a potent and specificinhibitor of protein kinase C Biochem. Biophys. Res. Commun. 1990, 172, 993―999.
    [4] Walterová, D., Ulrichová, J., Válka, I., Vicar, J., Vavrecková, C., Táborská, E., Harkrader, R. J.,Meyer, D. L., Cerná, H., Simánek, V. Benzo[c]phenanthridine alkaloids sanguinarine and chelerythrine:biological activities and dental care applications Acta Univ. Palacki Olomuc Fac. Med. 1995, 139,7―16.
    [5] Jeng, J. H., Wu, H. L., Lin, B. R., Lan, W. H., Chang, H. H., Ho, Y. S., Lee, P. H., Wang, Y. J.,Wang, J. S., Chen, Y. J., Chang, M. C. Antiplatelet effect of sanguinarine is correlated to calciummobilization, thromboxane and cAMP production Atherosclerosis 2007, 191, 250―258.
    [6] Seifen, E., Adams, R. J., Riemer, R. K. Sanguinarine: a positive inotropic alkaloid which inhibitscardiac Na+, K+-ATPase Eur. J. Pharmacol. 1979, 60, 373―377.
    [7] Chaturvedi, M. M., Kumar, A., Darnay, B. G., Chainy, G. B., Agarwal, S., Aggarwal, B.B.Sanguinarine (pseudochelerythrine) is a potent inhibitor of NF-κB activation, IκBαphosphorylation,and degradation J. Biol. Chem. 1997, 272, 30129―30134.
    [8] Vogt, A., Tamewitz, A., Skoko, J., Sikorski, R. P., Giuliano, K. A., Lazo, J. S. Thebenzo[c]phenanthridine alkaloid, sanguinarine, is a selective, cell-active inhibitor of mitogen-activatedprotein kinase phosphatase-1 J. Biol. Chem. 2005, 280, 19078―19086.
    [9] Tanaka, S., Sakata, Y., Morimoto, K., Tambe, Y., Watanabe, Y., Handa, G., Tabata, M., Oshima,T., Masuda, T., Masada, T., Umezawa, T., Shimada, M., Nagakura, N., Kamisako, W., Kashiwada, Y.,Ikeshiro, Y. Influence of natural and synthetic compounds on cell surface expression of cell adhesionmolecules, ICAM-1 and VCAM-1 Planta Med. 2001, 67, 108―113.
    [10] Zhang, Y. H., Bhunia, A., Wan, K. F., Lee, M. C., Chan, S. L., Yu, V. C., Mok, Y. K.Chelerythrine and sanguinarine dock at distinct sites on BclXLthat are not the classic BH3 binding cleftJ. Mol. Biol. 2006, 364, 536―549.
    [11] Eckly-Michel, A. E., Bec, A. L., Lugnier, C. Chelerythrine, a protein kinase C inhibitor, interactswith cyclic nucleotide phosphodiesterases Eur. J. Pharmacol. 1997, 324, 85―88.
    [12] Sacchetti, B., Bielavska, E. Chelerythrine, a specific PKC inhibitor, blocks acquisition but notconsolidation and retrieval of conditioned taste aversion in rat Brain Res. 1998, 799, 84―90.
    [13] Das, M., Khanna, S. K. Clinicoepidemiological, toxicological, and safety evaluation studies onargemone oil Crit. Rev. Toxicol. 1997, 27, 273―297.
    [14] Sárk ziá., Janicsák, G., Kursinszki, L., Kéry,á. Alkaloid composition of Chelidonium majus L.studied by different chromatographic techniques Chromatographia, 2006, 63, 81―86
    [15] Balderstone, P., Dyke, S. F. Detection and quantitative analysis of sanguinarine in edible oils J.Chromatogr. 1977, 132, 359―362.
    [16] Bugatti, C., Colombo, M. L., Tomé, F. High-performance liquid chromatographic separation ofquaternary alkaloids of Chelidonium majus L. roots J. Chromatogr. 1987, 393, 312―316.
    [17] Husain, S., Narsimha, R., Rao, R. N. Separation, identification and determination of sanguinarinein argemone and other adulterated edible oils by reversed-phase high-performance liquidchromatography J. Chromatogr. A 1999, 863, 123―126.
    [18] Kosina, P., evík, J., Modriansky, M., Gavenda, A., Bedná, P., Barták, P., Walterová, D.,Ulrichová, J. High performance liquid chromatography and capillary electrophoresis determination ofsanguinarine in biological matrices J. Sep. Sci. 2003, 26, 679―685.
    [19] Luo, X. B., Chen, B., Yao, S. Z. High-performance liquid chromatography with electrospray massspectrometry for rapid and sensitive determination of sanguinarine and chelerythrine in exogenouslycontaminated honey, Chromatographia 2004, 60, 347―351.
    [20] Luo, X. B., Chen, B., Yao, S. Z. Rapid determination of protopine, allocryptopine, sanguinarineand chelerythrine in fruits of Macleaya cordata by microwave-assisted solvent extraction andHPLC―ESI/MS Phytochem. Analysis, 2006, 17, 431―438
    [21] Stuppner, H., Ganzera, M. Application ofβ-cyclodextrin for the analysis of the main alkaloidsfrom Chelidonium majus by capillary electrophoresis J. Chromatogr. A 1995, 717, 271―277.
    [22] evík, J., Vi ar, J., Ulrichová, J., Válka, I., Lemr, K., imánek, V. Capillary electrophoreticdetermination of sanguinarine and chelerythrine in plant extracts and pharmaceutical preparations J.Chromatogr. A 2000, 866, 293―298.
    [23] Liu, Q., Liu, Y., Guo, M., Luo, X., Yao, S. A simple and sensitive method of nonaqueouscapillary electrophoresis with laser-induced native fluorescence detection for the analysis ofchelerythrine and sanguinarine in Chinese herbal medicines Talanta 2006, 70, 202―207.
    [24] Anderson, J. L., Armstrong, D.W., Wei, G.-T. Ionic liquids in analytical chemistry Anal. Chem.2006, 78, 2893―2902.
    [25]Pandey, S. Analytical applications of room-temperature ionic liquids: A review of recent effortsAnal. Chim. Acta 2006, 556, 38―45.
    [26]Poole, C. F., Poole, S. K. Extraction of organic compounds with room temperature ionic liquids J.Chromatogr. A 2010, 1217, 2268―2286.
    [27]Fadeev, A. G., Meagher, M. M. Opportunities for ionic liquids in recovery of biofuels Chem.Commun. 2001, 3, 295―296.
    [28]Armstrong, D. W., He, L., Liu, Y. S. Examination of ionic liquids and their interaction withmolecules, when used as stationary phases in gas chromatography Anal. Chem. 1999, 71, 3873―3876.
    [29] Branco, L. C., Crespo, J. G., Afonso, C. A. M. Highly selective transport of organic compoundsby using supported liquid membranes based on ionic liquids Angew. Chem. Int. Ed. 2002, 41,2771―2773.
    [30] Liu, J. F., Jiang, G. B., Chi, Y. G., Cai, Y. Q., Hu, J. T., Zhou, Q. X. Use of ionic liquids forliquid-phase microextraction of polycyclic aromatic hydrocarbons Anal. Chem. 2003, 75, 5870―5876.
    [31] Berijani, S., Assadi, Y., Anbia, M., Hosseini, M. R. M., Aghaee, E. Dispersive liquid–liquidmicroextraction combined with gas chromatography-flame photometric detection: Very simple, rapidand sensitive method for the determination of organophosphorus pesticides in water J. Chromatogr. A2006, 1123, 1―9.
    [32] Fu, L. Y., Liu, X. J., Hu, J., Zhao, X. N., Wang, H. L., Wang, X. D. Application of dispersiveliquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruitjuice samples Anal. Chim. Acta 2009, 632, 289―295.
    [33] Nagaraju, D., Huang, S. D. Determination of triazine herbicides in aqueous samples by dispersiveliquid–liquid microextraction with gas chromatography–ion trap mass spectrometry J. Chromatogr. A2007, 1161, 89―97.
    [34] Zhou, Q. X., Bai, H. H., Xie, G. H., Xiao, J. P. Temperature-controlled ionic liquid dispersiveliquid phase micro-extraction J. Chromatogr. A 2008, 1177, 43―49.
    [35] Zhou, Q. X., Bai, H. H., Xie, G. H., Xiao, J. P. Trace determination of organophosphoruspesticides in environmental samples by temperature-controlled ionic liquid dispersive liquid-phasemicroextraction J. Chromatogr. A 2008, 1188, 148―153.
    [36] Zhou, Q. X., Zhang, X. G., Xiao, J. P. Ultrasound-assisted ionic liquid dispersive liquid-phasemicro-extraction: A novel approach for the sensitive determination of aromatic amines in watersamples J. Chromatogr. A 2009, 1216, 4361―4365
    [37] Wang, Y., You, J. Y., Ren, R. B., Xiao, Y., Gao, S. Q., Zhang, H. Q., Yu, A. M. Determination oftriazines in honey by dispersive liquid–liquid microextraction high-performance liquidchromatography J. Chromatogr. A 2010, 1217, 4241―4246
    [38] Baghdadi, M., Shemirani, F. In situ solvent formation microextraction based on ionic liquids: Anovel sample preparation technique for determination of inorganic species in saline solutions, Anal.Chim. Acta 2009, 634, 186―191
    [39] Mahpishanian, S., Shemirani, F. Preconcentration procedure using in situ solvent formationmicroextraction in the presence of ionic liquid for cadmium determination in saline samples by flameatomic absorption spectrometry Talanta 2010, 82, 471―476
    [40] Zeeb, M., Ganjali, M. R., Norouzi. P., Kalaee. M. R. Separation and preconcentration systembased on microextraction with ionic liquid for determination of copper in water and food samples bystopped-flow injection spectrofluorimetry Food Chem. Toxicol. 2011, 49, 1086―1091.
    [41] Yao, C., Anderson, J. L. Dispersive liquid–liquid microextraction using an in situ metathesisreaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds fromwater Anal. Bioanal. Chem. 2009, 395, 1491―1502.
    [42] Yao, C., Li, T., Twu, P., Pitner, W. R., Anderson, J. L. Selective extraction of emergingcontaminants from water samples by dispersive liquid–liquid microextraction using functionalizedionic liquids J.Chromatogr. A, 2011, 1218, 1556―1566
    [43] Zhang, F., Chen, B., Xiao, S., Yao, S. Optimization and comparison of different extractiontechniques for sanguinarine and chelerythrine in fruits of Macleaya cordata (Willd) R. Br. Sep. Purif.Technol. 2005, 42, 283―290.
    [1] S. Pandey, Analytical applications of room-temperature ionic liquids: A review of recent efforts,Anal. Chim. Acta 556 (2006) 38―45.
    [2] C.F. Poole, S.K. Poole, Extraction of organic compounds with room temperature ionic liquids, J.Chromatogr. A 1217 (2010) 2268―2286.
    [3] M. Baghdadi, F. Shemirani, Cold-induced aggregation microextraction: a novel sample preparationtechnique based on ionic liquids, Anal. Chim. Acta 613 (2008) 56―63.
    [4] C.L. Ye, Q.X. Zhou, X.M.Wang, Headspace liquid-phase microextraction using ionic liquid asextractant for the preconcentration of dichlorodiphenyltrichloroethane and its metabolites at tracelevels in water samples, Anal. Chim. Acta 572 (2006) 165―171.
    [5] H.E. Aguilera, R. Lucena, S. Cárdenas, M. Valcárcel, Ionic liquid-based single-dropmicroextraction/gas chromatographic/mass spectrometric determination of benzene, toluene,ethylbenzene and xylene isomers in waters, J. Chromatogr. A 1201 (2008) 106―111.
    [6] L.B. Xia, X. Li, Y.L. Wu, B. Hu, R. Chen, Ionic liquids based single drop microextractioncombined with electrothermal vaporization inductively coupled plasma mass spectrometry fordetermination of Co, Hg and Pb in biological and environmental samples, Spectrochim. Acta B 63(2008) 1290―1296.
    [7] J.F. Liu, G.B. Jiang, Y.G. Chi, Y.Q. Cai, J.T. Hu, Q.X. Zhou, Use of ionic liquids for liquid-phasemicroextraction of polycyclic aromatic hydrocarbons, Anal. Chem. 75 (2003) 5870―5876.
    [8] M. Gharehbaghi, F. Shemirani, M. Baghdadi, Dispersive liquid–liquid microextraction based onionic liquid and spectrophotometric determination of mercury in water samples, Int. J. Environ. Anal.Chem. 89 (2009) 21―33.
    [9] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, Temperature-controlled ionic liquid dispersive liquidphase micro-extraction, J. Chromatogr. A 1177 (2008) 43―49.
    [10] Q.X. Zhou, H.H. Bai, G.H. Xie, J.P. Xiao, Trace determination of organophosphorus pesticides inenvironmental samples by temperature-controlled ionic liquid dispersive liquid-phase microextraction,J. Chromatogr. A 1188 (2008) 148―153.
    [11] Q. X Zhou, X.G. Zhang, J.P. Xiao, Ultrasound-assisted ionic liquid dispersive liquid-phasemicro-extraction: A novel approach for the sensitive determination of aromatic amines in watersamples, J. Chromatogr. A 1216 (2009) 4361―4365
    [12] K. Huang, C. Jin, S. Song, C. Wei, Y. Liu, J. Li, Development of an ionic liquid-basedultrasonic-assisted liquid–liquid microextraction method for sensitive determination of biogenicamines: Application to the analysis of octopamine, tyramine and phenethylamine in beer samples, J.Chromatogr. B 879 (2011) 579―584
    [13] Y. Sun, W. Li, J. Wang, Ionic liquid based ultrasonic assisted extraction of isoflavones from Iristectorum Maxim and subsequently separation and purification by high-speed counter-currentchromatography, J. Chromatogr. B 879 (2011) 975―980
    [14] Y. Wang, J.Y. You, R.B. Ren, Y. Xiao, S.Q. Gao, H.Q. Zhang, A.M. Yu, Determination oftriazines in honey by dispersive liquid–liquid microextraction high-performance liquidchromatography, J. Chromatogr. A 1217 (2010) 4241―4246
    [15] S. Berijani, Y. Assadi, M. Anbia, M.R.M. Hosseini, E. Aghaee, Dispersive liquid–liquidmicroextraction combined with gas chromatography-flame photometric detection: Very simple, rapidand sensitive method for the determination of organophosphorus pesticides in water, J. Chromatogr. A1123 (2006) 1―9.
    [16] L.Y. Fu, X.J. Liu, J. Hu, X.N. Zhao, H.L. Wang, X.D. Wang, Application of dispersiveliquid–liquid microextraction for the analysis of triazophos and carbaryl pesticides in water and fruitjuice samples, Anal. Chim. Acta 632 (2009) 289―295.
    [17] D. Nagaraju, S.D. Huang, Determination of triazine herbicides in aqueous samples by dispersiveliquid–liquid microextraction with gas chromatography–ion trap mass spectrometry, J. Chromatogr. A1161 (2007) 89―97.
    [18] M. Baghdadi, F. Shemirani, In situ solvent formation microextraction based on ionic liquids: Anovel sample preparation technique for determination of inorganic species in saline solutions, Anal.Chim. Acta 634 (2009) 186―191
    [19] S. Mahpishanian, F. Shemirani, Preconcentration procedure using in situ solvent formationmicroextraction in the presence of ionic liquid for cadmium determination in saline samples by flameatomic absorption spectrometry, Talanta 82 (2010) 471―476
    [20] M. Zeeb, M. R. Ganjali, P. Norouzi, M. R. Kalaee, Separation and preconcentration system basedon microextraction with ionic liquid for determination of copper in water and food samples bystopped-flow injection spectrofluorimetry, Food Chem. Toxicol. 49 (2011) 1086―1091.
    [21] C. Yao, J.L. Anderson, Dispersive liquid–liquid microextraction using an in situ metathesisreaction to form an ionic liquid extraction phase for the preconcentration of aromatic compounds fromwater, Anal. Bioanal. Chem. 395 (2009) 1491―1502.
    [22] C. Yao, T. Li, P. Twu, W.R. Pitner, J.L. Anderson, Selective extraction of emerging contaminantsfrom water samples by dispersive liquid–liquid microextraction using functionalized ionic liquids,J.Chromatogr. A, 1218 (2011) 1556―1566
    [23] S.K. Kulkarni, A. Dhir, Possible involvement of L-arginine-nitric oxide (NO)-cyclic guanosinemonophosphate (cGMP) signaling pathway in the antidepressant activity of berberine chloride, Eur. J.Pharmacol. 569 (2007) 77―83.
    [24] S. Jantova, L. Cipak, S. Letasiova, Berberine induces apoptosis through a mitochondrial/caspasepathway in human promonocytic U937 cells, Toxicology in Vitro, 21 (2007) 25―31.
    [25] R. Piyanuch, M. Sukhthankar, G. Wandee, S.J. Baek, Berberine, a natural isoquinoline alkaloid,induces NAG-1 and ATF3 expression in human colorectal cancer cells, Cancer Lett. 258 (2007)230―240.
    [26] K. Ravilkumar, S.H. Kim, Y.A. Son, Design of experiments for the optimization and statisticalanalysis of Berberine finishing of polyamide substrates, Dyes and Pigments. 75 (2007) 401―407.substituted protoberberinium salts, Planta Med. 63 (1997) 196―198.
    [28] T. Schmeller, B. Latzbrunmg, M. Wink, Biochemical activities of berberine, palmatine andsanguinarine mediating chemical defence against microorganisms and herbivores, Phytochemistry 44(1997) 257―266.
    [29] Y.L. Chang, S. Usami, M.T. Hsieh, M.J. Jiang, Effects of palmatine on isometric force andintracellular calcium levels of arterial smooth muscle, Life Sci. 64 (1999) 597―606.
    [30] M.T. Hsieh, S.H. Su, H.Y. Tsai, W.H. Peng, C.C. Hsieh, C.F. Chen, Effects of palmatine on motoractivity and the concentration of central monoamines and its metabolites in rats, Jpn. J. Pharmacol. 61(1993) 1―5.
    [31] F. Wang, H.Y. Zhou, L. Cheng, G. Zhao, J. Zhou, L.Y. Fu, W.X. Yao, Effects of palmatine onpotassium and calcium currents in isolated rat hepatocytes, World J. Gastroenterol. 9 (2003) 329―333.
    [32] R. Marek, P. Seckarova, D. Hulova, J. Marek, J. Dostal, V. Sklenar, Palmatine and BerberineIsolation Artifacts, J. Nat. Prod. 66 (2003) 481―486.
    [33] A.H. Gilani, B. Samra, K.H. Janbaz, A. Khan, Pharmacological basis for the use of Fumariaindica in constipation and diarrhea, J. Ethnopharmacol. 96 (2005) 585―589.
    [34] C.L. Kuo, C.W. Chi, T.Y. Liu, The anti-inflammatory potential of berberine in vitro and in vivo,Cancer Lett. 203 (2004) 127―137.
    [35] B.S. Ko, S.B. Choi, S.K. Park, J.S. Jang, Y.E. Kim, S. Park, Insulin sensitizing and insulinotropicaction of berberine from Cortidis Rhizoma, Biol. Pharm. Bull. 28 (2005) 1431―1437.
    [36] H. Tanabe, H. Suzuki, H. Mizukami, M. Inoue, Double blockade of cell cycle progression bycoptisine in vascular smooth muscle cells, Biochem. Pharmacol. 70 (2005)1176―1184.
    [37] P.L. Tsai, T. H. Tsai, Simultaneous determination of berberine in rat blood, liver and bile usingmicrodialysis coupled to high-performance liquid chromatography, J. Chromatogr. A. 961 (2002)125―130.
    [38] L.H. Yin, B.N. Lu, Y. Qi, L.N. Xu, X. Han, Y.W. Xu, J.Y. Peng, C.K. Sun, Simultaneousdetermination of 11 active components in two well-known traditional Chinese medicines by HPLCcoupled with diode array detection for quality control, J. Pharm. Biomed. Anal. 49 (2009) 1101―1108
    [39] Y. Deng, Q. Liao, S. Li, K. Bi, B. Pan, Z. Xie. Simultaneous determination of berberine,palmatine and jatrorrhizine by liquid chromatography–tandem mass spectrometry in rat plasma and itsapplication in a pharmacokinetic study after oral administration of coptis–evodia herb couple, J.Chromatogr. B, 863 (2008) 195―205
    [40] J. Huang, G. Wang, Y. Jin, T. Shen, W. Weng, Determination of palmatine in canine plasma byliquid chromatography-tandem mass spectrometry with solid-phase extraction, J. Chromatogr. B, 854(2007) 279―285
    [41] S. Yu, X. Pang, Y. Deng, L. Liu, Y. Liang, X. Liu, L. Xie, G. Wang, X. Wang. A sensitive andspecific liquid chromatography mass spectrometry method for simultaneous determination of berberine,palmatine, coptisine, epiberberine and jatrorrhizine from Coptidis Rhizoma in rat plasma, Int. J. MassSpectrom. 268 (2007) 30―37
    [42] J. Chen, F. Wang, J. Liu, F.S.C. Lee, X. Wang, H. Yang, Analysis of alkaloids in Coptis chinensisFranch by accelerated solvent extraction combined with ultra performance liquid chromatographicanalysis with photodiode array and tandem mass spectrometry detections, Anal. Chim. Acta 613 (2008)184―195
    [43] S.W. Sun, H.M. Tseng, Sensitivity improvement on detection of Coptidis alkaloids by sweepingin capillary electrophoresis, J. Pharm. Biomed. Anal. 37 (2005) 39―45
    [44] K.L. Li, S.J. Sheu, Determination of flavonoids and alkaloids in the scute-coptis herb couple bycapillary electrophoresis, Anal. Chim. Acta. 313 (1995) 113―120.
    [45] C.Y. Li, S.I. Tsai, A.G. Damu, T.S.Wu. A rapid and simple determination of protoberberinealkaloids in Rhizoma Coptidis by 1H NMR and its application for quality control of commercialprescriptions, J. Pharm. Biomed. Anal. 49 (2009) 1272―1276
    [1] J. J. Berzas, J. R. Flores, M. J. V. Llerena, N. R. Farinas. Spectrophotometric resolution of ternarymixtures of Tartrazine, Patent Blue V and Indigo Carmine in commercial products. Analytica ChimicaActa, 1999, 391, 353―364.
    [2] S. Sayar, Y. zdemir. First-derivative spectrophotometric determination of Ponceau 4R, SunsetYellow and Tartrazine in confectionery products. Food Chemistry, 1998, 61, 367―372
    [3] X. Ni, Y. Gong. Simultaneous spectrophotometric determination of mixtures of food colorants.Analytica Chimica Acta, 1997, 354, 163―171.
    [4]Al-Degs Y. S. (2009). Determination of three dyes in commercial soft drinks using HLA/GO andliquid chromatography. Food Chemistry, 117, 485―490.
    [5]Ni Y., Bai J., & Jin L. (1997). Multicomponent chemometric determination of colorant mixtures byvoltammetry. Analytical Letters. 30, 1761―1777
    [6]Combeau S., Chatelut M., & Vittori O. (2002). Identification and simultaneous determination ofAzorubin, Allura red and Ponceau 4R by differential pulse polarography: application to soft drinks.Talanta, 56, 115―122.
    [7]Chanlon S., Joly-Pottuz L., Chatelut M., Vittori O., & Cretier J. L. (2005). Determination ofCarmoisine, Allura red and Ponceau 4R in sweets and soft drinks by Differential Pulse Polarography.Journal of Food Composition and Analysis, 18, 503―515.
    [8]Morlock G. E., & Oellig C. (2009). Rapid planar chromatographic analysis of 25 water-soluble dyesused as food additives Journal of AOAC International, 92, 745―756
    [9]Dossi N., Toniolo R., Pizzariello A., Susmel S., Perennes F., & Bontempelli G. (2007). A capillaryelectrophoresis microsystem for the rapid in-channel amperometric detection of synthetic dyes in food.Journal of Electroanalytical Chemistry, 601, 1―7.
    [10]Ryvolova M., Taborsky P., Vrabel P., Krasensky P., & Preisler J. (2007). Sensitive determinationof erythrosine and other red food colorants using capillary electrophoresis with laser-inducedfluorescence detection. Journal of Chromatography A. 1141, 206―211.
    [11]Yoshioka N., & Ichihashi K. (2008). Determination of 40 synthetic food colors in drinks andcandies by high-performance liquid chromatography using a short column with photodiode arraydetection. Talanta, 74, 1408―1413
    [12]Minioti K.S., Sakellariou C. F., & Thomaidis N. S. (2007). Determination of 13 synthetic foodcolorants in water-soluble foods by reversed-phase high-performance liquid chromatography coupledwith diode-array detector. Analytica Chimica Acta, 583, 103―110
    [13]Pereira Alves S., Brum D. M., Branco de Andrade E. C., & Pereira Netto A. D.. (2008).Determination of synthetic dyes in selected foodstuffs by high performance liquid chromatographywith UV-DAD detection. Food Chemistry, 107, 489―496
    [14]Vidotti E. C., Costa W. F., & Oliveira C. C. (2006). Development of a green chromatographicmethod for determination of colorants in food samples. Talanta, 68, 516―521
    [15]Chen Q., Mou S., Hou X., Riviello J. M., & Ni Z. (1998). Determination of eight synthetic foodcolorants in drinks by high-performance ion chromatography, Journal of Chromatography A, 827,73―81
    [16]Rezaee M., Assadi Y., Milani Hosseini M. R., Aghaee E., Ahmadi F., & Berijani S. (2006).Determination of organic compounds in water using dispersive liquid-liquid microextraction. Journalof Chromatography A, 1116, 1–9
    [17]Pandey S. (2006). Analytical applications of room-temperature ionic liquids: A review of recentefforts. Analytica Chimica Acta, 556, 38―45
    [18]Poole C. F., & Poole S. K. (2010). Extraction of organic compounds with room temperature ionicliquids, Journal of Chromatography A, 1217, 2268―2286
    [19]Zhou Q. X., Bai H. H., Xie G. H., & Xiao J. P. (2008). Temperature-controlled ionic liquiddispersive liquid phase micro-extraction. Journal of Chromatography A, 1177, 43―49
    [20]Zhou Q. X, Zhang X. G., & Xiao J. P. (2009). Ultrasound-assisted ionic liquid dispersiveliquid-phase micro-extraction: A novel approach for the sensitive determination of aromatic amines inwater samples. Journal of Chromatography A, 1216, 4361―4365
    [21]Yao C., & Anderson J. L. (2009). Dispersive liquid–liquid microextraction using an in situmetathesis reaction to form an ionic liquid extraction phase for the preconcentration of aromaticcompounds from water. Analytical and Bioanalytical Chemistry, 395, 1491―1502

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700